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Abstract
Using	the	Southern	African	Bird	Atlas	Project	(SABAP2)	as	a	case	study,	we	examine	
the	possible	determinants	of	spatial	bias	 in	volunteer	sampling	effort	and	how	well	
such	biased	data	represent	environmental	gradients	across	the	area	covered	by	the	
atlas.	For	each	province	in	South	Africa,	we	used	generalized	linear	mixed	models	to	
determine	the	combination	of	variables	that	explain	spatial	variation	in	sampling	effort	
(number	of	 visits	 per	5′	×	5′	 grid	 cell,	 or	 “pentad”).	 The	explanatory	 variables	were	
distance	to	major	road	and	exceptional	birding	locations	or	“sampling	hubs,”	percent-
age	cover	of	protected,	urban,	 and	cultivated	area,	 and	 the	climate	variables	mean	
annual	 precipitation,	 winter	 temperatures,	 and	 summer	 temperatures.	 Further,	 we	
used	the	climate	variables	and	plant	biomes	to	define	subsets	of	pentads	representing	
environmental	zones	across	South	Africa,	Lesotho,	and	Swaziland.	For	each	environ-
mental	zone,	we	quantified	sampling	intensity,	and	we	assessed	sampling	complete-
ness	 with	 species	 accumulation	 curves	 fitted	 to	 the	 asymptotic	 Lomolino	 model.	
Sampling	 effort	was	 highest	 close	 to	 sampling	 hubs,	major	 roads,	 urban	 areas,	 and	
protected	areas.	Cultivated	area	and	the	climate	variables	were	less	important.	Further,	
environmental	zones	were	not	evenly	represented	by	current	data	and	the	zones	var-
ied	 in	 the	 amount	 of	 sampling	 required	 representing	 the	 species	 that	 are	 present.	
SABAP2	volunteers’	preferences	in	birding	locations	cause	spatial	bias	in	the	dataset	
that	should	be	taken	 into	account	when	analyzing	these	data.	Large	parts	of	South	
Africa	remain	underrepresented,	which	may	restrict	the	kind	of	ecological	questions	
that	may	be	addressed.	However,	sampling	bias	may	be	improved	by	directing	volun-
teers	toward	undersampled	regions	while	taking	into	account	volunteer	preferences.
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1  | INTRODUCTION

Progress	in	macroecology,	biogeography,	and	large-	scale	conservation	
planning	is	enabled	by	a	growing	number	of	nonsystematically	collected	

species	distribution	databases	in	the	form	of	museum-	curated	collec-
tions	(specimen	collections)	and	large-	scale	species	atlases	(Robertson,	
Cumming,	&	Erasmus,	 2010).	 Such	 databases,	 representing	multiple	
taxa	and	large	regional	to	subcontinental	spatial	scales,	are	increasing	
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in	scope	(i.e.,	taxonomic	and	geographical)	and	detail	(i.e.,	spatiotem-
poral	resolution	and	types	of	information	recorded).	This	development	
is	aided	by	constant	 improvements	 in	digital	database	management,	
accessibility	 (e.g.,	 open	 source	 and	 Internet-	based	 data),	 and	 analy-
sis	(computing	power	and	statistical	techniques)	(Boakes	et	al.,	2010;	
Kelling	et	al.,	2013).	However,	the	adequate	sampling	of	huge	amounts	
of	georeferenced	species	distribution	data	is	a	persistent	challenge.

Specimen	 collections	 depend	 largely	 on	 professional	 scientists	
such	as	taxonomists,	whereas	species	atlases,	especially	of	conspicu-
ous	or	charismatic	taxa	(e.g.,	birds	or	butterflies),	are	often	organized	
as	citizen	science	projects	supported	by	hundreds	of	volunteer	observ-
ers	 (Bird	et	al.,	2014;	Botts,	Erasmus,	&	Alexander,	2011;	Robertson	
et	al.,	 2010;	Tulloch	&	Szabo,	2012).	Both	 specimen	collections	 and	
species	 atlases	 tend	 to	 be	 inherently	 biased	 in	 terms	 of	when	 and	
where	 contributors	 decide	 to	 sample	 (spatiotemporal	 bias)	 and	 the	
skill	of	contributors	as	data	collectors	(e.g.,	variation	in	identification	
and	record	keeping)	 (Bird	et	al.,	2014;	Boakes	et	al.,	2010;	Peterson,	
Navarro-	Sigüenza,	 &	 Benítez-	Díaz,	 1998;	 Reddy	 &	 Dávalos,	 2003;	
Robertson	et	al.,	2010;	Sastre	&	Lobo,	2009;	Tulloch	&	Szabo,	2012).	
Several	recent	studies	on	spatial	or	geographical	sampling	bias	show	
that	sampling	sites	tend	to	be	chosen	based	on	accessibility,	that	 is,	
traveling	distance	and	ease	of	traveling	(e.g.,	roads	and	terrain)	to	or	
within	the	sampling	site,	and	on	the	attractiveness	of	a	site	for	sam-
pling,	for	example,	the	expectation	of	high	biodiversity	or	of	observing	
rare	or	charismatic	species	(Botts	et	al.,	2011;	Reddy	&	Dávalos,	2003;	
Romo,	 García-	Barros,	 &	 Lobo,	 2006;	 Tulloch,	 Mustin,	 Possingham,	
Szabo,	 &	Wilson,	 2013).	 Citizen	 volunteers	 may	 also	 be	 motivated	
by	a	esthetic	(e.g.,	scenic	landscape	features)	and	recreational	factors	
(Tulloch	 et	al.,	 2013).	 Consequently,	 a	 large	 proportion	 of	 samples	
originate	from	a	small	proportion	of	geographical	space	in	and	around	
residential	and	protected	areas,	whereas	locations	that	are	remote	or	
believed	 to	be	 low	 in	biodiversity	 tend	 to	be	poorly	 sampled	 (Botts	
et	al.,	2011;	Peterson	et	al.,	1998;	Sastre	&	Lobo,	2009).

