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A homozygous STIM1 mutation
impairs store-operated calcium
entry and natural killer cell
effector function without clinical
immunodeficiency
To the Editor:
Stromal interaction molecule 1 (STIM1) is a transmembrane

protein pivotal to store-operated calcium entry (SOCE) that
localizes to either the cell or endoplasmic reticulum (ER)
membranes, with the N-terminus in either the extracellular space
or the ER, respectively. Plasma membrane ORAI calcium
release–activated calcium modulator 1 (ORAI1) Ca21 channels
are activated by STIM1. Families previously described with
recessive STIM1 mutations (MIM #612783) had life-threatening
viral, bacterial, and fungal infections; developmental myopathy;
hypohidrosis; and amelogenesis imperfecta (AI; generalized
developmental enamel abnormalities).1-3 We investigated a
consanguineous family, segregating a novel syndrome of
� 2015 The Authors. Published by Elsevier Inc. on behalf of the American Academy of

Allergy,Asthma& Immunology. This is an open access article under theCCBY license

(http://creativecommons.org/licenses/by/4.0/).
recessive AI and hypohidrosis by using autozygosity mapping
and clonal sequencing. A homozygous rare missense mutation
in STIM1 (p.L74P) in the EF-hand domain was identified (see
the Methods and Results sections in this article’s Online Reposi-
tory at www.jacionline.org).
The family was re-evaluated, with particular attention paid to

features associatedwith recessive STIM1mutations (Table I and see
Tables E1-E3 in this article’s Online Repository at www.jacionline.
org). The 2 affected cousins (18 and 11 years old, respectively) did
not have overt clinical immunodeficiency. Further evaluation of
their immune systems showed a normal immunoglobulin profile
with an adequate specific antibody response to both nonlive (pneu-
mococcus, tetanus and, Hib) and live (mumps, measles, and
rubella) vaccinations. In addition, both subjects had detectable
IgG against varicella zoster virus after a previous uncomplicated
primary infection. The younger cousin was also found to have
IgG against EBV viral capsid antigen, suggesting previous expo-
sure, but neither showed any evidence of acute infection or previous
exposure to cytomegalovirus.
Lymphocyte studies showed stable CD8 T-cell depletion in the

older affected subject only. Other lymphocyte subsets, including
CD4 T, natural killer (NK), and B cells, were within the normal
range (Table I). However, despite normal PHA and anti-CD3
simulation responses, T-lymphocyte and NK cell SOCE was
grossly abnormal, which is consistent with disruption of the
Ca21-binding EF-hand and in keeping with previous reports for
recessive STIM1mutations (see Fig E1, A, in this article’s Online
Repository at www.jacionline.org).1-3 The defect in NK cell
SOCE was associated with impaired NK cell effector function,
as shown by assays of granule exocytosis and intracellular
IFN-g production in response to K562 tumor cells (see Fig E1,
B). After recently published mouse studies, which confirmed
the importance of STIM1 to neutrophil SOCE and associated
functions,4 we also evaluated neutrophil function. This was found
to be within normal limits.
Despite abnormal immune system SOCE, the affected subjects

in this case appear to be able to compensate for this deficit and
avoid overt immunodeficiency. It is possible that the relative
preservation of T-cell function might compensate for NK cell
dysfunction. Neither might yet have encountered a pathogen
that would expose this particular immune system limitation (see
Table E2). An ability to mount a partial response to viral
infections was reported in a family with clinical immunodefi-
ciency and a history of viral infections caused by a homozygous
missense R429C change affecting the STIM1 cytoplasmic
domain.2 A mouse model characterized by conditional knockout
of Stim1 and Stim2 in both CD41 and CD81 T cells has recently
provided further insight into the importance of Stim1 in immune
system development and virus-specific memory and recall
responses, which prevent acute viral infections from becoming
chronic.5

Recessive STIM1 mutations can be associated with other
immune dysregulations, including autoimmune disease. The
older cousin had a transient episode of idiopathic thrombocyto-
penic purpura when 2 years old that might have been unrelated
to the STIM1mutations. There were no other clinical or serologic
markers consistent with autoimmune disease, and regulatory
T-cell numbers were normal.
Both cousins were intolerant of warm environments and aware

of their inability to sweat normally. This limited the older cousin’s
ability to participate in sport. There was no clinical or serologic
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TABLE I. Summary of the main clinical and clinical immunologic features in subjects with either homozygous or heterozygous STIM1

c.221T>C mutations

Feature V:3 IV:4 IV:3 V:2

STIM1 genotype Homozygous c.221T>C Heterozygous c.221T>C Heterozygous c.221T>C Homozygous c.221T>C
Age at evaluation (y) 18-21 45-48 41 9-12

