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A non-linear heart rate variability (HRV) index based on fractal correlation properties called

alpha1 of Detrended Fluctuation Analysis (DFA-alpha1), has been shown to change

with endurance exercise intensity. Its unique advantage is that it provides information

about current absolute exercise intensity without prior lactate or gas exchange testing.

Therefore, real-time assessment of this metric during field conditions using a wearable

monitoring device could directly provide a valuable exercise intensity distribution without

prior laboratory testing for different applied field settings in endurance sports. Until of

late no mobile based product could display DFA-alpha1 in real-time using off the shelf

consumer products. Recently an app designed for iOS and Android devices, HRV

Logger, was updated to assess DFA-alpha1 in real-time. This brief research report

illustrates the potential merits of real-time monitoring of this metric for the purposes of

aerobic threshold (AT) estimation and exercise intensity demarcation between low (zone

1) and moderate (zone 2) in a former Olympic triathlete. In a single-case feasibility study,

three practically relevant scenarios were successfully evaluated in cycling, (1) estimation

of a HRV threshold (HRVT) as an adequate proxy for AT using Kubios HRV software

via a typical cycling stage test, (2) estimation of the HRVT during real-time monitoring

using a cycling 6min stage test, (3) a simulated 1 h training ride with enforcement of low

intensity boundaries and real-time HRVT confirmation. This single-case field evaluation

illustrates the potential of an easy-to-use and low cost real-time estimation of the aerobic

threshold and exercise intensity distribution using fractal correlation properties of HRV.

Furthermore, this approachmay enhance the translation of science into endurance sports

practice for future real-world settings.
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INTRODUCTION

Endurance exercise and training incorporates a wide range of
intensity and duration, from several hours at low intensity to
brief high intensity intervals lasting several seconds. These efforts
are typically separated into three intensity zones delineated by
certain physiologic thresholds. The first zone boundary (zone 1–
2) is generally defined by the first lactate (LT1) or ventilatory
threshold (VT1) as an aerobic threshold (AT; Meyer et al., 2005;
Beneke et al., 2011; Hofmann and Tschakert, 2017; Bourgois
et al., 2019). The second zone transition (zone 2–3) is felt to
be related to concepts such as the second lactate threshold
(LT2), maximum lactate steady state (MLSS), second ventilatory
threshold (VT2) or respiratory compensation point (RCP) as an
anaerobic threshold (Bourgois et al., 2019). Accurate and easy
determinations of these thresholds would therefore be essential to
establish and compare the various training intensity distribution
strategies for fitness optimization and performance enhancement
(Seiler and Kjerland, 2006; Treff et al., 2019).

Studies have attempted to show both the advantages and
adverse consequences of time spent training at the various
zone ratios. As an example of showing the importance of high
volume and low intensity training, the volume of “easy runs”
done by competitive long-distance runners was related to future
performance more than the amount of high intensity training
(Casado et al., 2019; Emig and Peltonen, 2020). In addition, of
the various models that have been employed, such as polarized,
threshold or pyramidal training intensity distribution, all have a
common attribute, namely a large volume spent below the AT
(Seiler and Kjerland, 2006; Esteve-Lanao et al., 2007; Stöggl and
Sperlich, 2015, 2019; Bourgois et al., 2019). Although incremental
exercise tests with measurement of lactate concentration and/or
gas exchange are commonly done to define thresholds, the
different approaches do not lead to the same results (Chicharro
et al., 1997; Pallarés et al., 2016; Jamnick et al., 2020). In addition,
commonly used metrics for VT1 (i.e., heart rate, HR) could be
not accurate enough, e.g., in case of HR drift with dehydration
for example. Failure to have precise definition of these boundaries
could lead to undesirable training loads and unintentional
distribution within the different intensity zones. The physical
sequelae of even minimally exceeding a low intensity target may
include delayed cardiac parasympathetic recovery (Seiler et al.,
2007; Stanley et al., 2013), glycogen depletion (Beneke et al.,
2011), gastrointestinal barrier disruption (vanWijck et al., 2012),
along with more overall muscular and central fatigue (Noakes
et al., 2005; Venhorst et al., 2018). All of this could ultimately lead
to non-functional overreaching (Bourdon et al., 2017).