If	 ignored,	 spatial	 sampling	bias	may	 result	 in	distorted	views	of	
biodiversity,	 biogeography,	 and	 species	 distributions,	with	 observed	
patterns	 of	 variation	 reflecting	 sampling	 effort	 rather	 than	 environ-
mental	 or	 demographic	 causes	 (Bird	 et	al.,	 2014;	 Botts	 et	al.,	 2011;	
Evans,	Greenwood,	&	Gaston,	2007).	Species	distribution	databases	
are	 more	 useful	 if	 data	 are	 compiled	with	 a	 standardized	 sampling	
protocol	and	 include	 information	about	the	observation	process,	 for	
example,	a	measure	of	sampling	effort	for	each	record	within	the	data-
base	(Bird	et	al.,	2014;	Guillera-	Arroita,	2017;	Robertson	et	al.,	2010).	
Further,	species	distribution	databases	may	be	designed	with	a	variety	
of	objectives,	 for	example,	whether	 sampling	would	attempt	a	wide	
coverage	or	whether	sampling	would	be	focused	or	stratified	accord-
ing	 to	habitat	or	protected	areas	 (Tulloch	et	al.,	 2013).	Clear	under-
standing	of	spatial	sampling	bias,	survey	objectives,	and	data	types	is	
essential,	especially	when	considering	that	various	species	distribution	
databases,	each	with	particular	sampling	methods	and	biases,	are	inte-
grated	and	studied	at	a	global	scale	(www.gbif.org;	www.mol.org;	Jetz,	
McPherson,	&	Guralnick,	2012).

Species	 distribution	 (Guisan	 &	 Zimmermann,	 2000)	 or	 occu-
pancy	 (Mackenzie	 et	al.,	 2006)	 modeling	 techniques	 relate	 species	

distribution	data	to	environmental	covariates	(e.g.,	spatial	variation	in	
climate	and	habitat	type)	to	infer	species	spatial	distributions.	These	
techniques	 can	 account	 for	 variation	 in	 sampling	 effort,	 interpolate	
geographical	“gaps”	in	the	data,	or	predict	the	geographical	locations	
that	 should	 be	 prioritized	 for	 additional	 sampling	 (Bird	 et	al.,	 2014;	
Bled,	Nichols,	&	Altwegg,	2013;	Hernandez,	Graham,	Master,	&	Albert,	
2006;	 Kramer-	Schadt	 et	al.,	 2013;	 Phillips	 et	al.,	 2009).	 However,	
these	techniques	are	most	reliable	if	based	on	repeated	visits	of	sam-
pling	sites	that	represent	the	full	range	of	variation	in	the	environment	
(Araújo	 &	 Guisan,	 2006;	 Bled	 et	al.,	 2013;	 Hernandez	 et	al.,	 2006;	
Phillips	et	al.,	2009).	Occupancy	techniques,	in	particular,	require	mul-
tiple	repeated	visits	to	model	the	probability	of	detecting	species	that	
are	present	(Altwegg,	Wheeler,	&	Erni,	2008;	Bled	et	al.,	2013;	Broms,	
Hooten,	Johnson,	Altwegg,	&	Conquest,	2016;	Guillera-	Arroita,	2017).	
Species	 detectability	may	 vary	 due	 to	 several	 mechanisms,	 such	 as	
species	traits,	observer	skill,	survey	methods	and	conditions,	and	hab-
itat	 characteristics	 (Guillera-	Arroita,	 2017).	 Species	 distribution	 and	
occupancy	techniques	are	an	actively	developing	field	of	research,	and	
are	widely	and	increasingly	used	to	study	species	spatial	distributions	
and	 range	 dynamics	 (Guillera-	Arroita,	 2017;	 Guillera-	Arroita	 et	al.,	
2015).	These	techniques	benefit	most	from	an	environmentally	strat-
ified	 sampling	 design,	 rather	 than	 attempting	 to	 close	 geographical	
gaps	by	sampling	as	much	area	as	possible	but	with	low	effort	per	unit	
area	 (Araújo	&	Guisan,	2006;	Guillera-	Arroita,	2017;	Kramer-	Schadt	
et	al.,	2013;	Tulloch	et	al.,	2013).

In	 South	Africa,	 large-	scale	 species	 distribution	 databases	 facili-
tated	a	wealth	of	ecological	research	and	conservation	planning	anal-
yses	 (e.g.,	Harrison,	Underhill,	&	Barnard,	 2008),	with	 historical	 and	
current	 databases	 including	 birds,	 frogs,	 mammals,	 butterflies,	 spi-
ders,	proteas,	and	invasive	alien	plants	(find	the	host	organizations	at	
adu.org.za,	www.proteaatlas.org.za	 and	www.sanbi.org).	The	 second	
Southern	African	Bird	Atlas	Project	(SABAP2),	which	was	launched	in	
the	year	 2007,	 is	 arguably	 the	most	 ambitious	 atlas	 project	 for	 the	
region	in	terms	of	scope,	resolution	and	data	volume.	Citizen	scientists	
record	bird	species	presence	at	a	relatively	fine	resolution	(grid	cells	of	
5	min	latitude	by	5	min	longitude,	termed	“pentads”)	within	eight	sub-	
Saharan	African	 countries,	 namely	South	Africa,	 Lesotho,	 Swaziland,	
Namibia,	Botswana,	Zimbabwe,	Mozambique,	and	Kenya.	By	the	end	
of	May	2017,	nearly	2,300	observers	had	conducted	nearly	187,000	
separate	surveys,	contributing	more	than	9.6	million	records,	and	cov-
ering	 more	 than	 17,700	 pentads,	 and	 rate	 of	 contributions	 remain	
high	(http://sabap2.adu.org.za/).	However,	current	SABAP2	data	show	
obvious	 and	 substantial	 spatial	 bias	 in	 sampling	 effort.	 Repeatedly	
sampled	 pentads	 comprise	 a	 small	 proportion	 of	 the	 total	 area	 and	
tend	to	be	spatially	clustered,	forming	a	few	well-	sampled	geographi-
cal	regions.	Conversely,	outside	these	well-	sampled	regions,	there	still	
remain	large	poorly	sampled	geographical	areas.

The	second	Southern	African	Bird	Atlas	Project	is	designed	to	run	
indefinitely	with	the	aim	of	creating	a	valuable	long-	term	dataset	for	
southern	Africa.	Thus,	 an	 assessment	 of	 sampling	 bias	will	 provide	
much-	needed	information	for	data	users	and	future	sampling	endeav-
ors,	and	ensure	that	volunteers’	time	and	effort	and	their	contributed	
data	are	used	to	full	potential.	Wright,	Underhill,	Keenec,	and	Knight	
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(2015)	previously	studied	the	motivation	of	SABAP2	volunteers	and	
the	 benefits	 they	 gain.	 However,	 a	 spatially	 explicit	 study	 of	 the	
possible	 causes	 and	 consequences	of	 spatial	 sampling	bias	has	not	
been	conducted	for	SABAP2.	Moreover,	accounting	for	and	improv-
ing	 observation	 bias	 contributes	 to	 developing	 species	 distribution	
data	 that	are	useful	 in	global	ecological	 studies.	Similar	evaluations	
of	sampling	bias	could	benefit	other	new	or	existing	species	atlases	
for	many	taxa	around	the	world.	Our	aims	are	(1)	to	reveal	spatially	
explicit	determinants	of	variation	 in	sampling	effort	 in	SABAP2	and	
(2)	to	illustrate	variation	in	data	representativeness	among	a	variety	
of	environments.

