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Abstract: Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitu-

mor effects on various human cancers, but the effects of nano-HAPs on human glioma cells 

remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on 

the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could 

inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according 

to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L 

nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst 

staining and transmission electron microscopy. The tumor growth of cells was inhibited after the 

injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug 

combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, 

Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein 

decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action 

and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they 

can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-

chloroethyl)-1-nitrosourea (BCNU).
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Introduction
Glioma is the most common, and the primary, malignant brain tumor of the central 

nervous system. In recent years, great progress has been made in diagnosing and 

treating glioma, but its recurrence after resection still makes long-term prognosis 

unsatisfactory.1–3 Looking for new treatments and further studying its mechanism 

remain very important. With the development of nanotechnology, a new inorganic 

material, 1 nanoparticles (nano-HAPs), was found capable of inhibiting the prolifera-

tion of tumor cells.4,5 However, there is yet no report about the inhibitory effect of 

nano-HAPs on human glioma growth. In the current study, we sought to investigate 

the effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in 

vitro and in vivo and the mechanism involved, to provide a theoretical basis for clini-

cal use.

Materials and methods
Cell culture
Human glioma U251 (human glioma cells, from Wuhan University of China, 

Wuhan, China) and SHG44 cells (human glioma cells, from Fourth Military Medi-

cal  University of China, Xi’an, China) were cultured in RPMI-1640 (Gibco Life 
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Technologies,  Paisley, Scotland, UK) supplemented with 

10% fetal bovine serum, 100 µg/mL  penicillin, and 100 µg/

mL streptomycin.

Measurement of cell growth
Cell proliferation was measured using the methyl 

thiazoletetrazolium (MTT) assay.6,7 Cells were seeded 

in plates at a density of 1 × 104 cells/well. When U251 

and SHG44 cells were anchored to 96-well plates, the 

culture medium containing various nano-HAPs (East 

China University of Science and Technology Institute of 

Biomaterials, Shanghai, China) concentrations (0, 15, 30, 

60, 120, and 240 mg/L) replaced the RPMI-1640 culture 

medium, the cells were incubated for another 24, 48, or 

72 hours, and then 200 µL 5 mg/µL MTT (Sigma, St 

Louis, MO) in phosphate-buffered saline (PBS) was added 

to each well and incubated for 4 hours; the precipitate was 

solubilized in 100 µL 100% dimethylsulfoxide (Sigma) 

and shaken for 15 minutes. Absorbance values were 

determined using an enzyme-linked immunosorbent assay 

reader (Model 318; Shanghai Sunke Instruments Ltd.,  

Shanghai, China) at 540 nm. Each assay was performed 

nine times.

Hoechst staining
Typical apoptotic morphological changes were observed 

under Hoechst staining.8 Cells treated with 0 mg/L, 120 mg/L, 

and 240 mg/L of nano-HAPs were harvested for 48 hours, 

fixed in 4% (v/v) paraformaldehyde for 10 minutes, and then 

incubated for 10 minutes with Hoechst 33342 dye (Sigma) 

(10 µg/mL). U251 and SHG44 cells were observed under an 

inverted fluorescence microscope (IX70; Olympus, Tokyo, 

Japan) after being washed with PBS.

Transmission electron-microscopic assay
Typical apoptotic morphological changes were also observed 

by transmission electron-microscopic assay.9 Cells were 

seeded in flasks. When U251 and SHG44 cells were anchored 

to plates, the different concentrations (0, 120, and 240 mg/L) 

of nano-HAPs were added, and the U251 and SHG44 cells 

were incubated for 48 hours; the specimens were postfixed 

in 1% osmium tetroxide/0.1 M sodium cacodylate buffer, 

dehydrated in a graded series of ethanol, and embedded 

after rinsing three times.10 The ultrathin sections of the 

specimens were stained with lead citrate and uranyl acetate, 

and observed with a transmission electron microscope. Each 

assay was performed in triplicate.

