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Abstract

Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are essential for
embryonic development and also important in cancer progression. In a conventional model, epithelial-like cancer
cells transit to mesenchymal-like tumor cells with great motility via EMT transcription factors; these mesenchymal-
like cells migrate through the circulation system, relocate to a suitable site and then convert back to an epithelial-like
phenotype to regenerate the tumor. However, recent findings challenge this conventional model and support the
existence of a stable hybrid epithelial/mesenchymal (E/M) tumor population. Hybrid E/M tumor cells exhibit both
epithelial and mesenchymal properties, possess great metastatic and tumorigenic capacity and are associated with
poorer patient prognosis. The hybrid E/M model and associated regulatory networks represent a conceptual change
regarding tumor metastasis and organ colonization. It may lead to the development of novel treatment strategies to
ultimately stop cancer progression and improve disease-free survival.
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Introduction

Metastasis is a process through which cancer cells
dissociate from the primary tumor site, invade the
surrounding tissue, hijack the circulation as a means of
transport, and ultimately reconstitute the tumor at a
secondary site. This process constitutes over 90% of
cancer-associated deaths despite significant advances in
cancer treatment[1]. Epithelial-mesenchymal transition
(EMT) is critical during embryo development and
organogenesis. Aberrant activation of EMT is thought

to promote tumor dissociation, migration, and cancer
stem cell enrichment in multiple forms of cancer[2–5].
These mesenchymal-like tumor cells migrate from the
tumor front, through the basement membrane and into
circulation where they are referred to as circulating
tumor cells (CTCs)[6]. A small number of CTCs display
cancer stem cell (CSC) features such as immune
evasion, invasiveness, tumorigenicity, and resistance
to different treatments[7]. Once the CSCs reach a
suitable secondary tumor site, they undergo a reverse
process, mesenchymal-epithelial transition (MET),
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halting migration and allowing reconstitution of tumor
at the secondary site (Fig. 1A)[10-11].
This classic and simplified view of metastasis, during

past several decades, has geared research toward
targeting the migrating mesenchymal cancer cells[12–17].
However, controversy has surrounded this model[18–22]

which does not take into consideration of cellular

plasticity, the tumorigenicity of epithelial cells, the full
extent of tumor niches involved in EMT induction, the
possibility of co-migration of both epithelial and
mesenchymal cells, and hybrid epithelial-mesenchymal
(E/M) tumor cells (Fig. 1B). By addressing these
deficiencies, a new model may lead to novel strategies
to treat cancer metastasis and progression.

Fig. 1 Schematic diagram of hybrid E/M and classical EMT/MET CSCs. (A) The classic EMT/MET model of metastasis which was
coined in 1976 [8]. Mesenchymal cancer cells including CSCs are transformed from epithelial state through an EMT process. They then migrate
outside the primary tumor, pass through the basement membrane and enter circulation. When mesenchymal CSCs reach a suitable secondary site
prior to development of a new tumor, they undergo MET to regain an epithelial phenotype for tumor development. (B) The hybrid E/M theory
was first succinctly formulated in 2006 [9]. These hybrid cancer cells including CSCs migrate from the primary tumor alone or in clusters together
with epithelial or mesenchymal tumor CSCs by crossing the basement membrane to enter the circulation system and then relocate to a suitable
secondary tumor site. Secondary tumor may develop from the hybrid E/M CSCs, epithelial tumor CSCs present in the cluster or mesenchymal
CSCs that undergo MET.
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A general overview of classical EMT/MET
and their regulators

The classical EMT process in cancer encompasses the
gradual remodeling of epithelial-like tumor cells toward
a mesenchymal-like phenotype. Mesenchymal traits
include the repression of epithelial markers, enrichment
of mesenchymal markers, enrichment of the CD44high/
CD24low CSC population, absence of cellular polarity
due to the re-arrangement of actin cytoskeleton and re-
distribution of adhesion molecules, individualistic
migration, and resistance to apoptosis[23–28]. Epithelial
traits, on the other hand, are opposite to the mesench-
ymal traits and exhibit some additional features such as
enriched ALDH+ CSC subpopulation and collective
migration[29–31].
In literature, EMT is commonly characterized by