Persistent infections None None None None

Other infections Infancy: repeated chest

infections but not thereafter

No reported issues No reported issues Infancy: chest, urinary

tract, gastrointestinal

tract, ear, and eye

infections but not

thereafter

Autoimmune disorder Transient ITP aged 2.5 y None Sjogren syndrome None

Lymphocytes

Total (3109/L [1.00-2.80]) 1.50 2.30 2.64 2.34

CD4 (absolute; 3 109/L

[0.300-1.400])

0.841 1.091 1.502 0.908

CD8 (absolute; 3 109/L

[0.200-0.900])

0.055 0.236 0.415 0.488

CD4/CD8 (1.07-1.87) 15.29 4.62 3.62 1.86

NK (absolute; 3 109/L

[0.090-0.600])

0.238 0.581 0.252 0.252

Immunization history Full schedule without adverse

events

Not assessed Not assessed Full schedule without

adverse events

Musculoskeletal Muscle bulk, tone, power, and

reflexes normal; hypermobility

in upper and lower limbs;

CK normal

No issues evident; not

formally examined

No issues evident;

not formally examined

Muscle bulk, tone, power,

and reflexes normal;

hypermobility in upper

and lower limbs;

CK normal

Pupil reaction Normal Normal Normal Normal

Sweating Diminished sweating recognized

from infancy onward; insufficient

sample for sweat test analysis

No reported issues No reported issues Diminished sweating

recognized from infancy

onward; reduced

sweating on starch and

iodine testing

Dental enamel Generalized hypomineralized AI Enamel within normal

limits

Enamel within normal

limits

Generalized hypomineralized AI

Development Global development normal

Height, 156 cm (<0.4th percentile)

Weight, 40.3 kg (<0.4th percentile)

Head circumference, 51.5 cm

(<0.4th percentile)

Not assessed Not assessed Global development normal

Height, 122 cm (0.4th-2nd

percentile)

Weight 24 kg (2nd-9th

percentile)

Head circumference,

50 cm (0.4th percentile)

Further details are presented in Tables E1-E3. Values in boldface are outside the reference ranges.

CK, Creatine kinase; ITP, idiopathic thrombocytopenic purpura.
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evidence ofmyopathy. This is in contrast to other recessive STIM1
mutations and also to dominant STIM1 mutations affecting the
EF-hand that cause tubular aggregate myopathy (MIM
#160565).6 Hypomineralized AI affected the primary and
secondary dentitions of both affected cousins (see Fig E2 in this
article’s Online Repository at www.jacionline.org), which is in
keeping with reports of other recessive STIM1 mutations. The
cousins were physically small (height, weight, and head
circumference <0.4th percentile) when assessed at 18 years and
9 years, 10 months of age, respectively. Without comparable
data from other subjects with recessive STIM1 mutations, it is
unclear whether this is a cosegregating feature.
The L74P STIM1 change within the EF-hand domain precedes

the first Ca21-binding aspartate residue by 2 amino acids (see Fig
E2) and therefore might be expected to distort the Ca21-binding
region of the protein. Therefore we compared the response of
mutant YFP-STIM1 (L74P) with the depletion of Ca21 stores
after thapsigargin or cyclopiazonic acid (CPA) treatment with
that of wild-type YFP-STIM1 and the previously published
EF-hand mutant7 YFP-STIM1 (D76A, see Fig E3 in this article’s
Online Repository at www.jacionline.org).

Using total internal reflection fluorescence microscopy
(TIRFM), we replicated previous observations that wild-type
YFP-STIM1 relocalizes to puncta proximal to the plasma
membrane after treatment of transfected HEK293 cells with
2 mmol/L thapsigargin to deplete ER Ca21 stores through
sarcoendoplasmic reticulum calcium transport ATPase
(SERCA) inhibition (see Fig E3, A). The EF-hand mutant
YFP-STIM1 (D76 A) was present in these puncta before thapsi-
gargin treatment, with no observable response to thapsigargin

http://www.jacionline.org
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(see Fig E3, A). Similarly, mutant YFP-STIM1 (L74P) showed no
response to thapsigargin but also appeared to form constitutive
puncta, which was less distinct in appearance than that for the
D76A mutant (see Fig E3).
We compared Ca21 fluctuations in HEK293 cells transfected