Given the complexities in easily defining markers for zone 1–
2 transition, the question arises whether there are alternatives
that could be derived via low cost, non-invasive, and commonly
available wearable devices. Therefore, various indexes of heart
rate variability (HRV; providing HR time series by RR-intervals)
resulting from time- and frequency-domain analysis have been
studied during dynamic exercise and have been shown to alter
as work rates increase, with the greatest change occurring
during lower intensities (Tulppo et al., 1996; Sandercock and
Brodie, 2006; Karapetian et al., 2008; Michael et al., 2017).

However, in response to the concern over loss of dynamic
range past moderate exercise intensity (Persson and Wagner,
1996; Tulppo et al., 2005), non-linear methods of HRV analysis
possess distinct advantages in providing new insights for training
intensity distribution from a holistic autonomic nervous system
perspective referred to as “physiological self-regulation” during
endurance-typed exercise (Gronwald et al., 2020).

Recently, a study by Rogers et al. (2021a) showed good
agreement between the exercise intensity reached at VT1 and
a particular numeric value of a non-linear HRV index based
on fractal correlation properties called alpha1 of Detrended
Fluctuation Analysis (DFA-alpha1; Gronwald and Hoos, 2020).
If we assume this relationship holds across a wide range of
demographic groups, how can we make use of this property
in day-to-day training and possibly support the translation of
science into real-world sports practice (Fullagar et al., 2019;
Coutts, 2020)? According to current data, as exercise intensity
rises, DFA-alpha1 declines from values of well above 1.0 (fractal
and well “correlated” patterns) during light exercise, passing 0.75
during the transition from low to moderate exercise intensities
around AT with further dropping to below 0.5 (“uncorrelated,”
random patterns) well beyond the AT (Gronwald et al., 2020).
As the rate of change per work rate elevation seems highest near
the AT and coincides with a DFA-alpha1 of 0.75 that delineates a
trade-off between fractal correlated properties and uncorrelated
randomness, this dimensionless index of overall physiological
demands (Gronwald et al., 2019) bears the potential to provide
real-world exercise intensity distribution without the need of an a
priori normalization procedure using gas exchange data or blood
lactate concentration. In other words, a DFA-alpha1 value below
0.75 during exercise would correspond to an intensity above
the AT without prior knowledge of power, relative heart rate,
blood lactate values, and ratings of perceived exertion (Jamnick
et al., 2020), providing an opportunity to monitor real-time
exercise intensity distribution for real-world endurance exercise
and training settings.

Although HRV software packages like Kubios HRV
(Tarvainen et al., 2014) can provide information of time
spent below or above the AT by analyzing the recorded beat-to-
beat patterns in RR-intervals from commonly worn HR monitor
chest belts, it would do so in retrospect. In contrast, real-time
monitoring of the DFA-alpha1 during an exercise session has
several important benefits to an “after the fact” approach.
These include:

• Information about global physiological demand and current
absolute exercise intensity without prior formal lactate or gas
exchange testing (e.g., exercise above or below the AT).

• Immediate estimation of HR/power output at AT using either
an exercise stage test or constant power intervals done by
cycling or running.

• Avoidance of post session data offload, processing, and
interpretation using software packages dedicated to
HRV analyses.

Recently, an app designed for iOS and Android devices, HRV
Logger was updated to monitor real-time DFA-alpha1 every
2min on screen while recording from commonly used HR
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monitors. Therefore, this single-case feasibility study aims to
illustrate the potential merits of real-time assessment of this
metric for the purposes of AT estimation as well as exercise
intensity distribution and stimulate the translation of science into
endurance sports practice for future real-world settings. It was
hypothesized that: (1) a conventional retrospective analysis of an
incremental cycling stage test performed by a former Olympic
triathlete using Kubios HRV software via the method of Rogers
et al. (2021a) yields a proxy of AT; (2) a cycling session using
a series of constant power intervals represents a technique for
real-world estimation of the AT based on DFA-alpha1 (HRVT)
using the app, HRVLogger; (3) an AT confirmation and polarized
training monitoring is possible in a typical 1 h cycling training
session also using the app.