decreased E-cadherin expression. E-cadherin binds to
neighboring cadherins through its extracellular domain,
mediating cell-cell adhesion, preventing tumor cell
migration and in vivo dissemination/invasiveness[32-33].
The intracellular domain of E-cadherin binds to β-
Catenin (an effector of Wnt signaling), preventing the
nuclear translocation of β-catenin and β-catenin/T cell
factor (TCF)-mediated transactivation, impeding Wnt
signaling and acquisition of mesenchymal traits[34-35].
In addition to E-cadherin repression, the mesenchymal
markers vimentin and N-cadherin are upregulated and
EMT transcription factors (EMT-TF), such as SNAIL,
SLUG, ZEB and TWIST are also upregulated. These
transcription factors inhibit the epithelial phenotypes of
the tumor cells while promoting acquisition of the
mesenchymal phenotype through a plethora of incom-
pletely defined mechanisms, including microRNA net-
works[36], protein stabilization[37], gene expression[38],
epigenetic/chromatin modification[39] and long non-
coding RNA regulation[40]. SNAIL and SLUG both
inhibit E-cadherin expression, promoting β-catenin
nuclear translocation and subsequent Wnt pathway
upregulation[41-42]. In addition, they promote the
formation of the β-catenin–TCF4 transcription complex
which binds to the TGF-β3 gene promoter and
promoting its expression which in turn further stimu-
lates Wnt signaling through LEF1 gene expression,
ultimately enhancing acquisition of mesenchymal
traits[43-44]. TGF-β signaling also stimulates zinc finger
E-box binding homeobox 1 and 2 (ZEB1 and ZEB2)
which bind to phosphorylated receptor-activated
Smads[45] and various transcription factors as well as
histone acetyltransferases such as p300 and p/CAF,
leading to epigenetic modification of gene expres-
sion[46]. Similarly, TWIST affects a large number of
transcriptional processes, overrides oncogene-induced

senescence and represses E-cadherin while promoting
N-cadherin expression[47-48]. TWIST is notably acti-
vated through hypoxia-inducible factor 1α under
intratumoral hypoxic conditions[49], a trait associated
with chemotherapy resistance[50]. These EMT-TFs may
work together through overlapping and distinct mole-
cular mechanisms to regulate a complex network in
tumor cells to control epithelial versus mesenchymal
plasticity.
In addition, various biologic processes such as

inflammation within the tumor microenvironment
mediate EMT. When breast epithelial cells, adjacent to
the tumor, were exposed to inflammatory cytokines
tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-
1β) for 2-3 weeks, ZEB1 and SNAIL (two major EMT
transcription factors) were significantly upregulated[51].
The exposed breast epithelial cells then displayed
upregulated matrix metalloproteinases (MMPs, capable
of degrading the basement membrane to facilitate tumor
cell migration)[52-53] and increased migratory/invasive
capabilities, suggesting that tumor microenvironment
influences plasticity and tumor cell dissemination by
promoting EMT[51].
More recently, mesenchymal stem cells (MSC) from

human adipose tissue have been shown to produce
soluble factors after exposure to interferon-g (IFN-g) or
TNF-α to enhance the malignancy of the MCF-7 breast
cancer cells and shift the cells toward a mesenchymal
phenotype with increased migration capacity, enhanced
vimentin expression and decreased E-cadherin expres-
sion[54].
It has been found that bacteria can influence the tumor

microenvironment and promote EMT. When gastric
cancer cells were exposed to H. pylori-infected MSC
supernatant enriched with IL-6 (interleukin-6), IL-8 and
platelet-derived growth factor-β cytokines, a mesench-
ymal phenotype was induced, characterized by
increased migration, N-cadherin and vimentin expres-
sion while decreased E-cadherin expression[55].
Paracrine/autocrine signaling within the tumor in

response to chemotherapy has also been associated with
EMT promotion. IL-6, IL-8 and monocyte chemoat-
tractant protein-1 (MCP-1) cytokines along with NF-
kB/IkBa and STAT3 (Signal transducer and activator of
transcription 3) were found to be upregulated in triple
negative breast cancer cells after exposure to commonly
prescribed chemotherapeutics, leading to upregulation
of stem cell-associated gene and protein expression,
enrichment of CD44high/CD24low cancer stem-like cells,
and enhanced tumorigenicity in nude mice[56].
Together, identification of signaling pathways and

factors capable of regulating EMT has been the focus of
considerable research during the past several decades in
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hopes that through prevention of EMT-mediated
migration, tumor metastasis would have been
halted[12–17].

