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brain-derived neurotrophic factor expression to

protect PC12 cells
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Abstract

signaling may have roles in PC12 cell protection.
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Background: Oxidative stress is one of the mechanisms underlying pathogenesis in neurodegenerative diseases
such as Alzheimer's disease. Generally, oxidative stress represents cell toxicity; however, we recently found that
oxidative stress promotes the expression of growth factor progranulin (PGRN) in HT22 murine hippocampus cells,
thereby protecting the HT22 cells. In this study, we attempted to clarify whether a similar system exists in the other
neuronal cell model, rat pheochromocytoma (PC12) cells.

Results: After confirming that high concentrations of hydrogen peroxide (H,O,; 100-250 uM) initiate PC12 cell
death, we analyzed growth factor expressional changes after H,O, treatment. We found, intriguingly, that gene
expression of brain-derived neurotrophic factor (BDNF), but not PGRN was significantly induced by H,O,. Although
little expression of the high affinity BDNF receptor tropomyosin-related kinase TrkB was observed in PC12 cells,
expression of low affinity neurotrophin receptor, p75NTR, was clearly observed. This BDNF signaling appeared to
contribute to PC12 cell protection, since PC12 cell death was significantly attenuated by BDNF treatment.

Conclusions: Based on our results, we conclude that the induction of BDNF by subtoxic levels of H,O, and its

Background
Oxidative stress is generated by increases in reactive
oxygen species (ROS) produced in the mitochondria and
often has toxic effects on cell functions [1]. In the cen-
tral nervous system (CNS), numerous reports suggest
that oxidative stress is involved in the progression of
some neurodegenerative diseases, such as Alzheimer’s
disease (AD), Parkinson’s disease, and amyotrophic lateral
sclerosis (ALS) [2-4]. Hence, understanding how oxidative
stress enhances neuronal cell toxicity and exploring
methods to control oxidative stress in the CNS are
extremely important.

Neurotrophins such as nerve growth factors (NGF), brain-
derived neurotrophic factor (BDNF), and neurotrophin-3
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(NT-3), contribute to neuronal cell protection against
oxidative stress [5]. Activation of mitogen-activated pro-
tein kinase (MAPK) and phosphatidylinositol 3-kinase
(PI3K) cascades by these neurotrophic growth factors
appears to have a central role in cell protection [6].
These two signaling cascades are generally activated via
tropomyosin-related kinase (Trk) receptors that have
tyrosine kinase activity (TrkA for NGF, TrkB for BDNE,
and TrkC for NT-3, respectively). These neurotrophins
have a different type of receptor, p75 neurotrophin
receptor (p75N'TR), whose role is less clear than that of
Trk receptors. p75NTR belongs to the tumor necrosis
factor receptor (TNFR) superfamily, and possesses
similar ligand-dependent signaling pathways to TNFRs
[7,8]. Two major pathways activated by p75NTR are
well documented: nuclear factor kB (NF-«kB) pathway
and Jun kinase (JNK) pathway [6]. Evidence suggests
that the activation of the NF-kB pathway by p75NTR
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engagement promotes cell survival, whereas activation of
JNK pathway promotes apoptosis [6]. These two distinct
signaling pathways have completely opposite bio-effects,
making the interpretation of physiological function of
p75NTR signaling difficult.

The expression of neurotrophins from neuronal cells
was regulated by multiple distinct stimulations. Recently,
we found that subtoxic levels of oxidative stress signifi-
cantly promoted the expression of a neurotrophic factor,
progranulin (PGRN), in HT22 murine hippocampal cells
[9]. Intriguingly, the expressed PGRN appeared to serve as
autocrine/paracrine factor that had neuroprotective roles
[9]. Based on this previous work, we hypothesized that
when a neuronal cell experiences high levels of stress,
the cell activates this autocrine/paracrine mechanism to
protect itself and other cells. Whether similar autocrine/
paracrine mechanisms, which are activated by subtoxic
levels of oxidative stress, exist in other cell types is not
well understood. The differentiated rat pheochromocy-
toma (PC12) cells have neuron-like characteristics [10],
and thereby are often used for studying neuroprotection
[11,12]. Using the PC12 model, we determined whether
subtoxic levels of oxidative stress activated observable
neurotropic factor-mediated autocrine/paracrine cell pro-
tective mechanisms.