2  | METHODS

2.1 | Atlas characteristics

We	focused	on	South	Africa,	Lesotho,	and	Swaziland	where	data	are	
accumulating	most	rapidly	and	widely,	and	for	which	comprehensive	
environmental	and	human-	related	GIS	(geographical	information	sys-
tem)	 datasets	 are	 available.	 The	 sampling	 protocol	 of	 SABAP2	was	
designed	 to	 standardize	 sampling	by	 requesting	 that	 the	volunteers	
record	all	 the	birds	they	encounter	within	a	pentad	for	at	 least	2	hr	
(intensive	sampling	period),	but	no	longer	than	five	consecutive	days,	
and	 that	 they	 attempt	 to	 cover	 all	 habitat	 types	within	 the	pentad.	
Volunteers	are	coordinated	through	regional	atlas	committees	and	the	
SABAP2	Web	 site	 (http://sabap2.adu.org.za/),	which	 includes	 train-
ing	materials	(e.g.,	how	to	use	GIS	programmes	and	recognize	pentad	
boundaries),	workshops	(e.g.,	bird	 identification),	and	birding	events.	
The	online	submission	process	links	records	automatically	to	a	cover-
age	map	and	flags	unusual	 (e.g.,	out	of	range)	records	that	are	then	
vetted	by	regional	atlas	committees.	The	SABAP2	database	includes	
information	on	sampling	effort	for	each	pentad	in	terms	of	number	of	

contributed	species	lists	(i.e.,	one	list	per	visit)	and	number	of	records	
(i.e.,	species	sightings),	as	well	as	number	of	hours	and	days	spent	sam-
pling	per	pentad.

Atlas	data	used	in	this	study	were	contributed	between	June	2007	
and	the	end	of	August	2016.	For	this	period,	about	75%	of	the	pentads	
covering	 South	Africa,	 Lesotho,	 and	 Swaziland	were	visited	 at	 least	
once	(i.e.,	one	or	more	lists	contributed);	however,	<16%	of	pentads	
were	sampled	10	times	or	more;	that	is,	enough	repeated	visits	to	en-
sure	that	common	species	were	detected	with	high	probability,	even	
with	 relatively	 low	detectability	 (Guillera-	Arroita,	 Ridout,	&	Morgan,	
2010).	Spatial	bias	could	be	partly	attributed	to	coordination	efforts	of	
the	regional	atlas	committees	for	each	province	and	the	“birding	chal-
lenges”	that	aim	to	intensively	sample	regions	of	special	concern	for	
bird	biodiversity.	Areas	covered	by	birding	challenges	include	Kruger	
National	Park,	Western	Cape	Province,	and	the	four	degrees	latitude	
and	 longitude	 encompassing	Gauteng	 and	 parts	 of	 the	 surrounding	
provinces	(the	Gauteng	4D	birding	challenge).

2.2 | Determinants of spatial variation in 
sampling effort

For	this	analysis,	we	investigated	each	South	African	province	sep-
arately	 (Lesotho	 and	 Swaziland	were	 not	 included)	 to	 account	 for	
the	possible	 influence	of	the	regional	atlas	committees	and	birding	
challenges,	and	to	account	for	regional	differences	in	level	of	human	
population	density	and	development	(Figure	1,	Table	S1).	We	inves-
tigated	the	entire	four	degrees	comprising	the	Gauteng	4D	challenge	
separately	from	the	rest	of	the	surrounding	provinces	to	account	for	
the	 increased	 sampling	 in	 this	 region	 (Figure	1,	 Table	S1).	We	 ex-
plored	factors	representing	the	accessibility	(1–2)	and	attractiveness	
(3–5)	of	each	pentad	that	may	explain	spatial	variation	 in	sampling	
effort.

F IGURE  1 Study	area:	(1)	Limpopo	
Province,	(2)	North	West	Province,	(3)	the	
four	degree	square	comprising	the	Gauteng	
4D	birding	challenge,	(4)	Mpumalanga	
Province,	(5)	Swaziland,	(6)	Northern	
Cape	Province,	(7)	Free	State	Province,	(8)	
Lesotho,	(9)	KwaZulu-	Natal	Province,	(10)	
Western	Cape	Province,	(11)	Eastern	Cape	
Province.	Thick	lines	indicate	province	and	
country	boundaries,	and	fine	lines	indicate	
major	roads.	Black	squares	indicate	the	
location	of	sampling	hubs,	that	is,	locations	
with	exceptionally	high	sampling	effort.	
Gray	shading	indicates	all	terrestrial	formal	
and	informal	protected	area	(SANBI,	2010,	
2011)
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1. The	 pentads	 with	 the	 greatest	 number	 of	 contributed	 lists	 are	
located	 some	 distance	 apart	 and	 correspond	 to	 the	 locations	
of	 major	 cities	 such	 as	 Johannesburg	 or	 small	 towns	 at	 popular	
ecotourism	 or	 birding	 destinations	 such	 as	 Lady	 Grey.	 Sampling	
effort	 tends	 to	 decrease	 with	 distance	 from	 these	 “sampling	
hubs.”	 We	 reason	 that	 “sampling	 hubs”	 are	 highly	 accessible	
pentads,	where	 highly	 active	 volunteers	 reside	 permanently	 (i.e.,	
regular	 sampling	 in	 their	 home	 neighborhood)	 or	 temporarily	
(e.g.,	 vacation	 accommodation	when	 birding	 some	 distance	 from	
home),	 whereas	 the	 surrounding	 pentads	 require	more	 effort	 to	
reach.	 To	 examine	 this,	 up	 to	 three	 sampling	 hubs	 were	 sub-
jectively	 identified	 for	 each	 province	 (depending	 on	 the	 overall	
amount	and	pattern	of	 sampling)	 and	we	calculated	 the	distance	
between	 the	 midpoints	 of	 each	 pentad	 to	 the	 midpoint	 of	 the	
closest	 sampling	 hub	 (Figure	1,	 Table	S1).	 The	 sampling	 hubs	
were	 not	 included	 in	 subsequent	 analyses.