with ORAI-CFP and either wild-type YFP-STIM1, mutant
YFP-STIM1 (D76A), or mutant YFP-STIM1 (L74P; see Fig
E3, B and C). Both YFP-STIM1 (D76A) and YFP-STIM1
(L74P) transfected cells had increased basal Ca21 concentrations
compared with wild-type YFP-STIM1 and reduced peak and
integral responses to CPA-induced SERCA inhibition (see
Fig E3, B and C). However, in contrast to the EF-hand mutant
YFP-STIM1 (D76A), YFP-STIM1 (L74P) did not demonstrate
reduced SOCE after CPAwashout and Ca21 restoration, suggest-
ing that the previously reported desensitization of SOCE observed
with the YFP-STIM1 (D76A) mutant does not occur with the
YFP-STIM1 (L74P) mutant form. Therefore the L74P mutation
appears to result in a distinct molecular phenotype compared
with the loss of function observed in immunodeficient patients
and the constitutive activation observed in patients with
myopathy.
This study is the first to report recessive STIM1mutations in pa-

tients presenting with AI and hypohidrosis without overt clinical
immunodeficiency or myopathy. Clinical immunologic investiga-
tions were consistent with abnormal NK cell and T-lymphocyte
function that might be expected to be associated with ongoing
clinical immunodeficiency. However, despite severely abnormal
SOCE, this was not the case in these patients. Missense mutations
affecting the EF-hand can have very different clinical phenotypes
with respect to the immune system, muscle, sweating, and enamel
formation. This has important implications for clinical evalua-
tion, as well as understanding the biological functions of STIM1.
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Antigen-presenting epithelial cells
can play a pivotal role in airway
allergy
To the Editor:
Professional antigen-presenting cells (APCs; ie, dendritic cells,

macrophages, and B cells) react against exogenous antigens and
initiate an adaptive immune response by presenting antigen
peptides in the groove of the MHC class II molecules. During
inflammation, ectopic expression of MHC class II has been
reported on cells from multiple tissues, including the nasal
mucosa, suggesting an antigen-presenting capacity of epithelial
cells (ECs).1-4 The present investigation was designed to examine
the contribution of nasal epithelial cells (NECs) to the allergic
inflammatory process. The abilities of NECs to take up antigen,
express MHC class II and costimulatory molecules, and stimulate
antigen-specific activation and proliferation of CD41T cells were
investigated by using a human mucosal specimen (see the
Methods section in this article’s Online Repository at www.
jacionline.org).

First, the cell-surface expression of MHC class II and
costimulatory molecules on human and mouse nasal epithelial
cells (MNECs) was confirmed (see Figs E1 and E2 in this article’s
Online Repository at www.jacionline.org). Then the ability of
MNECs to present the antigen ovalbumin (OVA) to naive
T cells was demonstrated. MNECs from sensitized mice
displayed an enhanced MHC class II expression on coculture
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METHODS

Participating family
A consanguineous family of Pakistani heritagewas reviewed in the clinical

genetics clinic with regard to intolerance to warm environments and

generalized dental enamel defects of both dentitions. Sample collection was

performed after obtaining informed consent from the patients according to

the principles of the Declaration of Helsinki and after local ethics

approval. Detailed clinical evaluation was undertaken in appropriate clinical

settings.

Genetic mapping
DNAwas extracted from blood by using standard procedures. DNA from

the 2 affected subjects was genotyped with Affymetrix 6.0 SNP microarrays

(Affymetrix, HighWycombe, United Kingdom), and regions of homozygosity

were identified by using AutoSNPa software.E1 Linkage was confirmed by

means of analysis with fluorescence-labeled polymorphic microsatellite

markers on a genetic analyzer (3130xlGenetic Analyzer; Applied Biosystems,

Warrington, United Kingdom) using genotyping software (GeneMapper

version 4.0; Applied Biosystems). Linkage analyses were performed with

LINKMAP and MLINK from the FASTLINK software package.E2

Clonal and Sanger sequencing
We designed a SureSelect Target Enrichment Reagent (Agilent Techno-

logies, Edinburgh, United Kingdom) targeting coding exonswithin the disease

interval in parallel with the capture of disease intervals for 7 other unrelated

disorders. The affected subject IV:N was sequenced with 80-nt reads on an

Illumina (San Diego, Calif) GAIIx sequencer. Raw data were processed with

the Illumina pipeline (version 1.3.4), and reads were aligned to the human

reference sequence (hg19/GRCh37) by using Novoalign software (Novocraft

Technologies, Selangor, Malaysia). Alignments were processed in the SAM/

BAM formatE3 with Picard and the Genome Analysis Toolkit (GATK)E4,E5 to

correct alignments around indel sites and to mark potential PCR duplicates.