Methods

Materials

The western blot detection kit (ECL plus or ECL prime de-
tection reagents) was from GE Healthcare Inc. (Rockford,
IL, USA). Dulbecco’s Modified Eagle Medium (DMEM),
penicillin/streptomycin and Trypsin-EDTA were purchased
from Nakaraitesque (Kyoto, Japan). Cell culture equipment
was from BD Biosciences (San Jose, CA, USA). Calf
Serum (CS) and Fetal Bovine Serum (FBS) were obtained
from BioWest (Nuaille, France). Immobilon-P was from
Millipore Corp. (Bedford, MA, USA). Unless otherwise
noted, all chemicals were of the purest grade available from
Nakaraitesque, Sigma Chemicals (St. Louis, MO, USA)
or Wako Pure Chemical Industries, Ltd. (Osaka, Japan).
Because only an established cell line (PC12 cell) was
used in this study, the ethics approval was not required.

Cell culture

An established rat adrenal pheochromocytoma cell line,
PC12 cell, was obtained from Dr. Shin-Ichiro Takahashi
(The University of Tokyo, Tokyo, Japan). The PC12 cells
were maintained in DMEM containing 10% FBS, 30 pug/ml
penicillin, 100 pg/ml streptomycin at 37°C under a 5%
CO, atmosphere. The medium was exchanged every 72 h.
For all experiments, cells were grown on 6-well plates
(Corning Inc., Corning, NY, USA) at a density of 5 x 10*
cells/well in 3 ml of growth medium, or on 96-well plates
(Corning Inc.) at a density of 5 x 10% cells/well in 0.2 ml of
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growth medium. Three days after plating, cells typically
reached 50-70% confluence (Day 0). Differentiation was
then induced by switching to DMEM supplemented with
100 ng/ml NGE 30 pg/ml penicillin, and 100 pg/ml
streptomycin.

Measurement of cell death

PC12 cells were seeded on 96-well plates and differentiated
as described previously [13]. The percentage of cell death
was evaluated using the lactose dehydrogenase (LDH) plus
kit (Roche Diagnostics K.K,, Basel, Switzerland) according
to the manufacturer’s protocol.

Western blotting

The expression and phosphorylation of each protein were
analyzed by western blot analysis as described previously
[13]. Briefly, the cells were seeded on 6-well plates at a
density of 1 x 10° cells/well, and 24 h later, the cells were
treated with different concentrations of hydrogen peroxide
(Hp0,) for 30 min. The cell lysates were prepared using
lysis buffer (2% sodium dodecyl sulfate (SDS), 1% 2-
mercaptoethanol, 10% glycerol, 0.0033% Bromophenol
Blue and 50 mM Tris—ClI [pH 6.8]). These cell lysates were
resolved to 12% SDS-polyacrylamide gel electrophoresis
(1:30, bis:acrylamide). Proteins were transferred to a poly-
vinylidene difluoride (PVDF) membrane (Immobilon-P;
Millipore Corp, Bedford, MA, USA), and the membranes
were blocked for 30 min at 3% bovine serum albumin
(BSA) in tris buffered saline (TBS) containing 0.1%
Tween-20. Detection of each protein was achieved with
1 h incubation with a 1:1000 dilution of primary antibody
(anti-phospho Akt (S473), anti-Akt, anti-phospho Erk1/2,
anti-Erk1/2, anti-phospho JNK, anti-JNK, anti-phospho
P38, anti-p38, anti-IkB antibodies (Cell Signaling Technology,
Danvers, MA, USA)). Specific total proteins were visual-
ized after subsequent incubation with a 1:5000 dilution of
anti-mouse or rabbit IgG conjugated to horseradish perox-
idase and an ECL plus detection procedure (GE Healthcare
Inc., Buckinghamshire, UK). At least three independent
experiments were performed for each condition.