Measurement of apoptosis  
by flow cytometry
The suspended single cells of U251 and SHG44, treated 

48 hours with nano-HAPs at various concentrations (0, 

120, and 240 mg/L), were harvested. After washing with 

PBS fixed in 70% cold ethanol treated with 10 g/L RNasere  

suspended and stained with 10 g/L propidium iodine. U251 

and SHG44 cells were stained directly with PI at a concentra-

tion of 10 µg/mL and 2% Annexin-V-Fluos (Roche, Basel, 

Switzerland) in incubation buffer for 10 minutes. U251 and 

SHG44 cells were acquired with the FACS calibrator (BD) 

after setting the instrument with the controls (nontreated, 

stained cells), after two washes in PBS. In this experiment, 

U251 and SHG44 cells with early apoptotic signals, stained 

with annexin-V, and cells with late death signals, stained with 

PI, were considered and quantified, and the apoptotic cells 

were analyzed using CellQuest software.11,12 Each assay was 

performed in triplicate.

Murine xenograft model
Male, 4-to-6-week-old BALB/c athymic nude mice were 

subcutaneously injected with 2 × 106 human glioma cells. 

The 60 human glioma-bearing nude mice were randomly 

divided into five groups. Drug injection was through the tail 

vein every other day for 3 weeks. Group A (control group) 

was injected with 2 mL normal saline each time; Group B was 

injected with a nano-HAP solution of 25 mg/kg; Group C was 

injected with a nano-HAP solution of 50 mg/kg; Group D was 

injected with the chemotherapy drug 1,3-bis(2-chloroethyl)-

1-nitrosourea (BCNU) at 25 mg/kg; and Group E was injected 

with a mixture of nano-HAP solution (25 mg/mL) and BCNU 

(25 mg/mL). The doses were both 25 mg/kg. Tumor diameters 

were measured at regular intervals with digital calipers, and 

the tumor  volume in cubic millimeters was calculated by this 

formula:  volume = (width)2 × length/2. The animal experi-

ments in this study were performed in compliance with the 

guidelines of the Institute for  Medical School Institutes at 

Shanghai Jiao Tong University and Wuhan University.

Monitoring the growth state of human 
glioma-bearing nude mice
The human glioma-bearing nude mice were housed in a stan-

dard animal laboratory; the general growth-state changes of 

the animals, such as water-drinking, food intake, color pattern, 

nasal and oral discharge, and activity, were  followed up every 

day. The human glioma-bearing nude mice were weighed, 

before feeding, every 3 days in the early morning.13
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Transferase-mediated dUTP nick  
end labeling staining
Sections of glioma tissues of nude mice were deparaf-

finized in xylene, rehydrated, washed with PBS, and 

treated with 20 µg/mL of Proteinase K (Roche) for 10 min-

utes at room temperature.14 Terminal deoxynucleotidyl 

transferase-mediated dUTP nick end labeling reactions 

were conducted using Apoptag (Chemicon) according to 

the manufacturer’s instructions, and detected using Cy3-

anti-digoxygenin  (Jackson). Microscopy was done on a 

Nikon E-600 microscope equipped with a QICam Fast 

1394 camera (Q Imaging) and IVision imaging software 

(BioVision Technologies).