From classical EMT/MET to the hybrid
EMT/MET model

There is a plethora of literature in regards to EMT,
tumor dissemination and migration through the sur-
rounding tissue into the bloodstream and other organs.
However, proof of MET at a metastatic site from a re-
localized mesenchymal CTC has not yet been proved,
challenging the classical EMT/MET theory regarding
mesenchymal to epithelial conversion in the secondary
tumor site[57]. Additional arguments against classical
EMT theory in metastasis and clinical applicability are
the methodologies used and data generated from
transgenic mice[58], xenograft implantation[59], and in
vitro petri dish work[59]. These experimental results are
seemingly incompatible with pathological observations
obtained from patients’ tissues[60]. Some tumors even
exhibit opposite characteristics based on EMT/MET
markers. For instance, in prostate cancer, secondary
tumors with highly metastatic potential were found to
possess a glandular appearance indicative of epithelial
morphology[61]. A similar phenotype is displayed in
ovarian cancer which possesses elevated E-cadherin
expression and an epithelial phenotype yet is highly
metastatic[62–65].
To tackle the clinical applicability of EMT, lineage

tracing is required. Recent reports addressed this issue
by generating a mesenchymal promoter (vimentin or
fibroblast specific protein-1)-induced Cre-mediated
fluorescent marker in breast and lung cancer[21]. The
cells would irreversibly gain fluorescence in vivo upon
induction of a mesenchymal phenotype through EMT.
The mice spawned breast adenocarcinoma, which
predominantly exhibited an epithelial phenotype based
on E-cadherin expression and lacked vimentin and
fluorescence expression. Lung metastasis developed
spontaneously in the mouse models, which exhibited no
change in fluorescence, indicating the same epithelial
phenotype within the secondary tumor (confirmed via
E-cadherin upregulation and vimentin repression),
demonstrating that tumor cells did not activate the
mesenchymal-specific promoter or undergo EMT dur-
ing metastasis[21].
Additionally, another study developed a genetically

engineered mouse model to delete SNAIL or TWIST
through Cre-mediation in pancreatic ductal adenocarci-
noma (PDAC)[22]. Significantly, this deletion supressed
ZEB2 and enhanced E-cadherin expression in PDAC.
Lineage tracing by determining the amount of yellow

fluorescent protein-tagged CTCs in the control versus
SNAIL or TWIST-deletion groups showed that tumor-
forming potential and metastatic capacity were not
affected. These results indicate that suppression of
EMT-TF in PDAC mouse models did not impede tumor
invasion, metastasis or dissemination when tumor cells
exhibit an epithelial phenotype[22].
The aforementioned studies challenge the classical

EMT model in metastasis and tumor dissemination,
suggesting that EMT does not correlate with tumor
dissemination and metastasis and that tumor cells with
epithelial phenotypes expressing high level of E-
cadherin can undergo metastasis and form secondary
tumors. Although these studies use one or two core
EMT related genes or EMT-TF and possibly simplify
EMT processes, the findings support an incomplete,
partial or hybrid EMT model to explain metastasis
without losing epithelial properties and the formation of
secondary tumor without interconvertible epithelial to
mesenchymal transitions.

Hybrid E/M and clinical relevance

EMT is currently characterized according to the
upregulated mesenchymal and repressed epithelial
markers in combination with functional tests for tumor
cell migration and dissemination. It is assumed that cells
undergoing EMT completely switch from the epithelial
to the mesenchymal phenotypes. Increasing experi-
mental evidence, however, suggests that this switch is
not a single binary decision, but rather proceeds along a
spectrum, allowing for cells to express partial epithelial
and mesenchymal (E/M) phenotypes and possess both
E/M functionality[65–67].
Indeed, hybrid E/M states (i.e. exhibiting both

epithelial and mesenchymal characteristics) have been
observed in breast, brain, lung, renal, prostate and
pancreatic cancers[67–72]. Moreover, the hybrid E/M
tumor cells display elevated CSC properties and
patients show poor survival in comparison to EMT or
MET phenotypes, possibly through synergy between
adhesion, proliferation and migration in the E/M
state[66]. In breast, prostate and lung cancer patients,
CTCs with E/M markers were found to migrate into
blood as clusters[73–76]. This collective migration would
reduce anoikis and increase the chances of successful
migration to a suitable secondary tumor location[77].
These attributes may explain why clustered CTCs
exhibit a 50-fold increase in metastatic potential[78].
Hence, a better understanding of E/M properties may be
key to development of an effective therapeutic strategy
to control metastasis and disease relapse (Fig. 1B).
Literature, however, has put the stability of the hybrid
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E/M tumor phenotype into question. Are these E/M
tumor cells stable or is hybrid E/M tumor phenotype a
fluctuating transition? Previously, E/M tumor cells were
considered metastable and incapable of maintaining
their E/M properties. The hybrid phenotype was thought
merely a placeholder along the pathway of complete
EMT or MET conversion. Recently, studies using
prostate, lung and breast cancer have illustrated that
this duel E/M phenotype, mediated through OVOL
(OVO-like proteins) transcription, can be maintained
for the extended periods of time[79-80]. OVOL are a
series of transcription factors (originally found through
mathematical models) which play a critical role in
maintaining the E/M prostate CTCs through regulation
of the miR-200/ZEB and miR-34/SNAIL pathways.
OVOL expression led to decreased EMT signaling
induced by factors such as TGF-β, and promoted a
stable shift toward the epithelial and hybrid E/M
phenotype[79].
Additional mathematical modeling has identified that