Variants were called in theVariant Call Format by using theUnifiedGenotyper

function of GATK. Filtering of common variation and prediction of functional

consequences of variants were performed by using in-house scripts.

PCR products for STIM1 exon 2 and STK33 exon 3 were amplified and

sequenced by using the primer pairs shown in Table E1. PCR product cleanup

was performed with ExoSAP-IT (Affymetrix) before Sanger sequencing with

theBigDyeTerminatorCycle SequencingKit, version 3.1 (AppliedBiosystems)

and analysis on an ABI 3130XL DNA analyzer (Applied Biosystems).

Flow cytometric analysis of calcium flux
PBMCs were labeled with Dulbecco modified Eagle medium containing

5 mmol/L Indo-1 for 45 minutes at 378C and then washed and cooled on ice.

Cells were incubated for 20 minutes on ice with 5 mg each of unconjugated

CD16 (3G8) and CD3-PerCP (OKT3; BD Biosciences, San Jose, Calif)

antibodies and costained for gating markers CD19 (SJ25C1) and CD56

(NCAM16.2; BD Biosciences). Cells were washed and resuspended in cold

HBSS without calcium. Samples were warmed to 378C and immediately

collected on a UV laser equipped LSRII flow cytometer for 90 seconds and

then spiked during collection with 1:100 goat anti-mouse antibody for a

further 60 seconds (Jackson Laboratory, Bar Harbor, Me), followed by a

1:100 dilution of 200 mmol/L CaCl2 in PBS solution, and collected for a

further 9 minutes. Alternatively, samples were stimulated with the calcium

ionophore ionomycin at 500 ng/mL (Sigma-Aldrich, St Louis, Mo) or

1 mmol/L thapsigargin (Sigma-Aldrich) to deplete ER stores of calcium,

thereby triggering SOCE and an intracellular calcium ([Ca21]i) flux. Analysis

was performedwith FlowJo software (TreeStar, Ashland, Ore), calculating the

ratio of calcium-bound to free Indo-1.

NK cell responses
PBMCs were isolated from diluted blood by means of Ficoll separation,

followed by NK cell purification by means of negative selection (with

immunomagnetic reagents from Miltenyi Biotec, Bergicsch Gladbach, Ger-

many). Isolated NK cells were stimulated with K562 tumor cells alone or in

combination with 20 ng/mL IL-12/IL-18 (PeproTech, Rocky Hill, NJ; to

maximize IFN-g by tumor-stimulated cells) and incubated for 6 hours at 378C
with both GolgiStop and GolgiPlug (BD Biosciences). Cells were stained for

the surface markers CD107a (clone; H4A3), CD56 (NCAM16.2), and CD3

(OKT3; BD Biosciences) before fixation for 15 minutes and permeabilization

for 30 minutes with the AbD Serotec (Oxford, United Kingdom) intracellular

staining kit. Cells were stained with anti–IFN-g (B27) and collected on an

LSR II flow cytometer and analyzed in DIVA software (BD Biosciences).

STIM1 constructs for transfection studies
YFP-STIM1 (Addgene plasmid 18857) and the EF-hand mutant YFP-

STIM1 (D76 A; Addgene plasmid 18859) constructs were provided by Tobias

Meyer through Addgene (Cambridge, Mass). The ORAI1-CFP construct was

provided by Anjana Rao (Addgene plasmid 19757). The L74P mutant YFP-

STIM1 was produced by means of site-directed mutagenesis of the wild-type

YFP-STIM1 plasmid by using the QuikChange II kit (Agilent Technologies,

Santa Clara, Calif) per the manufacturer’s instructions. The sequences of all 4

constructs were confirmed by means of Sanger sequencing, as above.

TIRFM
HEK293 cells (LGC Standards, Middlesex, United Kingdom; ATCC no.