Western blotting analysis
The suspended single U251 and SHG44 cell treatment 

with nano-HAPs at various concentrations (0, 120, 

and 240 mg/L) for 48 hours were harvested. U251 and 

SHG44 cells were washed in PBS and lysed in buffer using 

the standard methods.15,16 The samples of glioma tissues 

of nude mice in the five groups were homogenized in an 

RIPA lysis buffer. Lysates were cleared by centrifugation 

(14,000 rpm) at 4°C for 30 minutes. Protein samples 

(approximately 40 µg) were separated by SDS-PAGE (15% 

gel), transferred to a PVDF membrane, and nonspecific 

binding sites blocked by incubation in 5% nonfat milk for 

60 minutes. Membranes were incubated at 4°C overnight 

with anti-c-Met antibody (1:400 dilution), anti-SLC22A18 

antibody (1:1000 dilution), anti-SATB1 antibody (1:200 

dilution), anti-caspase-3 antibody (1:500 dilution), anti-

bcl-2 antibody (1:300 dilution), or anti-Ki-67 antibody 

(1:100 dilution). Then the membranes were washed three 

times with TBST for 10 minutes and probed with the HRP-

conjugated secondary antibody (at 1:2000 dilution) at room 

temperature for 30 minutes. The membrane was developed 

by an enhanced chemiluminescence system (ECL, Pierce) 

after being washed three times.

Statistical analysis
Statistical analyses were done and graphs created using 

the Statistical Package for the Social Sciences (version 12.0 

for Windows; SPSS, Chicago, IL). Quantitative values 

were expressed as means ± standard deviation. Statistical 

 differences between groups were examined using the Fisher’s 

exact test. P-values less than 0.05 were considered statisti-

cally significant.

Results
Effect of nano-HAPs on the growth  
of cells
MTT assays demonstrated that cell viability was reduced after 

24-hour incubation, and the viability of U251 and SHG44 cells 

decreased when the concentration and time period increased. 

There were significant differences in the viability of the U251 

and SHG44 cells incubated with the various concentrations 

(0, 15, 30, 60, 120, and 240 mg/L) of nano-HAPs, and the via-

bility of cells was also significantly inhibited by nano-HAPs 

as time increased. When cells were exposed to 240 mg/L 

HAP for 72 hours, the U251 and SHG44 cells’ viability 

decreased greatly (to 31.73% ± 2.03% and 32.28% ± 2.12%, 

respectively, compared with the control group’s viability). 

ANOVA analysis and  Dunnett’s test revealed that nano-HAPs 

inhibited the U251 and SHG44 cells’ growth in a dose- and 

time-dependent manner (Figure 1).

Effect of nano-HAPs on the morphology 
of cells
The nucleus in the control group was round and big, with a 

smooth nuclear membrane, free of condensation and frag-

mentation (Figure 2). But typical apoptotic morphological 

changes were found in the U251 and SHG44 cells 48 hours 

after treatment with 120 and 240 mg/L nano-HAPs. The 

higher the concentration of nano-HAPs, the more apoptotic 

cells there were. The changes included detachment, defor-

mation, and shrinkage from the culture dishes.  Chromatin 

margination and nuclear condensation were obvious from 

Hoechst staining (Figure 2A), and segmentation, nuclear 
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Figure 1 Effects of HAP nanoparticles on the viability of U251 and SHg44 cells 
determined by MTT assay.
Abbreviations: HAP, hydroxyapatite; MTT, methyl thiazoletetrazolium; SHg44, 
human glioma SHg44 cells; U251, human glioma U251 cells.
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Figure 2 Effect of HAP nanoparticles on the morphologic changes of cells. 
(A) Hoechst 33342 staining. The apoptotic cells were marked by green fluorescence; 
scale bar, 20 µm. (B) Transmission electron microscopy.
Notes: Original magnification × 6000; scale bar, 1 µm.
Abbreviations: HAP, hydroxyapatite; SHg44, human glioma SHg44 cells; U251, 
human glioma U251 cell.
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Figure 3 FACS analysis of Annexin-V staining of cells after treatment with 120 
and 240 mg/L HAP nanoparticles. (A) Representative FACS scatter plots of cells.  
(B) Percentages of apoptotic cells in cells after treatment.
Abbreviations: HAP, hydroxyapatite; PI, propidium iodide; SHg44, human glioma 
SHg44 cells; U251, human glioma U251 cells.

condensation, and chromatin margination were observed by 

transmission electron microscopy (Figure 2B).