2. Accessibility	by	road	may	facilitate	long-distance	traveling	to	bird-
ing	locations;	therefore,	the	presence	of	roads	is	likely	to	increase	
sampling	 effort.	 We	 calculated	 the	 minimum	 distance	 between	
each	pentad	 and	 a	major	 road,	 that	 is,	 an	 arterial,	 national,	main	
road,	or	freeway	(Figure	1;	AGIS,	2007).	Lesser	roads	were	not	con-
sidered	as	they	were	found	in	almost	all	pentads.

3. Volunteers	 may	 associate	 protected	 areas	 with	 unspoilt	 natural	
scenic	 beauty	 and	 high	 biodiversity,	 in	 addition	 to	 infrastructure	
and	facilities	supplied	by	ecotourism,	such	as	access	roads	and	hik-
ing	 trails,	 information,	 and	 accommodation	 (Tulloch	 et	al.,	 2013).	
We	calculated	the	percentage	of	each	pentad	covered	by	 formal	
and	informal	protected	area	(Figure	1;	SANBI	2010,	2011).

4. Volunteers	may	also	be	attracted	to	a	range	of	bird	habitats	outside	
reserves,	 which	may	 comprise	 various	 natural	 and	 human-trans-
formed	land	cover	types.	We	focused	here	on	percentage	of	a	pen-
tad	covered	by	urban	area	and	by	cultivated	area	(the	national	land	
cover	 database,	 SANBI,	 2009),	 as	 these	 are	 the	 two	main	 trans-
formed	land	cover	types	 in	all	provinces	and	also	tend	to	be	col-
linear	with	natural	land	cover	(i.e.,	negatively	related).

5. Finally,	volunteers	may	prefer	certain	climates	and	avoid,	for	exam-
ple,	extreme	temperatures	(e.g.,	Romo	et	al.,	2006).	We	used	mean	
annual	precipitation,	mean	summer	temperature,	and	mean	winter	
temperature,	averaged	for	each	pentad,	to	examine	preferred	cli-
matic	 conditions	 (Mecenero,	 Altwegg,	 Colville,	 &	 Beale,	 2015;	
Schulze,	2001).

We	used	linear	regression	to	determine	how	well	variables	1–5	ex-
plain	spatial	variation	in	sampling	effort	represented	by	number	of	lists	
per	pentad.	“Distance	to	sampling	hub”	was	log-	transformed	to	ensure	
a	 linear	 relationship	with	 the	 response	variable,	 because	 the	 untrans-
formed	relationship	 is	a	distance-	decay	function.	Separate	generalized	
linear	models	 for	 each	province	 included	 all	 the	 explanatory	variables	
listed,	to	examine	their	relative	importance.	Collinearity	among	predic-
tors	was	generally	low	and	never	severe	enough	to	justify	excluding	any	
predictors	(O’Brien,	2007;	see	Variance	Inflation	Factors	in	Table	S2).	The	
models	were	 fitted	via	penalized	quasi-	likelihood	using	 function	 “glm-
mPQL”	in	package	“MASS”	version	7.3-	45	(Venables	&	Ripley,	2002)	in	

program	R	(R	Core	Team,	2016).	We	assumed	a	Poisson	distribution	and	
included	an	exponential	spatial	correlation	structure	as	a	random	vari-
able	in	each	model	to	account	for	spatial	autocorrelation.

2.3 | Representativeness of data

We	examined	how	variation	 in	 sampling	 intensity	and	 the	ability	 to	
detect	 the	 species	 that	 are	 present	 (sampling	 completeness)	 reflect	
in	both	geographical	and	environmental	space.	This	idea	is	based	on	
the	potential	 for	species	distribution	and	occupancy	models	to	esti-
mate	species	distributions	based	on	patchy	species	presence	records	
and	 environmental	 background	 data	 (Bird	 et	al.,	 2014;	 Bled	 et	al.,	
2013;	 Guisan	 &	 Thuiller,	 2005;	 Kramer-	Schadt	 et	al.,	 2013).	 Bird	
distributions	are	driven	by	climate	and	vegetation	 type	 (Acevedo	&	
Currie,	2003;	Boone	&	Krohn,	2000;	Van	Rensburg,	Koleff,	Gaston,	&	
Chown,	2004).	Therefore,	we	defined	environmentally	distinct	zones	
by	partitioning	all	the	pentads	comprising	South	Africa,	Lesotho,	and	
Swaziland,	into	subsets	of	pentads	with	similar	environments	in	terms	
of	climate	and	vegetation	biomes	(for	similar	methods,	see	Robertson	
&	Barker,	2006;	Botts	et	al.,	2011;	Tulloch	&	Szabo,	2012).	We	first	
simplified	 the	 three	 climatic	 variables	 with	 a	 principal	 components	
analysis	(PCA).	The	first	PCA	scores	were	related	to	mean	annual	pre-
cipitation,	mean	summer	temperature,	and	mean	winter	temperature,	
with	factor	loadings	0.703,	−0.675,	and	0.225,	respectively	(Figs.	S1	
and	 S2a).	 The	mapped	 component	 scores	 (Fig.	S2a)	 show	 the	main	
gradient	 between	 hotter,	 drier	 areas	 in	 the	 northwest,	 and	 milder,	
wetter	areas	in	the	southeast,	as	well	as	more	local-	scale	variations,	
such	 as	 at	mountain	 ranges	 (see	 also	 Botts	 et	al.,	 2011;	 Robertson	
and	Barker,	2006).	Therefore,	although	this	component	explains	only	
about	57%	of	the	variation,	we	deemed	it	a	useful	representation	of	
climatic	variation	for	our	purposes.	We	then	grouped	the	pentads	into	
ten	climate	zones	based	on	a	histogram	of	the	first	PCA	scores,	which	
generally	ranged	from	hot	and	dry	at	class	1	to	moist	and	mild	at	class	
10	(Figures	2,	S1	and	S2a).