CRL-1573) were grown on glass coverslips coated with poly-D-lysine and

transfected with either wild-type YFP-STIM1, mutant YFP-STIM1 (D76 A),

or mutant YFP-STIM1 (L74P) by using Lipofectamine 2000 (Invitrogen,

Paisley, United Kingdom). Total internal reflection fluorescence (TIRF)

imaging was performed on an inverted microscope (TE-2000E; Nikon)

through a 603 oil-immersion lens (ApoTIRF 603/1.49 numeric aperture;

working distance, 0.12 mm; Nikon, Tokyo, Japan). Cells were maintained at

378C and perfused with standard bath solution; ER store depletion was

induced by 2 mmol/L thapsigargin. The plasma membrane was illuminated by

using TIRFwith a 488-nm argon laser (Prairie Technologies,Middleton,Wis),

which was projected onto the specimen through the lens. Images were

collected on an electron-multiplying CCD camera (DQC-FS, Nikon) by using

NIS Elements imaging software, version 3.2 (Nikon), which was also used for

analysis. Fluorescence intensities were background subtracted after acquisi-

tion and normalized to the initial intensity (F0).

Calcium measurements in overexpressing cells
HEK293 cells were doubly transfected with ORAI1-CFP and either wild-

type YFP-STIM1, mutant YFP-STIM1 (D76A), or mutant YFP-STIM1

(L74P). Twenty-four hours after transfection, cells expressing both CFP and

YFP constructs were selected by using a Becton Dickinson FACSAria II cell

sorter (BD Biosciences) and plated on glass coverslips. In each case basal

[Ca21]i levels were recorded, after which Ca21 was removed from the

perfusate (replaced with 1 mmol/L ethyleneglycol-bis-(b-aminoethylether)-

N,N,N9,N9-tetra-acetic acid), and new basal levels of [Ca21]i were

determined. Cells were then exposed to CPA (100 mmol/L), and the resultant

transient increases in [Ca21]i levels were measured for peak amplitude and

integral. After washout of CPA, Ca21 (2.5 mmol/L) was readmitted to the

perfusate, and capacitative Ca21 entry was quantified as the maximal increase

in [Ca21]i observed. Data are presented as representative examples (see Fig

E1, B) and mean 6 SEM values (see Fig E1, C) determined from 12 control

recordings, 12 recordings of D76A expressing mutants, and 13 recordings

of L74P expressing mutants. Statistical significancewas determined bymeans

of ANOVA.

RESULTS

Identification of a novel homozygous missense

p.L74P change in STIM1
Autozygosity mapping identified a single region of

homozygosity shared by both affected cousins on chromosome
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11 between rs11606404 and rs3815045 (chr11:2,241,215-
61,669,946, hg19). Multipoint linkage analysis of markers
D11S921, D11S899, D11S915, and D11S4949 against disease
by using LINKMAP results in a maximum LOD score of 3.06
at marker D11S899. On merging of overlapping exon intervals,
the disease interval contained 3,838 RefSeq coding
regions comprising 751,450 bp, 3,784 (739,189 bp or 98.4%) of
which could be targeted while avoiding designing baits over
repeat masked regions. After target enrichment, sequencing,
alignment, and postprocessing, 94.6% of targeted bases were
covered by 5 or more nonduplicate reads with a minimum
Phred-like base quality score of 17 and minimum read mapping
quality of 20.
A total of 526 variants passing standard GATK filters were

identified within 20 bp of a coding exon within the disease locus.
Variants were removed if present in dbSNP129 or in later versions
of dbSNP with a minor allele frequency of 1% or greater, if
present in other samples sequenced locally (n 5 31), or, in the
case of missense variants, if predicted to be benign by using
PolyPhen-2.E6 After these filtering steps, only 3 homozygous
variants remained that might be predicted to alter gene function.
The first of these (NM_152316: c.3G>C)was considered unlikely
to be pathogenic despite altering the initiation codon of ARL14EP
because of the presence of another in-frame initiation codon
immediately adjacent to the mutated codon and lack of
conservation of the first of these ATG codons in mammals. Of
the remaining 2 changes, a missense mutation in STK33
(NM_030906: c.146G>A; p.G49D) was found in 4 of 96 ethni-
cally matched control samples, whereas a missense mutation in
STIM1 (NM_003156: c.221T>C; p.L74P) was excluded in 192
ethnically matched control samples and found to segregate as
expected for a recessively inherited disease within the family.
Subsequent interrogation of the Exome Aggregation Consortium
database showed that although the STK33 variant was present at a
frequency of 1.49% in subjects of South Asian ancestry, the
STIM1 variant was not detected at all in the cohort of 60,706
subjects (Exome Aggregation Consortium, Cambridge, Mass;
http://exac.broadinstitute.org; accessed February 2015).