Effect of nano-HAPs on the apoptosis  
of cells in vitro
To quantitate nano-HAP-induced apoptotic cell death in U251 

and SHG44 cells, approximately 1 × 106 U251 and SHG44 cells 

were double stained with Annexin-V-FITC and propidium 

iodide (PI) at different times, post-transfection. Apoptotic 

cell death was detected 48 hours after treatment with 120 and 

240 mg/L nano-HAPs (Figure 3A). FACS analysis identified 

significantly higher numbers of apoptotic cells in nano-HAP-

treated groups than in the control group (Figure 3B).

Effect of nano-HAPs on the expression  
of c-Met, SLC22A18, and SATB1 protein 
in U251 and SHg44 cells
Total protein was extracted from the U251 and SHG44 cells 

and analyzed by western blotting. The c-Met protein 

inhibition rates of 240 mg/L nano-HAPs in glioma U251 

and SHG44 cells were, respectively, 82.65% and 76.04%, 

compared with the control group (Figure 4). Each treatment 

group revealed that the expression of SLC22A18 increased, 

whereas the expression of SATB1 and Ki-67 decreased in 

glioma U251 and SHG44 cells (Figure 4).

Change of the growth state of human 
glioma-bearing nude mice
Before drug injection in each group, the weights between all 

the groups had no significant differences, the general state 

of health of the nude mice was very good, and activity and 

food intake were normal. The nude mice in the control group 

started to have symptoms of gradual failure two weeks after 

injection, the mice’s food intake and activity worsened, their 

nasal and oral discharge increased, and their stools became 

loose. Their weight in the two nano-HAP-treated groups was 

higher than in the control group (Figure 5), and the time it 

took the two nano-HAP-treated groups to have symptoms of 

gradual failure was also longer than in the control group. At 

1 week after injection, the weight of the nude mice was lower 

than that in the control group, and at 3 weeks after injection, 

the weight of the nude mice was lower than other groups. 

The activity and food intake of the nude mice decreased 

significantly after three drug injections. After these injec-
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Figure 4 Effect of HAP nanoparticles on the expression of c-Met, SLC22A18 and 
SATB1 protein in U251 and SHg44 cells in vitro. (A and B) Representative images of 
western blotting analysis of c-Met, SLC22A18 and SATB1 expression in in U251 and 
SHg44 cells. (C and D) Level of the c-Met, SLC22A18 and SATB1 protein expression 
in U251 and SHg44 cells.
Abbreviations: HAP, hydroxyapatite; U251, human glioma U251 cells; SHg44, 
human glioma SHg44 cells.

tions, the weight of the drug-combination group decreased, 

but there was no significant difference compared with the 

group receiving the chemotherapy drug BCNU.

Effects of the nano-HAPs on tumor 
growth in vivo
As shown in Figure 6, the control group’s U251 and 

SHG44 xenograft tumors formed and grew very rapidly. 

However, xenograft tumor formation treated with both nano-

HAPs and BCNU was significantly delayed. At the end of 
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Figure 5 Effects of HAP nanoparticles on weight of tumor-bearing nude mice. 
Notes: Lane 1, the control group; lane 2, nano-HAP solution (25 mg/kg) group; lane 3,  
nano-HAP solution (50 mg/kg) group); lane 4, BCNU (25 mg/kg) group; lane 5, nano-
HAP solution (25 mg/mL) and BCNU (25 mg/mL) group.
Abbreviations: Nano-HAPs, hydroxyapatite nanoparticles; BCNU, 1,3-bis(2-
chloroethyl)-1-nitrosourea; SHg44, human glioma SHg44 cells; U251, human 
glioma U251 cells.

the experiment, the U251- and SHG44-cell tumors treated 

with both nano-HAPs and BCNU were significantly smaller 

than the tumors from the other groups.