Further,	we	assigned	each	pentad	to	the	plant	biome	that	covers	
the	largest	percentage	of	the	pentad	(Figures	2	and	S2b).	Mucina	and	
Rutherford	(2006)	defined	nine	biomes,	namely	Desert,	Nama	Karoo,	
Succulent	 Karoo,	 Fynbos,	 Grassland,	 Savanna,	 Albany	 Thicket,	 the	
Indian	Ocean	Coastal	Belt,	and	Forest	(Fig.	S2b).	However,	Forest	and	
Desert	comprised	only	a	 few	pentads,	and	Mucina	and	Rutherford’s	
(2006)	 Desert	 biome	 is	 mainly	 designated	 as	 Nama	 Karoo	 and	
Succulent	Karoo	in	earlier	vegetation	maps	for	South	Africa	(e.g.,	Low	
&	 Rebelo,	 1996;	 Rutherford,	 1997;	 Rutherford	 &	 Westfall,	 1994).	
Therefore,	we	assigned	the	Forest	and	Desert	pentads	to	the	closest	
neighboring	biomes.	Next,	we	superimposed	the	biomes	and	climate	
zones	to	define	43	distinct	environmental	zones	of	various	geograph-
ical	 sizes	 (i.e.,	various	numbers	of	pentads),	 representing	 several	 cli-
mate	 zones	within	 each	 biome	 (Figure	2).	 That	 is,	 each	 biome	was	
divided	into	several	large	(i.e.,	large	number	of	pentads)	climate	zones	
that	 represent	 the	 typical	 climate	 range	 for	 that	 biome	 and	 several	
smaller	zones	that	represent	climate	extremes	for	that	biome.

Next,	to	quantify	variation	in	sampling	effort	for	each	environmen-
tal	zone,	we	counted	all	of	the	pentads	with	at	least	one	list	(i.e.,	total	
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geographical	coverage)	as	well	as	the	pentads	with	ten	 lists	or	more	
(i.e.,	 repeated	 samples	necessary	 to	model	 the	observation	process,	
Guillera-	Arroita	et	al.,	2010).	To	examine	sampling	bias	among	envi-
ronmental	zones,	we	conducted	G-	tests	of	 independence	comparing	
all	pentads	with	sampled	pentads,	for	both	levels	of	sampling	intensity,	
that	is,	at	least	one	list	and	at	least	ten	lists.	To	ensure	that	expected	
frequencies	are	above	5%	in	the	G-	test,	we	pooled	the	smallest	sim-
ilar	environmental	 zones	within	each	biome	 to	 increase	 the	number	
of	pentads	(Figure	2).	This	final	process	combining	the	smallest	zones	
resulted	in	27	environmental	zones	that	were	used	for	all	further	anal-
yses	(Figures	2	and	S3).

We	 ranked	 the	27	 zones	 according	 to	 sampling	 effort	 by	 calcu-
lating	 the	 difference	 between	 observed	 and	 expected	 frequency,	
where	 expected	 frequency	 is	 the	 number	 of	 lists	 that	 would	 have	
been	contributed	for	each	zone	if	sampling	effort	was	geographically	
homogeneous.	Expected	frequencies	were	calculated	for	both	 levels	
of	sampling	intensity,	using	the	following	formula	(see	also	Tulloch	&	
Szabo,	 2012):	 expected	 frequency	=	(number	 of	 pentads	 comprising	
an	environmental	zone	÷	total	number	of	pentads)	×	total	number	of	
sampled	pentads.

Assuming	 that	 number	 of	 species	 recorded	would	 increase	with	
number	of	pentads	sampled	 (the	species–area	relationship),	we	used	
species	accumulation	curves	to	assess	sampling	completeness	for	each	
zone	(see	Moreno	&	Halffter,	2000;	Tulloch	&	Szabo,	2012),	for	both	
levels	 of	 sampling	 intensity.	 For	 each	 zone,	we	 calculated	Mao	Tau	
species	richness	estimates	(R	package	“vegan,”	version	2.4-	0,	Oksanen	
et	al.,	2016),	that	is,	a	smoothed	species	accumulation	curve	produced	
by	 adding	 the	 pentads	 in	 random	 order	 (i.e.,	 the	 average	 curve	 of	
1,000	runs).	We	then	fitted	the	Mao	Tau	estimates	to	an	asymptotic	
Lomolino	curve	to	estimate	the	total	species	richness	(i.e.,	the	asymp-
tote)	for	each	environmental	zone	(R	package	“vegan”;	Lomolino,	2000;	
Dengler,	2009;	Oksanen	et	al.,	2016).	We	also	tested	the	Clench	and	
Weibull	models	(Hortal,	Borges,	&	Gaspar,	2006;	Moreno	&	Halffter,	
2000;	 Tulloch	 &	 Szabo,	 2012);	 however,	 the	 Lomolino	 model	 per-
formed	best	 in	terms	of	fit	and	robustness.	We	then	ranked	the	en-
vironmental	 zones	 according	 to	 sampling	 completeness	 by	 dividing	
each	zone’s	observed	species	richness	by	the	total	estimated	species	
richness,	giving	a	percentage	of	completeness	of	the	species	inventory	
for	that	zone.

3  | RESULTS

3.1 | Determinants of spatial variation in sampling 
effort

The	variables	 that	best	explained	spatial	variation	 in	sampling	effort	
varied	somewhat	among	the	provinces	(Table	1,	see	Table	S3	for	more	
detailed	results).	Nevertheless,	for	most	provinces	sampling	effort	was	
significantly	negatively	related	to	distance	to	sampling	hub	(except	for	
Limpopo	 and	Northern	Cape	provinces)	 and	distance	 to	major	 road	
(except	for	Gauteng	4D	and	Mpumalanga	Province),	and	significantly	
positively	 related	 to	 protected	 area	 cover	 (all	 provinces)	 and	 urban	
cover	 (except	 for	Mpumalanga	and	North	West	provinces)	 (Table	1).	
Cultivated	 area,	mean	 annual	 precipitation,	mean	 summer	 tempera-
ture,	and	mean	winter	temperature	were	 less	 important	explanatory	
variables,	being	significant	in	only	a	few	provinces	(Table	1).

3.2 | Representativeness of data

The	27	environmental	zones	were	not	equally	represented	by	pentads	
for	both	levels	of	sampling	intensity	(≥1	lists:	G	=	579.088,	p	<	.0001;	
≥10	lists:	G	=	1765.687,	p	<	.0001;	26	degrees	of	freedom).	For	sepa-
rate	biomes,	only	the	climate	zones	within	the	Albany	Thicket,	Fynbos,	
Indian	Ocean	Coastal	Belt,	and	Succulent	Karoo	were	evenly	repre-
sented	by	pentads	with	at	least	one	list,	whereas	only	the	Indian	Ocean	
Coastal	Belt’s	climate	zones	were	evenly	represented	by	pentads	with	
ten	lists	or	more	(Figures	3	and	5;	see	also	Fig.	S4	for	more	details).	
The	 climate	 zones	within	 the	Grassland,	 Indian	Ocean	Coastal	Belt,	
Fynbos,	and	Albany	Thicket,	and	the	wetter	zones	within	the	Savanna	
and	Succulent	Karoo	have	been	especially	well	 covered	 (more	 than	
70%	of	pentads	have	been	sampled	at	least	once),	with	a	substantial	
proportion	of	these	pentads	having	ten	or	more	lists	(Figures	3	and	5,	
Table	S4).	However,	 the	Nama	Karoo’s	climate	zones	and	the	driest	