METHODS

Participant
The participant was a former Olympic male triathlete (age 41,
height 181 cm, weight 71 kg) who was in good health with no
previous medical issues. Average training volume was 8 h per
week (over the last year) consisting of a mixture of both low,
moderate, and high intensity triathlon related training. As a
reference, LT1 power was measured at∼220W with HR at∼148
bpm based on recent incremental cycling stage lactate testing
(start: 100W, increment: 30W, stage duration: 4min). There
were no regular medications, no tobacco, alcohol, caffeine or
recreational drug use. The participant is an embedded sports
scientist for elite performance athletes in triathlon to bridge
the gap between sports science and coaching practice. The
participant was informed about the case study procedures and
objectives and provided written informed consent according
to the ethical guidelines in accordance to the institutional
review board and the guidelines of the Helsinki World Medical
Association Declaration.

Exercise Protocols
All three exercise protocols were performed with an interval of
1 week. Ambient temperature, meal timing, and cycling cadence
were similar across all test conditions.

a) Classic stage test

An incremental cycling stage test (start: 80W, increment:
20W, stage duration: 4min) until voluntary exhaustion
was performed with a Cyclus2 ergometer (RBM elektronik-
automation GmbH, Leipzig, Germany). Machine calibration was
done in accordance with manufacturer recommendations.

b) 6min stage test

An incremental cycling stage test (start: 160W, increment:
30W, stage duration: 6min) was performed on the same Cyclus2
ergometer as the conventional stage test, but was modified to
be applicable for road field tests by manually controlling power.
Since the HRV Logger app displays a DFA-alpha1 value every
2min, it was decided that constant power intervals start and end
at increments of 2min to optimally view data during elapsed
interval time. In this example, after a 20min warm up the

participant started the first stage of the test at exactly 20min with
the 160W stage (at a perceived “easy” level). At that point, a series
of 6min constant power intervals at 190, 220, and 250W were
performed with the test terminating at a submaximal intensity
level. Since the first 2min segment of the interval is not at a
metabolic steady state, the first 2min elapsed value of each stage
was discarded. For real-time estimation of HRVT, the values at 4
and 6min should be appropriate (Rogers, 2020). This progression
of cycling power was continued until DFA-alpha1 passed through
the 0.7 to 0.8 range which would signify the HRVT related
intensity (Gronwald et al., 2020; Rogers et al., 2021a). Since DFA-
alpha1 drops quickly past the AT, an additional stage higher is
recommended to confirm the previously measured HRVT.

c) 1 h training session

A 1 h simulated training ride was performed on the same
Cyclus2 ergometer, also applicable for road field tests bymanually
controlling power. Initially, a 30min free formwarm upwas done
at an intensity well below the AT. Then a series of three 6min
intervals at a cycling power corresponding to AT −20W, AT,
AT +20W were performed, each separated by 4min of active
recovery periods at a HR level of around 130 bpm.

RR Measurements and Calculation of
DFA-alpha1 Derived Threshold
A Polar H10 (Polar Electro Oy, Kempele, Finland) HR
monitoring device with a sample rate of 1000Hz was used to
detect RR-intervals in all sessions. The RR-interval data was
imported into Kubios HRV Software Version 3.4.3 (Biosignal
Analysis and Medical Imaging Group, Department of Physics,
University of Kuopio, Kuopio, Finland). Kubios preprocessing
settings were at the default values including the RR detrending
method which was kept at “Smoothn priors” (Lambda = 500;
Tarvainen et al., 2014). DFA-alpha1 window width was set to 4
≤ n ≤ 16 beats as in the original algorithm (Peng et al., 1995).
Since HRV Logger app uses a correction technique similar to
Kubios HRV medium threshold method, the RR-interval series
was then corrected by the Kubios “medium threshold” method
and relevant HRV parameters exported as text files for further
analysis. Artifact levels measured by Kubios HRV were below
5%. DFA-alpha1 was calculated from the RR-intervals using 2-
min time windows with repeat computation every 5 s throughout
the test (time-varying method – window width = 2min, grid
interval = 5 s). Two-minute time windowing was chosen based
on the calculations by Chen et al. (2002). For the detection of
HRVT, a DFA-alpha1 value of 0.75 was chosen based on previous
study in recreational athletes (Rogers et al., 2021a). This value is
also the midpoint between a fractal, well-correlated behavior of
the HR time series of 1.0 (seen with very light exercise intensity)
and an uncorrelated value of 0.5 which represents white noise,
random behavior (seen with high exercise intensity). Plotting of
DFA-alpha1 vs. HR was then performed (see Figure 1), generally
showing a sigmoidal decay curve with a stable area above 1.0
at low heart rates, a rapid, near linear drop reaching below
0.5 at higher heart rates and a probable flattening out close to
maximum values. Plotting of DFA-alpha1 vs. HR over the span
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FIGURE 1 | Time-varying results of DFA-alpha1 processed in Microsoft Excel with an equation for linear regression; DFA-alpha1 plotted against heart rate, the area of