Transferase-mediated dUTP nick  
end labeling assay
As shown in Figure 7, visualized using the DAB substrate, 

the brown color indicates apoptotic nuclei. Apoptosis was 

calculated as percentage of at least 1000 cells. After 28 days, 

the mixed nano-HAP and BCNU treatment of glioma U251 

and SHG44 cells resulted in significantly higher apoptotic 

indexes (68.5% and 67.7%, respectively), compared to those 

of the other groups.

Caspase-3 and bcl-2 protein expression 
in tumor tissues
Total protein was exacted from tumor tissues from the five 

groups and analyzed by western blotting. Each treatment 

group revealed that the expression of caspase-3 increased in 
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Figure 6 Effect of HAP nanoparticles on tumor growth in vivo. (A and B) Subcutaneous 
tumor model. (C and D) Tumor growth curves of each group over 28 days.
Abbreviation: Nano-HAPs, hydroxyapatite nanoparticles; BCNU, 1,3-bis(2-
chloroethyl)-1-nitrosourea; U251, human glioma U251 cells; SHg44, human glioma 
SHg44 cells.
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Figure 7 In vivo assessment of apoptosis by TUNEL assay in the glioma tissues 
of nude mice at one month after treatment. (A) Representative images of TUNEL 
assay. Original magnification: ×400. (B) Apoptotic index in the glioma U251 and 
SHg44 cell tissues of nude mice.
Abbreviations: TUNEL, transferase-mediated dUTP nick end labeling; U251, 
human glioma U251 cells.

the glioma U251 and SHG44 cells of nude mice  (Figure 8). 

The bcl-2 protein inhibition rates for nano-HAP plus 

BCNU, as compared with the control group, were 81.63% 

in the glioma U251 cells and 85.11% in the SHG44 cells 

(Figure 8).

Discussion
Hydroxyapatite has been widely used as a new biomate-

rial for oral cavity medicine and bone damage, is used as a 

 medicine carrier in the body, and has good tissue compat-

ibility both outside and inside the body.17–19 Nano-HAP has 

little excitatory effect on blood vessels: nano-HAP medicine 

could be delivered by intravenous injection.20,21 In this study, 

nano-HAPs were synthesized by the sol-coagel method, 

which had a good dispersive effect, and the very uniform size 

of nano-HAPS was about 50 nm, which had the advantages 

of providing high surface energy and so on. Hydroxyapatite 

nanoparticles were found capable of inhibiting the prolifera-

tion of tumor cells.4,5

In this study, it was found that different concentrations of 

nano-HAPs significantly inhibited the proliferation of human 

glioma U251 and SHG44 cells in a dose- and time-dependent 

manner, as observed using MTT assays. Typical apoptotic 

morphological changes such as nuclear chromatin frag-

mentation and condensation, cytoplasmic budding, cell 

shrinkage, and apoptotic body formation were observed after 

U251 and SHG44 cells were treated for 48 hours with HAP 

nanoparticles, as observed using Hoechst staining and trans-

mission electron microscopy. Quantified by flow cytometry, 

the higher the concentration of HAP nanoparticles, the more 

apoptotic cells there were. Moreover, this study has shown 

that nano-HAPS had a significantly inhibitory effect on the 

growth of the human glioma U251 and SHG44 cells in nude 

mice, and induced apoptosis after its intravenous injection 

into same. The chemotherapy drug BCNU’s inhibition of 

human glioma growth was greater than that of nano-HAP 

alone; however, adverse reaction to BCNU was also evident: 

the activity and food-intake of nude mice were evidently 

reduced after being continuously injected with BCNU. 

And their body weights were s ignificantly lower than those 
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in the other groups. These findings showed no evidence of 

adverse bodily reactions caused by nano-HAPs. Therefore, 

the present research indicates that nano-HAPs can inhibit 

the growth of human glioma cells and induce apoptosis, 

in vitro and in vivo.