F IGURE  2 We	defined	27	subsets	of	pentads	to	represent	
environmentally	distinct	zones.	First,	pentads	were	each	assigned	one	
of	the	seven	biomes	and	one	of	the	ten	climate	classes.	The	biome	
and	climate	classes	were	superimposed	to	form	several	climate	zones	
within	each	biome,	that	is,	altogether	43	environmental	subsets	
comprised	of	varying	numbers	of	pentads.	Finally,	the	climate	zones	
with	the	fewest	pentads	within	each	biome	were	pooled	(symbol	“+”	
indicates	pooled	subsets),	resulting	in	a	total	of	27	environmental	
zones.	IOCB	refers	to	the	Indian	Ocean	Coastal	Belt,	and	climate	
classes	range	from	hot	and	dry	at	“1”	to	moist	and	mild	at	“10.”	See	
the	main	text	and	Figs.	S1,	S2a	and	S3	for	more	details	on	how	
climate	classes	were	defined
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zones	of	the	Succulent	Karoo	and	Savanna	are	less	well	covered,	and	
a	negligible	number	of	these	pentads	(fewer	than	5%	of	pentads)	have	
ten	or	more	lists	(Figures	3	and	5).

The	 recorded	 species	 inventories	 for	most	of	 the	environmental	
zones	are	more	than	80%	complete	for	both	levels	of	sampling	inten-
sity,	 when	 comparing	 observed	 species	 richness	 to	 total	 estimated	
species	 richness	 given	 by	 the	 asymptote	 of	 the	 species	 accumula-
tion	 curves	 (Figures	4	 and	 S5,	 Table	S4).	 Environmental	 zones	were	
ranked	differently	 (Figures	5,	S4	and	S5)	when	considering	sampling	
completeness	 (i.e.,	 species	 accumulation	 curves)	 compared	 to	 sam-
pling	effort	(i.e.,	observed	vs.	expected	sampling	effort).	For	example,	
although	 the	arid	Savanna	Zone	 is	poorly	 sampled	 in	 terms	of	 sam-
pling	effort,	the	species	inventory	is	more	than	87%	complete	because	
fewer	species	occur	there	(Figures	3–5).	Conversely,	climate	zone	3	of	
the	Fynbos	biome	 is	well	 sampled;	however,	 its	species	 inventory	 is	
<72%	complete	(Figures	3–5).

4  | DISCUSSION

Volunteers	are	 indispensable	 to	 the	development	of	 species	atlases	
given	the	sheer	magnitude	of	 their	contributed	data	and	associated	
time,	labor,	and	costs	(Robertson	et	al.,	2010;	Tulloch	et	al.,	2013).	The	
second	Southern	African	Bird	Atlas	Project	covers	an	extensive	geo-
graphical	area,	with	large	amounts	of	data	especially	for	several	sub-
regions	that	are	of	special	concern	for	bird	diversity	and	conservation.	
However,	like	other	species	atlases	(e.g.,	Botts	et	al.,	2011;	Tulloch	&	
Szabo,	2012)	SABAP2	is	subject	to	pronounced	spatial	sampling	bias,	
due	 to	 purposefully	 focused	 sampling	 in	 regions	 of	 special	 concern	
and	due	to	the	preferences	of	volunteers	for	certain	sampling	sites.	
Here	we	explored	the	causes	and	consequences	of	spatial	variation	in	
sampling	effort,	and	we	discuss	current	trends,	strategies,	and	tools	to	
mitigate	bias	and	to	improve	the	data	accumulation	process	in	species	
distribution	atlases.

We	 found	 that	variation	 in	 sampling	 effort	 is	 generally	 best	 ex-
plained	by	amount	of	urban	area	and	protected	area,	and	by	the	prox-
imity	of	major	roads,	cities,	and	towns	known	for	ecotourism	(i.e.,	the	
“sampling	 hubs”).	These	 findings	 agree	with	 previous	 studies	 exam-
ining	variation	 in	sampling	effort,	 including	butterflies	 in	 the	 Iberian	
Peninsula	(Romo	et	al.,	2006),	frogs	in	South	Africa	(Botts	et	al.,	2011),	
and	birds	in	Australia	(Tulloch	et	al.,	2013).	In	the	current	study,	the	im-
portance	of	these	determinants	varied	among	the	provinces	(Table	1).	
For	example,	distance	to	nearest	major	road	 is	not	significant	 in	the	
Gauteng	4D	region,	probably	because	of	the	relatively	good	road	ac-
cess	 (Figure	1,	Tables	1	 and	 S1).	 In	 contrast,	 distance	 to	major	 road	
is	 important	in	the	Northern	Cape	Province	where	the	lack	of	major	
roads	could	restrict	the	movements	of	volunteers	 (Figure	1;	Tables	1	
and	S1).	Based	on	the	overall	results,	we	reason	that	many	volunteers	
are	 likely	 resident	 in	major	 cities	 and	 regularly	 conduct	 sampling	 in	
their	own	neighborhood	and	surroundings.	When	volunteers	sample	
some	distance	from	home,	they	prefer	easy	road	access	to	a	preferred	
destination	such	as	a	protected	area	or	ecotourism	town	where	they	
expect	 good	 birding	 opportunities.	 For	 the	 other	 southern	 African	T
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countries	that	we	have	not	examined	here,	most	areas	remain	unsam-
pled	and	sampling	appears	to	be	closely	linked	to	cities,	towns,	roads,.	
and	 other	 developed	 areas,	 or	 popular	 tourism	 destinations,	 more	
so	 than	 for	 South	 Africa	 (http://sabap2.adu.org.za/coverage.php,	 as	
viewed	on	31	May	2017).