PCR

RNA isolation from differentiated PC12 cells was per-
formed using a Blood/Cultured Cell Total RNA mini kit
(Favorgen Biotech Corp., Taiwan). The extracted total
RNA was subjected to reverse transcriptase reaction using
a PrimeScript real-time PCR (RT-PCR) kit (TAKARA,
Osaka, Japan). PCR was performed using KAPATaq EXtra
HotStart ReadyMix with dye (KAPA Biosystems Inc.,
Woburn, MA, USA) and the following PCR primers: rat
TrkA, 5-ATG CTC GTC AGG ACT TCC ATC G-3’ and
5'-TAG CCA CAG CCA GAA GCT GC-3'; rat TrkB,
5'-AAG TCC TCT ATG AAG ACT GGA CC-3" and
5'-TGC CAA ACT TGG AAT GTC TCG CCA-3’; rat
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TrkC, 5'-CAG CCC AGA GCC TTT GCT AAG-3" and
5'-GGC AAA GGA GAG CCA GAG CCA TT-3'; rat
p75NTR, 5'-CGG AAT TCG GAG ACA TGT TCC ACA
GGC-3’ and 5'-CCT TGG GAT CCA TCG ACC-3".

Real-time PCR

PC12 cells were differentiated as described previously, then
treated with different concentrations of H,O, (0-250 uM)
for 12 h. Total RNA was isolated from cells using a High
Pure RNA Isolation Kit (Roche Diagnostics, Mannheim,
Germany) according to the manufacturer’s protocol.
c¢DNAs were synthesized from total RNA using ReverTra
Ace qPCR RT Master Mix (TOYOBO, Osaka, Japan).
Fluorescence RT-PCR analysis was performed using a
StepOne instrument (Life Technologies Corporation;
Grand Island, NY, USA) and an SYBR Green detection kit
according to the manufacture’s protocol (Life Technolo-
gies or KAPA Biosystems Inc.; Woburn, MA, USA). PCR
primers for measuring each gene included the following:
rat BDNF, 5'-TCA AGC TGG AAG CCT GAA TGA
A-3" and 5'-GCC AGT CAG GTA ACC ACT AAC
AC-3’; rat PGRN, 5'-CAC TGT CCT GAT GGC TAC
TCT TG-3" and 5'-CTA CCA GGA CAC TGG ACA
GCA C-3'; and rat GAPDH, 5'-GGC ACA GTC AAG
GCT GAG AAT G-3' and 5'-ATG GTG GTG AAG
ACG CCA GTA-3'.

Statistical analysis

Comparisons among treatment groups were tested using
one-way ANOVA with Tukey’s post-tests. Differences for
which p <0.05 were considered statistically significant.

Results and discussion

Subtoxic levels of oxidative stress induces BDNF expression
Initially, we confirmed whether the treatment of PC12
cells with H,O, induced cell death. As shown in Figure 1A,
PC12 cell death gradually increased upon H,O, treatment,
and significant induction of cell death (p <0.05) was
observed when more than 250 pM of H,O, was applied to
cells (Figure 1A). Moreover, as shown in Figure 1B, H,O,
treatment induced phosphorylation of stress-activated
MAP kinases, Erkl/2 and p38, in a concentration-
dependent manner, although the other MAP kinase,
JNK, was not affected. From these data, we concluded
that more than 250 uM of H,O, indeed promoted oxi-
dative stress to PC12 cells.

As described in the background, we recently reported
that subtoxic levels of oxidative stress significantly induced
expression of a growth factor PGRN in HT22 murine
hippocampal cells, thereby contributing to cell protection
[9]. However, gene expression levels of BDNF and IGF-1
were decreased by oxidative stress [9]. These results
indicate that when the cells experienced subtoxic levels
of oxidative stress, they activated specific intracellular
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machinery to promote specific growth factors. To investi-
gate whether the expression of growth factors are similarly
controlled in PC12 cells, we measured the gene expression
of PGRN, BDNF, NT3, and IGF1 after H,O, treatment.
Of these growth factors, only BDNF gene expression was
induced in an H,O, concentration-dependent manner
(Figure 2A). Consistent with this result, Wang and col-
leagues report that BDNF secretion from differentiated
PC12 cells was induced by hypoxic stimuli that were
abolished by N-acetyl-l-cysteine, which is a scavenger of
ROS [14]. Although the gene expression of PGRN was
clearly observed in PC12 cells, its expression levels
were not altered by H,O, administration (Figure 2B).
In addition, little gene expression of NT3 and IGFI was
observed (data not shown). Together, these results dem-
onstrate that subtoxic levels of oxidative stress specifically
promote BDNF expression in PC12 cells. Moreover, com-
pared to similar experiments using HT22 cells that we
previously reported [9], the oxidative stress-dependent
regulation of growth factors appeared to be varied among
neuronal cell types.