In this study, it was also shown that not only do nano-HAPs 

have an antitumor effect, but they also cooperate strongly with 

other antitumor drugs. In the drug combination group, the 

inhibition rates of human glioma U251 and SHG44 cells were 

the highest in the in vivo experiments. And the general state of 

the mice in the two groups was quite different after their being 

injected with the same dosage of BCNU. Dynamic monitor-

ing of body weight showed that the effect of BCNU on the 

 physiological function of the mice in the drug combination group 

was evidently less than in BCNU-only group. The mice’s general 

state in the former group was also obviously better than it was in 

the latter group. Combined with nano-HAPs (whose high surface 

energy and large surface area make them ideal drug carriers), 

BCNU could play an important role in tumor treatment.

We have previously found that HGF and its receptor, 

c-Met, played an important role in the formation,  progression, 

and angiogenesis of glioma, that they could promote tumor 

proliferation and intratumoral microvascular formation, and 

that they were closely related to the prognosis of the patients.3 

Antisense oligodeoxynucleotide targeting of the c-Met gene or 

c-Met-targeted RNA interference downregulated or inhibited 

c-Met expression, which inhibited U251 glioma cells growth 

and metastasis, induced cell apoptosis, and increased the sensi-

tivity of human glioma cells to paclitaxel.22–25 Recently, we have 

found that SLC22A18 downregulation via promoter methyla-

tion was associated with the development and  progression of 

glioma, that it represented a candidate biomarker, and that the 

elevated expression of SLC22A18 increased the sensitivity of 

U251 glioma cells to BCNU.1,2,26

In recent years, SATB1 has attracted considerable atten-

tion because of its high expression in tumor tissues as a 

variety of malignancies, which suggests its important role 

in promoting tumor growth, invasion, and metastasis; it may 

also have potential value as a candidate for cancer therapy.27–29 

Our results showed that the expression of c-Met, SATB1, 

and Ki-67 protein decreased and that SLC22A18 protein 

in glioma U251 and SHG44 cells increased after the cells 

were treated with various concentrations of hydroxyapatite 

nanoparticles in vitro. Owing to the function of nano-HAPs, 

the caspase-3 protein in tumor tissue increased, and the 

expression of bcl-2 protein clearly decreased. This might be 

the first report about the antitumor mechanism of nano-HAPs  

decreasing the expression of c-Met, SATB1, Ki-67, and bcl-2 

protein while increasing the expression of SLC22A18 and 

caspase-3 protein. This could provide a basis for its clinical 

application.

Conclusion
In this study we have shown that not only do hydroxyapatite 

nanoparticles have an obvious antineoplastic function in 

vitro and in vivo, but also that they reduce the poisonous, 

adverse reactions to BCNU, strongly cooperate with certain 

other chemotherapy drugs, decrease the toxicity of certain 
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Figure 8 Effect of HAP nanoparticles on the expression of caspase-3 and bcl-2 
protein in U251 and SHg44 cells in vivo. (A) Representative images of western 
blotting analysis of caspase-3 and bcl-2 expression. (B and C) Level of the caspase-3 
and bcl-2 protein expression in tumors.
Notes: Lane 1, the control group; lane 2, nano-HAP solution (25 mg/kg) group; lane 
3, nano-HAP solution (50 mg/kg) group; lane 4, BCNU (25 mg/kg) group; lane 5, nano-
HAP solution (25 mg/mL) and BCNU (25 mg/mL) group.
Abbreviations: Nano-HAP, hydroxyapatite nanoparticles; U251, human glioma U251 
cells; SHg44, human glioma SHg44 cells; BCNU, 1,3-bis(2-chloroethyl)-1-nitrosourea.
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other chemotherapy drugs, and might become a new clinical 

antineoplastic drug. They might work by reducing the expres-

sion of c-Met, SATB1, Ki-67, and bcl-2 and by increasing 

the expression of SLC22A18 and caspase-3.
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