GRHL2 and miR-145 can also stabilize the hybrid E/M
phenotype[80]. Hybrid E/M lung cancer cells were able
to be maintained through GRHL2, OVOL2 and miR-
145 expression that act as stabilizing factors to inhibit
themselves and the ZEB/miR-200 network. Knocking
down miR-145 or GRHL2 led to destabilization of the
E/M phenotype, driving the cells toward complete EMT
induced by SNAIL[80].

Other reports have also emphasized the importance of
the miR-34/SNAIL and the miR-200/ZEB regulatory
networks[81]. Mechanistic modeling has shown that
SNAIL is able to inhibit miR-200 while ZEB is able to
inhibit miR-34. As such, miR-34/SNAIL activation
drives ZEB expression while inhibiting miR-200 leads
to three states: high miR-200/low ZEB, low miR-200/
high ZEB or medium miR-200/medium ZEB[81]. These
states are associated with epithelial, mesenchymal or
hybrid phenotypes, respectively. E/M stabilizing factors
OVOL, GRHL2 and miR-145 couple with this network,
prevent ZEB signaling and promote miR-200, which
inhibits complete EMT while pushing cells toward an
epithelial and hybrid E/M phenotype[79–81].
Signaling pathways also affect the balance of miR-

200/ZEB. For instance, NF-kB drives the LIN28/let-7
axis[82] and LIN28 inhibits let-7 which in turn inhibits
ZEB[82], whereas Let-7 and miR-200 inhibit LIN-28
and bridge two networks[82]. It has been found that low
LIN-28 and high let-7 correlated with an epithelial
phenotype while high LIN-28 mediated Let-7 inhibition
and pushed cells toward a mesenchymal phenotype[82].
The hybrid E/M phenotype displayed intermediate
expression of LIN28 and let-7[82]. Additionally, the
LIN-28/let-7 axis regulates stemness through OCT4
expression[83]. An outline of hybrid E/M signaling and
stemness acquisition is depicted in Fig. 2.
Further studies have shown that the acquisition of

Fig. 2 A schematic diagram of hybrid E/M signaling and stemness acquisition. The acquisition of mesenchymal traits is associated with
increased ZEB signaling. ZEB feed-forwarding signaling inhibits miR-200 and leads to the expression of mesenchymal markers such as N-
cadherin and vimentin while repressing epithelial associated markers such as E-cadherin. Snail upregulates ZEB while inhibiting miR-34. In
addition, Snail is stimulated by many signaling pathways including NF-kb, Wnt, c-Myc and HIF1-α. LIN-28 is also associated with the
acquisition of mesenchymal traits. LIN-28 inhibits Let-7, increasing ZEB expression while also promoting OCT-4 and enhancing stemness. The
acquisition of epithelial traits is associated with high levels of miR-200 and miR-34 which repress ZEB and Snail, respectively. MiR-200 also
represses LIN-28 signaling, promoting Let-7 expression to further repress ZEB and promote OCT-4 and other stemness feature. Additionally,
miR-200 inhibits LIN-28 to increase Let-7 expression, ultimately repressing mesenchymal while promoting epithelial phenotypes. The hybrid E/
M phenotype is associated with intermediate signaling between miR-200/ZEB, miR-34/Snail and Let-7/LIN28 axes, which is associated with
intermediate OCT-4 expression and the greatest stemness potential. OVOL, GRHL2, and miR-145 are hybrid E/M modulators, stabilizing the
hybrid E/M phenotype, inhibiting ZEB signaling and complete EMT. These stabilizers also promote hybrid E/M stemness.
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stemness can be modulated in mesenchymal, epithelial
and hybrid E/M. For instance, OVOL enhanced hybrid
E/M stemness while reducing mesenchymal stem-
ness[82]. On the contrary, OVOL repression exerted an
opposite effect, enhancing mesenchymal while dimin-
ishing epithelial and hybrid E/M stemness[82-83]. It
would be interesting to determine whether or not the
Wnt, Akt, YAP, and/or other signaling pathways, known
in EMT/MET regulation and stemness, are involved in
the miR-200/ZEB and/or LIN28/let-7 axis and asso-
ciated with hybrid E/M formation, and/or involved in
acquisition of stemness properties.