BDNF signals through p75NTR in PC12 cells

Based on our hypothesis that BDNF induced by H,O, may
function in an autocrine/paracrine manner, we explored
how PC12 cells responded against BDNF. Before evaluating
the effects of BDNF on cellular functions, we analyzed
whether BDNF receptor was expressed in PC12 cells, since
it has been reported that high affinity BDNF receptor, TrkB,
is not expressed in PC12 cells [15]. As shown in Figure 3A,
we also confirmed that detectable levels of TrkB was not
observed. On the contrary, TrkA, TrkC, and low affinity
neurotrophin receptor p75NTR were expressed in PC12
cells (Figure 3A). BDNF-p75NTR signaling has been well
studied and is especially characterized by prominent activa-
tion of NFkB signaling [16]. To test if BDNF treatment
affects Trk signaling, we also analyzed Erk1/2 and Akt
phosphorylation that are activated by the neurotrophin-Trk
dependent signaling pathway. The amount of IkB, which
inhibits NFkB nuclear translocation, was not changed by
BDNF treatment (Figure 3B). The amounts and phosphor-
ylation of NF«B were also not affected by BDNF (data not
shown). In terms of Trk-dependent signaling, changes in
Erk1/2 and GSK3p phosphorylation were not observed, but
Akt phosphorylation was significantly decreased by BDNF
treatment (Figure 3B-E). It was reported that pro-NGF
induces expression of phosphatase and tensin homolog
deleted on chromosome 10 (PTEN), a negative regulator
for PI3K signaling, and thereby abolishes Akt activation in
brain neurons [17]. However, our present results revealed
that BDNF has an ability to dephosphorylate Akt acutely,
within 30 min. Overall, our present data suggest that BDNF
inactivated Akt perhaps via p75NTR, although little TrkB
was expressed in PC12 cells.
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Figure 1 BDNF expression is induced by subtoxic levels of oxidative stress in PC12 cells. (A) Differentiated PC12 cells were stimulated with the
indicated concentrations of H,O, for 15 h. Cell toxicity was measured by LDH assay. Data shown represent mean + SEM, tested using a one-way ANOVA
with Tukey's post-test (**p <0.01, n =9). (B) Differentiated PC12 cells were stimulated with the indicated concentration of H,O, for 30 min. Total and
phosphorylated proteins were evaluated by western blotting analysis. Three independent experiments were performed and representative data are shown.

BDNF treatments protect PC12 cells

BDNF for 24 h and cell viability was evaluated by meas-

BDNF treatment protects against various insults [18-20];  uring released LDH (described in Methods). As shown
however, if these protections occur in cells that lack in Figure 4A, BDNF treatment slightly but significantly
TrkB receptors, such as PC12 cells, is not well studied. ameliorated PC12 cell survival rate. Currently, we have
To determine if BDNF protects PC12 cells in the not identified which signaling pathways mediate cell
absence of TrkB receptors, PC12 cells were treated with  protective effects dependent on BDNF. Several studies
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Figure 2 Subtoxic levels of oxidative stress promote BDNF induction. (A, B) Differentiated PC12 cells were stimulated with indicated concentrations
of H,0, for 15 h. Total RNA was then extracted from the cells and the gene expression of BDNF (A) or PGRN (B) was evaluated by quantitative PCR
analysis. Data shown represent mean + SEM, tested using one-way ANOVA with Tukey's post-test (*p <0.05, n = 5-14).
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suggest that p75NTR could promote cell survival by
enhancing NGF signaling pathways [21-23]; however, we
could not confirm that major NGF signaling pathways,
the Erk1/2 and PI3K/Akt cascades, were enhanced by
BDNF treatment. Rather, Akt phosphorylation was signifi-
cantly decreased by the BDNF treatment (Figure 3B, 3C).
Pharmacological inhibition of the PI3K/Akt pathway by
LY294002 enhanced PC12 cell death (Figure 4B), indicat-
ing that BDNF-dependent Akt inactivation might contrib-
ute to induction of cell death. It should be noted that the