linear drop of DFA-alpha1 from 1.0 to 0.5 is used to determine the HR at HRVT, here at 148 bpm.

of DFA-alpha1 values between 1.0 and 0.5 should produce a
relatively straight section. An equation for linear regression is
obtained thereby allowing calculation of HR when DFA-alpha1
equals 0.75. The resulting HR is the HRVT as heart rate. For
the calculation of cycling power at HRVT, an average of the 60 s
power centered at the timeDFA-alpha1 reaching 0.75 was chosen.

During both real-time assessment sessions, the recording of
RR-intervals and display of DFA-alpha1 was done with an iPhone
(via Bluetooth connection) using the HRV Logger app for iOS.
The app provides a native implementation of DFA-alpha1 in
Objective-C code. The implementation is also available as open-
source code in python onGitHub (see Supplementary Material).
App preferences were: “2min measurement windows” and
artifact correction was set to “workout mode” (similar to Kubios
HRV “threshold” method). In addition, HR time series data was
recorded simultaneously by a Garmin cycling computer (Edge
530, Garmin Ltd., Schaffhausen, Switzerland) with later Kubios
HRV software processing for the purpose of a direct comparison
to HRV Logger output.

RESULTS

a) Classic stage test: Baseline retrospective assessment of DFA-
alpha1 derived threshold HRVT

Retrospective calculation of HRVT from the conventional
stage test is presented in Figure 1 with HR yielding a value of 148

bpm. In addition, computation of HRVT as power was 214W.
The stage test was terminated at a power of 300 W.

b) 6min stage test: Real-time assessment of DFA-alpha1 derived
threshold HRVT

Progressive decline in DFA-alpha1 occurred with increasing
cycling power. DFA-alpha1 at 190W was just below, 220W
close to, and at 250W clearly above the HRVT as defined
by a value of 0.75 (see Figure 2). To verify the validity
of the app implementation, Figure 3 shows the comparison
of the HRV Logger data export and a posteriori raw data
evaluation of the Garmin.fit file via Kubios HRV processed in
MS Excel.

c) 1 h training session: Real-time assessment of exercise
intensity distribution

Average power for the 30min warm up period of the
1 h training session was 143W (65% of AT). The mean
power for the three 6min intervals were 208W (mean
HR: 146 bpm), 228W (mean HR: 151 bpm), and 248W
(mean HR: 156 bpm). The first interval, done at below AT,
displayed a DFA-alpha1 drop, but did not reach a value of
0.75 (0.83). The second interval, done at the AT associated
power, displayed a DFA-alpha1 about 0.75 (0.70) and the
final interval, done at above the AT related power, was well
below 0.75 (0.60, see Figure 4). Figure 5 shows the comparison
of the HRV Logger data export and a posteriori raw data
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FIGURE 2 | History view of the incremental 6min stage test from 160 to 250W and included values (left: DFA-alpha1 with power values, right: HR); DFA-alpha1

values displayed in white are the average of the two data points taken at 4 and 6min.

evaluation of the Garmin.fit file via Kubios HRV processed in
MS Excel.