Investigation of hybrid E/M with improved
methodologies

Studying hybrid E/M cancer cells proves to be
challenging since these cells possess both epithelial and
mesenchymal markers and functions. In vitro cell
culture may produce inconsistent results due to artificial
selection of monoculture from thriving cell sublines.
Moreover, lack of microenvironment, extracellular
matrix and three dimensions add to the discrepancy
between in vitro and in vivo results. However, advances
in the development of in vitro 3D cell culture systems
have led to new discoveries in regards to cancer cell
plasticity between epithelial, mesenchymal, and hybrid
E/M states.
Recently, coculture of mammary EpH4 epithelial

cells with a bio-engineered 3D matrix composed of
solid alginate hydrogel with adhesive RGD (Arg-Gly-
Asp) peptides replicated a 3D microenvironment,
leading to normal epithelial morphogenesis and produ-
cing acini-like structures, native to mammary tissue[84].
TGFβ1 was then used to promote EMT where
mesenchymal cells were generated, but upon removal
of TGFβ1, the cells switched to the hybrid E/M
phenotype instead of an epithelial state. Notably, these
hybrid cells displayed increased proliferative and
tumorigenic capabilities and an aggressive pheno-
type[84].
The usage of microfluidic coculture systems for

tumor microenvironment emulation has also been
demonstrated to be an effective methodology for
analysis of epithelial/mesenchymal/hybrid traits[85–88].
This platform can analyze cancer cells in an extra-
cellular matrix and assess proliferation, dissemination
and migration in real time. Activators/repressors can be
introduced into the coculture system to stimulate
epithelial or mesenchymal phenotypes, and thus enable
cellular communication to mimic in vivo processes.
With further innovation, this system may be invaluable
for further investigation of epithelial/mesenchymal and

hybrid E/M characters in real time using lineage tracing
with promoter-induced fluorescent proteins as described
above.
Marker analysis may also be a useful tool for hybrid

E/M research. Besides the dual epithelial and mesench-
ymal gene and protein expression, P-cadherin has been
gaining traction as a hybrid E/M marker[80,89-90]. P-
cadherin is associated with poor prognosis in breast,
oral squamous, bladder, pancreatic and ovarian
cancers[91–95]. It interferes with epithelial adhesion
and promotes migration and metastasis through MMP
upregulation, cell polarization, CDC42 (cell division
control protein 42 homolog) activation, and its own
cleavage[89-90,96-97]. Importantly, P-cadherin-promoted
migration is through collective but not individual cell
movement in both epithelial and mesenchymal cancer
cells, mimicking the hybrid E/M phenotype[80,89-90].
CD44high/CD24low/ALDHhigh markers may also be

employed for the identification of hybrid E/M CSCs.
CD44high/CD24low subpopulation are commonly enrich-
ed in mesenchymal-like cancer cells while ALDHhigh is
enriched in epithelial-like cancer cells[98-99]. It has been
shown in vivo in breast cancer that the ALDHhigh

subpopulation resides internally while the CD44high/
CD24low tumor population lies at the tumor edge and is
prone for tumor dissemination and metastasis[30]. The
CD44high/CD24low/ALDHhigh subpopulation in multiple
breast cancer cell lines exhibited the enhanced prolif-
erative, tumorigenic, migration, adhesive and metastatic
potentials both in vitro and in vivo[30,100–102]. Moreover,
the CD44high/CD24low/ALDHhigh subpopulation is able
to generate tumors with as few as 20 cells[101]. This is
consistent with the clinical data where ALDHhigh/
CD44high is frequently found in patients with breast
cancer and associated with increased tumor growth,
disease progression, metastasis, and worsened prog-
nosis despite radiotherapy, endocrine therapy, or
chemotherapy[101,103-104]. From the current literature,
it seems that the CD44high/CD24low/ALDHhigh may be
used for the detection of hybrid E/M CSCs.
In conclusion, while much progress has been made,

targeting either epithelial or mesenchymal cancer cells
seems insufficient due to cancer cell plasticity and the
existence of hybrid E/M phenotype. Targeting both bulk
and CSC subpopulations of epithelial, mesenchymal
and hybrid E/M may be crucial for the development of
clinically viable treatments to reduce resistance, relapse
and metastasis.
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