Accordingly, the homozygous c.221T>C; p.L74P mutation
identified in STIM1 was therefore considered to be the cause of

the observed phenotype based on genetic data and the phenotypic
overlap with previously reported recessive STIM1 and ORAI1
mutations.
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FIG E1. Defective SOCE and impaired NK cell function in STIM1-Leu74Pro patients’ cells. A, Calcium flux

in lymphocytes after anti-CD3/anti-CD16, 1 mmol/L thapsigargin, or 500 nmol/L ionomycin administration.

B, Granule exocytosis and IFN-g production of purified NK cells after stimulation with K562 tumor target

cells alone or with IL-12 and IL-18. Results are representative of 2 experiments performed in duplicate

and corrected for unstimulated control values.
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FIG E2. Hypomineralized AI as the presenting feature in a family with STIM1 L74P change.A, Pedigree of the

consanguineous family investigated. The 2 affected cousins with AI and hypohidrosis are shaded black.

Genotypes of the c.221T>C variant are indicated underneath each family member available for sequencing.

Representative electropherograms are shown alongside the pedigree. B, The hypomineralized AI was

characterized by opaque discolored enamel on clinical examination, with radiographs of unerupted teeth

consistent with a near-normal volume of enamel and a clear difference in radiodensity between enamel

and dentine. *Teeth that have been restored. C, Schematic illustration of STIM1 protein showing the

domain structure. Positions of the AI and hypohidrosis-associated L74P mutation (red), dominant TAM or

Stormorken syndrome mutations (grey), and recessive syndromic immunodeficiency mutations (black)

are indicated above the protein. E-rich, Glutamate-rich region; K, lysine-rich region; MLS, microtubule

tip localization signal; P, proline/serine-rich region; SAM, sterile a-motif domain; SOAR, STIM1 Orai1-

activating region; TM, transmembrane domain. D, Alignment of STIM1 EF-hand orthologous protein

sequences. Although p.L74 is conserved in mammals, it is not as strongly conserved as amino acids

mutated in dominant TAM. E, NMR structure of STIM1.E7 L74 is shown in red, TAM mutations are shown

in dark gray, and Ca21 binding residues, mutation of which cause constitutive STIM1 activation, are shown

in yellow. Substitution of leucine 74 for proline is anticipated to distort the EF-hand loop, interfering with

conformational changes in the presence/absence of Ca21.
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FIG E3. STIM1 localization andCa21flux in cells transfectedwith STIM1 constructs.A, TIRFMofHEK293 cells

transfectedwith eitherwild-type (WT), D76Amutant, or L74Pmutant YFP-STIM1 after treatmentwith 2mmol/

L thapsigargin to deplete ER Ca21 stores. The graph on the bottom left shows changes in TIRF fluorescence

within single puncta areas indicated bywhite circles on the images (ROI1-3). The graph on the bottom right

shows average footprint fluorescence for cells transfected with WT STIM1 (n 5 39), D76 A (n 5 30), or L74P

(n5 31) constructs. B, Representative recordings of cytosolic calcium ([Ca21]i) made in HEK293 cells doubly

transfectedwith ORAI1-CFP and eitherWT (n5 12), D76 A (n5 12), or L74P (n5 13) STIM1-YFP constructs.C,

Bar graphs indicatingmean6 SEM [Ca21]i relating to the presence of extracellular Ca21 or SERCA inhibition

by CPA. Top row, Mean baseline Ca21 levels in the presence and absence of extracellular Ca21. Bottom row,

Peak responses toCPA, integral of theCPA-evoked response, andpeak valueof capacitative Ca21entry (CCE).

*P < .01 compared with control with control values (ANOVA).

J ALLERGY CLIN IMMUNOL

VOLUME 137, NUMBER 3

LETTERS TO THE EDITOR 957.e5



TABLE E1. Additional clinical features of the 2 subjects with homozygous STIM1 c.221T>C mutations

Feature V3 V2

Birth and neonatal period Full-term (2.3 kg) by using forceps for fetal distress Emergency cesarean section because of fetal decelerations

at 36/40 wk

Birth weight, 1.94 kg (<3rd percentile)

Apgar score, 9 at 1 and 5 minutes, respectively

Special care baby unit for 1 mo, establishing feeds with

nasogastric tube feeds for the first 2 wk

During this time, there was 1 episode of unexplained fever.