DISCUSSION

The aim of this report was to demonstrate the potential
advantages of real-time assessment of DFA-alpha1 by an
inexpensive combination of readily available consumer grade
products. Although not a formal validation study, the results
presented here show reasonable clinical agreement between
conventional retrospective calculation of the HRVT derived
through Kubios HRV software to that of a real-time app, HRV
logger in terms of power and heart rate. Results obtained by
actively observing the DFA-alpha1 over sequential 6min constant
power intervals were easily understood by the participant and
could be adapted to a purely field based test. Both power and

HR at the intensity equaling DFA-alpha1 = 0.75 were similar in
both the 6min interval assessment as well as during the 1 h free
form session showing the reliability of thismetric. In addition, the
recorded values fit well with the reference values of LT1 power
at ∼220W with HR at ∼148 bpm based on recent incremental
cycling stage lactate testing. Since DFA-alpha1 is a dimensionless
measure already normalized to an individual’s internal load and
low intensity boundary, the free form session itself could be
used to estimate the AT as well as enforce an exercise intensity
distribution plan.

Our intent was to outline a methodologic approach for
future validation as well as illustrate the practical use of DFA-
alpha1 to monitor internal exercise load in real-time athletic
training settings providing translation of science into real-
world practice (Fullagar et al., 2019; Coutts, 2020). In addition,
since DFA-alpha1 is an index of physiological system demands
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FIGURE 3 | Comparison of DFA-alpha1 of the HRV Logger data export (2min segments non-overlapped) and the raw data evaluation of the Garmin fit. file via Kubios

HRV premium software (time-varying method, window width = 2min, grid interval = 5 s) throughout the 6 min stage test.

it could provide further information as a global parameter
for homeodynamic regulation and network physiology during
endurance exercise (Balagué et al., 2020; Gronwald et al.,
2020). Immediate feedback of current internal load before
metabolic demand exceeds desired levels has obvious application
to enforcement of the low intensity portion of a polarized
or pyramidal training approach. In addition, zone boundaries
may change due to seasonal factors (peaking and detraining),
as well as current altitude level, temperature, humidity, and
hydration status. As high volumes of low intensity training
have been deemed critical for successful endurance performance,
assessment of current physiological demands by DFA-alpha1
to assure compliance with the intended exercise zone 1 would
be advantageous. Hence, DFA-alpha1 behavior during cycling
activity in a former Olympic triathlete adds practical value to
the previously validated concept of the HRVT in recreational
runners (Rogers et al., 2021a). Hence, the provided approach can
be considered as an original concept within the context of the
theoretical systems dynamics framework in regard of different
physiological regulation pattern (Gronwald et al., 2020), without
the need for a priori normalization to gas exchange or blood
lactate concentration (Jamnick et al., 2020). So even without
prior knowledge of power, relative heart rate, blood lactate
values, and ratings of perceived exertion, the real-time DFA-
alpha1 approach provides an opportunity to monitor exercise
intensity distribution in endurance-typed exercise and training.
In addition, from the coaching perspective, the participant felt

real-time assessment of DFA-alpha1 information could help in
restricting training intensity to an intended zone 1 only session.

Another advantage of this approach is the avoidance of
post training session data offload and processing. Adherence
to a prescribed exercise intensity intervention would be made
substantially easier without the time and effort needed to
extract the relevant data through software such as Kubios
HRV. Additionally, Kubios HRV requires a sizeable hardware
footprint (4 GB of RAM, 3–5 GB of disk space, screen
resolution of 1024×768 or higher, and the MATLAB Runtime
installation) that may be an issue for many potential users.
Although current smartwatch computational capability may
not be sufficiently powerful enough for non-linear HRV
processing, one could envision a custom smartphone app able
to capture RR-intervals, appropriately process and present DFA-
alpha1 on screen, as well as transmit the information to a
smartwatch display.