Spatial	sampling	bias	affects	how	well	the	available	data	represent	
geographical	 and	 environmental	 space	 (Bird	 et	al.,	 2014).	We	 found	
that	 sampling	 coverage	 and	 intensity	 in	 current	 SABAP2	 data	 are	
unequal	 among	 a	 set	 of	 distinct	 environmental	 zones	 across	 South	
Africa,	 Lesotho,	 and	Swaziland.	 Large	arid	 zones	 tend	 to	be	charac-
terized	by	 low	sampling	effort,	unsampled	gaps,	and	a	small	propor-
tion	of	pentads	with	ten	or	more	lists.	Similar	patterns	were	reported	
for	other	species	distribution	datasets	 in	southern	Africa	 (e.g.,	 frogs,	
Botts	et	al.,	2011;	the	first	SABAP,	Harrison	&	Underhill,	1997;	plants,	
Robertson	&	Barker,	2006).	The	arid	zones	may	be	less	attractive	to	
volunteers	due	to	expected	low	species	richness	and	low	accessibility	
to	remote	locations	or	private	property	(e.g.,	the	mostly	arid	Northern	
Cape	Province,	Figure	1	and	Tables	1	and	S1;	Tulloch	et	al.,	2013).	In	

contrast,	wetter,	 milder	 environmental	 zones	 tend	 to	 coincide	with	
the	more	densely	populated	areas	of	South	Africa	and	have	therefore	
been	sampled	more	intensively,	with	a	greater	area	covered	and	larger	
proportion	of	repeatedly	sampled	pentads.	These	well-	sampled	zones	
also	tend	to	be	smaller	compared	to	the	arid	zones,	suggesting	a	higher	
turnover	 in	 environmental	 conditions	 across	 a	 smaller	 geographical	
area.	Therefore,	intensive	sampling	in	these	environmental	zones	may	
be	beneficial	and	necessary	to	detect	a	higher	species	 turnover	and	
higher	 overall	 species	 richness	 that	 is	 often	 linked	 to	 environmen-
tal	heterogeneity	 (Botts	et	al.,	2011;	Robertson	&	Barker,	2006;	Van	
Rensburg	et	al.,	2004).	This	 is	 supported	given	 that	zones	with	high	
species	 richness	and	 low	species	detectability	may	require	a	greater	
sampling	effort	(Figure	5;	Garrard,	Bekessy,	Mccarthy,	&	Wintle,	2008;	
Wintle,	Walshe,	Parris,	&	Mccarthy,	2012).

Survey	designs	contend	with	a	trade-	off	between	wider	coverage	
of	a	geographical	area	and	repeated	sampling	of	representative	sam-
pling	sites,	depending	on	the	objectives	and	the	amount	of	sampling	
effort	 possible.	 SABAP2	 currently	 comprises	 both	 wide-	coverage	

F IGURE  3 A	comparison	between	the	
total	number	of	pentads,	the	number	of	
pentads	that	had	been	sampled	at	least	
once,	and	the	number	of	pentads	sampled	
at	least	ten	times.	This	is	shown	for	distinct	
environmental	zones	(subsets	with	varying	
numbers	of	pentads)	comprising	seven	
biomes,	(a)	Albany	Thicket,	(b)	Fynbos,	 
(c)	Grassland,	(d)	Indian	Ocean	Coastal	
Belt,	(e)	Nama	Karoo,	(f)	Savanna,	and	
(g)	Succulent	Karoo,	subdivided	into	ten	
climate	zones,	with	the	smallest	zones	
concatenated.	At	each	biome,	we	indicate	
the	results	of	G-	tests	of	independence	
comparing	all	pentads	with	sampled	
pentads	among	the	climate	zones	within	
each	biome

http://sabap2.adu.org.za/coverage.php
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low-	intensity	 data	 and	 high-	intensity	 data	 from	 repeated	 sampling	
that	are	limited	to	certain	geographical	regions,	biomes,	and	climates.	
Spatial	 and	 environmental	 sampling	 bias	 may	 have	 several	 conse-
quences	in	terms	of	how	well	the	spatial	bias	can	be	mitigated	through	
data	processing,	how	statistical	and	modeling	techniques	may	be	af-
fected,	and	the	type	of	ecological	questions	that	can	be	adequately	ad-
dressed	(Bird	et	al.,	2014;	Guillera-	Arroita	et	al.,	2015;	Peterson	et	al.,	
1998).	Therefore,	researchers	and	conservation	planners	need	to	be	
aware	of	the	region-	specific	limitations	of	the	data.

An	 environmental	 bias	 may	 affect	 the	 accuracy	 of	 species	 dis-
tribution	 and	 occupancy	 models	 that	 rely	 on	 environmental	 back-
ground	 data	 (Araújo	 &	 Guisan,	 2006;	 Bird	 et	al.,	 2014;	 Bled	 et	al.,	
2013;	 Hernandez	 et	al.,	 2006;	 Phillips	 et	al.,	 2009).	Wide-	coverage	
low-	intensity	data	are	often	used	 in	broad-	scale	species	distribution	
modeling	(Guillera-	Arroita	et	al.,	2015).	In	addition,	some	species	may	
not	be	present	 in	the	proportion	of	geographical	and	environmental	
space	that	had	been	repeatedly	sampled,	although	they	are	 likely	to	
be	 observed	 through	 a	 wide-	coverage	 strategy	 covering	 a	 greater	
geographical	 area	 (Figure	4,	 Table	S4).	 However,	 repeated	 sampling	

increases	the	probability	of	detecting	the	species	that	are	present	(Gu	
&	Swihart,	2004).	Moreover,	sufficient	repeated	sampling	is	necessary	
to	model	the	observation	process	(occupancy	modeling),	obtain	abun-
dance	 estimates,	 and	 examine	 species	 range	 dynamics	 (Bled	 et	al.,	
2013;	 Broms	 et	al.,	 2016;	 Guillera-	Arroita	 et	al.,	 2015).	 Occupancy	
modeling	can	be	refined	with	information	about	species’	probability	of	
detection	(Guillera-	Arroita,	2017).	Therefore,	it	would	be	useful	to	ex-
amine	whether	variation	in	detectability	is	predictable	or	quantifiable	
(Gu	&	Swihart,	2004),	perhaps	depending	on	environmental	covariates	
(e.g.,	restricted	visibility	due	to	dense	vegetation)	or	species	traits	(e.g.,	
coexistence	of	 species	 that	 are	difficult	 to	 distinguish,	 or	 cryptic	 or	
nocturnal	species).