oxidative stress-dependent induction of BDNF gene might
also result in enhancement of pro-BDNF production.
Although whether pro-BDNF has a physiological function
has been controversial [24,25], recent reports suggest that
pro-BDNF preferentially binds to p75NTR, and exerts
pro-apoptotic effects [26]. However, intriguingly, exogen-
ous pro-BDNF treatment also tended to reduce PC12 cell
death (Figure 4C). Thus, although further experiments are
required to measure the concentration of mature BDNF
and pro-BDNF in the vicinity of cells, the induction of



Ogura et al. BVIC Research Notes 2014, 7:840
http://www.biomedcentral.com/1756-0500/7/840

Page 7 of 8

A

oy

O

Cell toxicity
(fold changes)

Cell toxicity

Cell toxicity
(fold changes)

e
L

fold changes)

S—

o
g

1.4-
1.24
1.04—

*: p<0.05 (n=4)

e
e

0.4+
0.24

0.04— rr——r e rr——— e

0 1 10 100 1000
BDNF Concentration (ng/ml)

g
(=)

*:p<0.05 (n=4)

=
'

f‘

—

1 10
LY concentration (uM)

100

g

(n=5)

:

0.0

0 1 10 100 1000
pro-BDNF concentration (ng/ml)

Figure 4 BDNF protects PC12 cells from death. (A) Differentiated
PC12 cells were treated with the indicated amounts of BDNF for

15 h, and cell toxicity was measured by LDH assay. Data shown
represent mean + SEM, tested using a one-way ANOVA with Tukey's
post-tests (*p <0.05, n = 4). (B) Differentiated PC12 cells were treated
with the indicated amounts of the PI3K inhibitor LY294002 for 15 h,
and cell toxicity was measured by LDH assay. Data shown represent
mean + SEM, tested using one-way ANOVA with Tukey's post-test
(*p <0.05, n = 4). (C) Differentiated PC12 cells were treated with the
indicated amounts of pro-BDNF for 15 h, and cell toxicity was
measured by LDH assay. Data shown represent mean + SEM.

BDNF gene by H,O, treatment appears to be beneficial
for PC12 cells.

Overall, our results suggest that subtoxic levels of oxida-
tive stress promote BDNF gene expression, and possibly
exert a cell protective mechanism (Figure 5). Consistent
with our present observations, several recent studies sug-
gest that ROS accumulation could exert beneficial effects
on adaptation against stress and survival of cells [27,28].
We found that although the BDNF-dependent signaling
pathway possesses cell protective functions, it perhaps
inactivates PI3K/Akt pathway that appeared to be a
negative factor for cell survival. Our laboratory is now
exploring the other signaling pathway that is activated
by BDNF and is crucial for cell protection. An intriguing
observation from the present study is that oxidative stress
and BDNF potentially activate both cell death and cell
survival promoting mechanisms. The balance between
these two opposing systems may directly influence the
determination of cellular fates.

Conclusions

Subtoxic levels of oxidative stress induce BDNF gene ex-
pression that potentially exerts a cell protective mechanism.

BDNF
Oxidative )

Stress ‘

| PTONTR |——

PI3K/Akt

BDNF - Ly294002

Cell Death

Figure 5 Schematic depiction of the present study. Oxidative
stress generated by H,0, treatment induces PC12 cell death; however,
this subtoxic level of oxidative stress also induces BDNF. BDNF signals
via p75NTR to protect PC12 cells, even though it inactivates the PI3K/Akt

cascade that potentially induces cell survival.
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