LIMITATIONS AND FUTURE DIRECTIONS

Several issues could limit the application of this method to
a broader population. The primary validation study for DFA-
alpha1 as an AT surrogate was done in recreational male runners,
making further investigation into other sports (e.g., cycling,
XC ski, swimming, rowing) as well as with female participants
necessary. Furthermore, DFA-alpha1 value derivation from the
provided code has not been compared to that of Kubios software.
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FIGURE 4 | History view of the 1 h training session and included values (left: DFA-alpha1 with power values, right: HR); I: 6min interval, B: HR based active recovery

period; DFA-alpha1 values displayed in white are the average of the two data points taken at 4 and 6min.

Both preprocessing such as detrending method and artifact
correction modalities are implemented slightly differently and
could lead to potential bias. HRV missed beat artifact is common
with moderate to high exercise intensity. Although we have
shown that artifact rates below 5% when corrected by Kubios

HRV should not have a significant effect on the HRVT (Rogers
et al., 2021b), the HRV Logger app has not had similar validation

but provides information about the current artifact rate in the
latest version. Rogers et al. (2021b) has shown that uncorrelated
DFA-alpha1 (0.5) is falsely elevated by artifact levels at 6%,
potentially leading to under estimating intensity information.
As opposed to a desktop PC implementation where a “grid
interval” of 5 s is possible, the app is only able to provide a DFA-
alpha1 value every 2min, limiting a more granular estimation of
DFA-alpha1 over time.

SUMMARY OF PRACTICAL
RECOMMENDATIONS FOR ENDURANCE
EXERCISE AND TRAINING

Based on the first validation study (Rogers et al., 2021a) of HRVT
as well as one of artifact (correction) and device bias on DFA-
alpha1 and HRVT (Rogers et al., 2021b) it is recommended
to use a chest belt HR monitoring device such as a Polar H
series with a sample rate of 1000Hz. Retrospective approaches
to determining the HRVT rely upon recording the RR-intervals
with either a smartwatch, smartphone, or direct download from
the HRmonitor. For the retrospective analysis the HR time series
should then be imported into a HRV software package such as
Kubios HRV (Tarvainen et al., 2014) with the above mentioned
preprocessing settings and recording recommendations. In
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FIGURE 5 | Comparison of DFA-alpha1 of the HRV Logger data export (2 min segments non-overlapped) and the raw data evaluation of the Garmin fit. file via Kubios

HRV premium software (time-varying method, window width = 2min, grid interval = 5 s) throughout the 1 h training session.

regards to artifact correction via Kubios HRV software, either
medium threshold or automatic mode is recommended (which is
only available in the premium version). Although only available
in the Premium version of Kubios HRV, 2min time windows with
repeat computation every 5 s throughout the test (time-varying
method – window width = 2min, grid interval = 5 s) is helpful
for DFA-alpha1 visualization over time. For those with the free,
standard version, 2min measurement windows are still used but
can be overlapped every 30 s to provide a more granular output
of values. Although the premium version allows a direct text file
download of all time-varying outputs, hand copying of pertinent
values will need to be done with the standard version. Regarding
artifact occurrence, it is recommended to reject data containing
more than 5% artifact based on the previous investigation of the
effects of missed beat artifact on the HRVT (Rogers et al., 2021b).
Despite the implementation of artifact correction, it may be
helpful to visually inspect the entire test recording in KubiosHRV
to determine sample quality, and arrhythmia. For example, atrial
ectopy could lead to significant deviation of DFA-alpha1 values.
Additionally, regarding DFA-alpha1 assessment via HRV Logger
app, we recommend using 2min measuring window length with
the artifact correction method in “workout mode.”

CONCLUSIONS

Real-time monitoring of DFA-alpha1, a non-linear HRV index
based on fractal correlation properties shows great potential

for field assessment of the aerobic threshold with commonly
available consumer products using the app, HRV Logger. In
addition, since no normalization to conventional lactate or
gas exchange markers is required, DFA-alpha1 behavior during
endurance exercise can be used as a tool to specify intensity
distribution at the zone 1–2 transition in a 3 zone model
for the purpose of different training paradigms (e.g., polarized
training). Immediate exercise intensity assessment has the
important advantage of constraining a low intensity training
zone before limits are exceeded. In addition, both post session
processing time and software logistics are eliminated. This
case report will hopefully encourage manufacturers of athletic
oriented smart devices to include this functionality in their
upcoming products.
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