Spatial	 biases	 in	 sampling	 effort	 may	 affect	 the	 conservation	
decision-	making	process.	For	example,	sampling	bias	in	favor	of	regions	
with	 dense	 human	 populations	may	 exaggerate	 any	 existing	 broad-	
scale	positive	correlation	between	humans	and	bird	species	richness	
(Chown,	 Van	 Rensburg,	 Gaston,	 Rodrigues,	 &	 Van	 Jaarsveld,	 2003;	
Evans	et	al.,	2007;	Van	Rensburg	et	al.,	2004).	Consequently,	conser-
vation	planning	efforts	often	emphasize	areas	with	high	biodiversity	

F IGURE  4 A	comparison	of	observed,	
S(obs),	and	estimated,	S(est),	species	
richness	for	pentads	that	had	been	sampled	
at	least	once	and	at	least	ten	times.	
This	comparison	was	made	for	distinct	
environmental	zones	comprising	seven	
biomes,	(a)	Albany	Thicket,	(b)	Fynbos,	 
(c)	Grassland,	(d)	Indian	Ocean	Coastal	
Belt,	(e)	Nama	Karoo,	(f)	Savanna,	and	
(g)	Succulent	Karoo,	subdivided	into	ten	
climate	zones	(Fig.	S3).	Labels	indicate	the	
ratio	(as	percentage)	between	S(obs)	and	
S(est),	which	indicates	the	completeness	
of	the	species	inventory	for	each	
environmental	zone
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near	 human	 settlements	where	 there	 may	 be	 stronger	 competition	
between	conservation	goals	and	human	development,	while	neglect-
ing	poorly	sampled	remote	locations	that	may	have	high	conservation	
potential	 (Evans	et	al.,	2007).	Further,	an	 inability	to	account	for	the	
observation	process	could	confound	spatial	 changes	 in	 sampling	ef-
fort	with	species	range	changes,	in	turn	misrepresenting	the	species’	
conservation	 status	 (Broms,	 Johnson,	 Altwegg,	 &	 Conquest,	 2014;	
Guillera-	Arroita	et	al.,	2015;	Péron	&	Altwegg,	2015).

The	 current	 study	 focused	 on	 natural	 environmental	 variation;	
however,	 future	 studies	 could	 examine	 sampling	 bias	 among	 land	
cover	types.	For	example,	relatively	pristine	and	remote	environmental	
zones	might	be	underrepresented	if	data	are	mainly	collected	from	the	
transformed	areas	within	these	zones,	especially	 if	species	composi-
tion	 differs	 from	 the	 nearby	 natural	 environment	 (Dean,	Anderson,	
Milton,	&	Anderson,	2002).	For	SABAP2,	sampling	effort	 in	 the	arid	
zones	tends	to	be	close	to	human	settlements	and	along	roads	(e.g.,	
the	Northern	Cape	Province,	Table	1),	that	is,	habitats	that	are	atypical	
of	the	relatively	untransformed	arid	zones.	Over	the	past	few	decades,	

bird	species	such	as	pied	crows	(Corvus albus)	that	are	native	to	more	
mesic	areas	of	South	Africa	expanded	their	ranges	into	the	arid	areas,	
where	 they	 are	 associated	with	 transformed	 areas	 and	woody	 alien	
plants	 (Cunningham,	Madden,	 Barnard,	&	Amar,	 2016;	Dean,	 2000;	
Dean	&	Milton,	2003;	Macdonald,	1986;	Macdonald,	Richardson,	&	
Powrie,	1986).	Increasing	sampling	in	natural	habitat	may	address	this	
bias,	and	 it	may	be	helpful	 to	 incorporate	 land	use	as	a	covariate	 in	
species	distribution	models	(Thuiller,	Araújo,	&	Lavorel,	2004).

Recent	 developments	 in	 statistical	 methods	 provide	 many	 op-
tions	 for	 mitigating	 observation	 bias.	 However,	 ultimately,	 sampling	
bias	should	be	actively	monitored	and	addressed	in	all	new	or	existing	
species	distribution	atlases.	Wright	et	al.	(2015)	showed	that	SABAP2	
volunteers	are	motivated	by	experiencing	nature,	recreation,	personal	
growth,	and	the	opportunity	to	contribute	toward	research	and	con-
servation.	Communication	and	coordination	among	all	participants	are	
necessary	to	address	sampling	bias	without	sacrificing	volunteer	satis-
faction	and	contribution	(Bird	et	al.,	2014;	Sastre	&	Lobo,	2009).	Atlas	
organizers	play	an	essential	role	in	maintaining	volunteer	participation	

F IGURE  5 Environmental	zones	were	ranked	according	to	(1)	sampling	effort	(a	and	c),	that	is,	whether	the	zone	had	been	sampled	more	
or	less	than	expected	(number	of	lists	contributed,	see	figure	key)	given	the	size	of	the	zone	and	the	overall	number	of	lists	contributed	in	the	
study	area	(Fig.	S4)	and	(2)	sampling	completeness	(b	and	d),	that	is,	how	much	(percentage)	of	the	total	estimated	number	of	species	have	been	
observed	in	each	zone	(Fig.	S5).	Two	levels	of	sampling	intensity	were	considered,	namely,	at	least	one	list	contributed	per	pentad	(a	and	b)	and	
at	least	ten	lists	per	pentad	(c	and	d)
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by	organizing	a	variety	of	birding	events	and	challenges	and	supporting	
the	 online	 volunteer	 community	 (http://sabap2.adu.org.za).	 However,	
the	 link	between	volunteers	and	species	atlases	 is	becoming	increas-
ingly	automatic	and	interactive.	SABAP2	and	other	atlases	such	as	eBird	
(http://ebird.org)	link	the	online	record	submission	process	with	tools	to	
improve	data	accumulation	(Kelling	et	al.,	2013).	Doubtful	records,	such	
as	observing	a	bird	species	out	of	 its	known	range,	are	automatically	
flagged	during	the	submission	process	for	vetting	by	experts	(e.g.,	re-
gional	atlas	committees).	Online	submissions	are	automatically	linked	to	
sampling	effort	coverage	maps	on	the	atlas	Web	sites,	to	inform	volun-
teers’	future	sampling	efforts.	Species	atlases	and	other	citizen	science	
projects	benefit	from	increasingly	sophisticated	machine	learning	algo-
rithms	to	facilitate	the	interaction	between	databases	and	volunteers	
(Kelling	et	al.,	2013).	Additional	tools	can	be	added	to	enhance	the	data	
accumulation	 process.	 For	 example,	 for	 an	 environmentally	 stratified	
sampling	 protocol,	 occupancy	modeling	 could	 be	 applied	 to	 existing	
data	 to	model	 the	observation	 and	detection	processes	 and	 identify	
sampling	 sites	 to	 prioritize	 for	 additional	 sampling	 (Williams	 et	al.,	
2009).	 Further,	 spatially	 predictable	 volunteer	 preferences	 could	 be	
taken	into	account	when	creating	sampling	coverage	maps	to	encour-
age	volunteers	 to	visit	priority	 sampling	areas	 (current	 study,	Tulloch	
et	al.,	2013).	Thus,	species	atlasing	is	moving	toward	an	iterative	pro-
cess	whereby	current	data	 inform	future	priority	sampling	areas,	and	
data	accumulation	is	continually	improved	(Kelling	et	al.,	2013).
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