Unexplained neonatal hypercalcemia settled spontaneously.

Nails and hair Normal Normal

Dysmorphic features None None

Other medical history Asthma diagnosed in infancy

Evaluated in infancy for cystic fibrosis (negative) after

repeated chest infections

At age 17 y, had a spontaneous pneumothorax of the left

lung requiring pleurodesis

Four apical bullae were found on imaging.

Five months later, he had a right pneumothorax

secondary to an apical bulla also requiring pleurodesis.

At aged 18 y, V3 was evaluated with regard to macular

pigmentation and bilateral drusen on both maculae,

and mild congenital lens opacities were identified.

Asthma diagnosed in infancy

Eczema

Generalized problems with increased leg fatigability and

clumsiness

Tight Achilles tendons of unknown cause

Bilateral pes cavus

Hypermobility in upper limbs

Allergies Allergic to red food coloring None
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TABLE E2. Summary of clinical immunologic data in subjects with either homozygous or heterozygous STIM1 c.221T>C mutations

Feature

VI:2 V:1 V:2 VI:3

Homozygous

c.221T>C

Heterozygous

c.221T>C

Heterozygous

c.221T>C

Homozygous

c.221T>C

Year of evaluation 2011 2014 2011 2014 2011 2012 2013

Bacterial antibodies

Pneumococcal (mg/mL) 209.0 2 101.0 2 82.2 181.0 2
Tetanus (IU/mL) 0.890 2 5.320 2 0.960 0.620 2
Haemophilus species (mg/mL) 0.230 2 0.240 2 <0.110 0.430 2

Viral antibodies

HSV IgG ND ND 2 1ve 2 2 2
VZV IgG 1ve 1ve 2 1ve 2 1ve 2
CMV IgM ND 2 2 ND 2 2 2
CMV IgG ND ND 2 1ve 2 ND 2
EBV VCA IgM ND 2 2 ND 2 2 2
EBV VCA IgG ND 2 2 1ve 2 1ve 2
Measles IgG 2 1ve 2 1ve 2 2 2
Mumps IgG 2 1ve 2 1ve 2 1ve 2
Rubella IgG 2 1ve 2 1ve 2 1ve 2

Viral PCR

EBV 2 ND 2 2 2 2 2
CMV 2 ND 2 2 2 2 2
Adenovirus 2 ND 2 2 2 2 2

Lymphocytes

Total (3109/L [1.00-2.80]) 1.50 1.32 2.30 2.35 2.64 2.34 2.20

CD4/CD8 (1.07-1.87) 15.29* 10.58 4.62 5.87 3.62 1.86 1.9

CD3 (absolute; 3 109/L [0.700-2.100]) 0.921 0.949 1.365 1.605 1.968 1.504 1.457

CD8 (absolute; 3 109/L [0.200-0.900]) 0.055 0.080 0.236 0.231 0.415 0.488 0.489

NK (absolute; 3 109/L [0.090-0.600]) 0.238 0.191 0.581 0.449 0.252 0.252 0.152

CD4 (absolute; 3 109/L [0.300-1.400]) 0.841 0.846 1.091 1.355 1.502 0.908 0.929

CD19 (absolute;3 109/L [0.100-0.500]) 0.258 0.127 0.245 0.282 0.381 0.574 0.564

CD31 cells (%) 71 75 64 68 75 64 66

CD41 cells (%) 66 66 51 57 57 39 41

CD81 cells (%) 4 6 11 10 16 21 21

CD561CD161 cells (%) 14 14 24 19 10 11 7

CD191 cells (%) 15 9 10 12 14 24 26

CD41FOXP31 cells Normal Normal 2 2 2 2 2
T-cell proliferation after stimulation

PHA Normal Normal 2 Normal 2 Normal 2
Anti-CD3 antibody Normal Normal 2 Normal 2 Normal 2

Immunoglobulins

IgG (g/dL [6.0-16.0]) 11.8 2 11.8 2 12.4 9.6 2
IgG1 (g/L [3.62-10.27]) 7.48 2 2 2 2 2 2
IgG2 (g/L [0.81-4.72]) 2.66 2 2 2 2 2 2
IgG3 (g/L [0.138-1.058]) 0.420 2 2 2 2 2 2
IgG4 (g/L [0.049-1.085]) 0.224 2 2 2 2 2 2
IgA (g/dL [0.80-4.00]) 1.85 2 2.53 2 3.51 3.95 2
IgM (g/dL [0.25-2.00]) 2.08 2 0.77 2 1.20 1.12 2
IgE (kU/L [0.5-120.0]) <2.0 2 195.0 2 24.4 157.0 2

Other antibodies

ANA� 2ve 2ve 2ve 2ve 1ve� 1ve� 2
dsDNA (IU/mL [0-50]) 2 2ve 2 2 2ve 2ve 2
Rheumatoid factor (IU/mL [<20]) <15 <15 <15 2 122 2 2

Complement

C3 (g/dL [0.75-1.65]) 1.14 2 1.02 2 1.34 2 2
C4 (g/dL [0.12-0.40]) 0.28 2 0.31 2 0.44 2 2

2, Not investigated; ANA, antinuclear antibody; CMV, cytomegalovirus; dsDNA, double-strand DNA; ND, not detected; RNP, ribonucleoprotein; VCA, viral capsid antigen; 1ve,

positive; 2ve, negative; VZV, varicella zoster virus. Values in boldface are outside the reference ranges.

*On resampling 3 months later: CD4/CD8 ratio, 14.36; CD8, 0.092.

�Positive (homogenous: weak RNP antibody positive).

�Positive (nucleolar).
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TABLE E3. Summary of key clinical findings associated with individual reported recessive STIM1mutations and summarized key clinical findings associated with dominant STIM1

mutations

Feature Recessive homozygous mutations Dominant mutations

Reference Picard et al, 2009E8 Byun et al,

2010E9
Fuchs et al, 2012E10 Wang et al 2014E11 Schaballie et al,

2015E12
This study Bohm et al, 2013E13 Morin et al,

2014E14

Individual (AR) or

diagnosis (AD)

Pr1, Pr2, and Pr3* Pr4� Pr5 and Pr6 Pr7 Pr8 and Pr9 V2 and V3 Tubular aggregate

myopathy�
Stormorken

syndrome�
Predicted protein

effect of mutation

No protein No protein p.429 R>C p. 146A>V p.165P>Q p.74 L>P All missense in the

EF-hand

p.304 R>W

Age at last

examination (y)

1, 5, 6, and 9 2 1.7 and 6 6 8 and 21 11 and 21 Various Various

Immune deficiency Life-threatening

infections

Life-threatening

infections

Life-threatening

infections

History of frequent

throat infections:

no immunologic

evaluation performed

Life-threatening

infections

No persistent

severe infection

NR NR

Other immune

dysregulation

AIHA

ITP

AIHA AIHA

ITP

NR Colitis, psoriasis V3 transient ITP NR NR

Skeletal muscle Developmental

skeletal myopathy

with hypotonia,

profound

NR Developmental

skeletal myopathy

with hypotonia, mild

NR Developmental

skeletal myopathy,

profound

No abnormalities Clinical myopathy

except with 1 mutation

Increased CK typical

Clinical myopathy

Increased CK

Mydriasis Yes NR Yes NR No No NC Yes

Sweat glands NC NR Anhidrosis NR Anhidrosis Hypohidrosis NC NC

Dental enamel Abnormal NR Abnormal Abnormal Abnormal Abnormal NC NC

Died Pr1 died 9 y (during

HSCT)

Pr2 died 1.5 y

(encephalitis)

Pr4 died 2 y

(Kaposi

sarcoma)

Pr6 died 1.7 y (sepsis) NR NA NA NA NA

Alive Pr3 alive at 6 y

(HSCT at 1.3 y)

NA Pr5 alive (HSCT) Pr7 lost to follow-up

at 5 y

Pr8 and Pr9 alive V2 and V3 alive All alive All alive

AIHA, Autoimmune hemolytic anemia; AD, autosomal dominant; AR, autosomal recessive; CK, creatine kinase; HSCT, hematopoietic stem cell transplantation; ITP, idiopathic thrombocytopenic purpura; NA, not applicable; NC, no

comment made; NR, comment made but feature not recognized.

*Mutation confirmed in Pr1 and Pr3; no DNA sample available for Pr2.

�Mutation identified after death.

�A missense change reported in tubular aggregate myopathy and the missense change reported as the cause of Stormorken syndrome have also been identified as the causes of York platelet syndrome, which is characterized by myopathy

and platelet abnormalities (Markello et al, 2015E15).
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