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Caveolin-1 (CAV1) is the scaffold protein of caveolae, which are minute invaginations of the cell membrane that are involved in
endocytosis, cell signaling, and endothelial-mediated inflammation. CAV1 has also been reported to have a dual role as either a
tumor suppressor or tumor promoter, depending on the type of cancer. Inflammation is an important player in tumor
progression, but the role of caveolin-1 in generating an inflammatory milieu remains poorly characterized. We used a caveolin-
1-knockout (CAV1−/−) mouse model to assess the inflammatory status via the quantification of the pro- and anti-inflammatory
cytokine levels, as well as the ability of circulating lymphocytes to respond to nonspecific stimuli by producing cytokines. Here,
we report that the CAV1−/− mice were characterized by a low-grade systemic proinflammatory status, with a moderate increase
in the IL-6, TNF-α, and IL-12p70 levels. CAV1−/− circulating lymphocytes were more prone to cytokine production upon
nonspecific stimulation than the wild-type lymphocytes. These results show that CAV1 involvement in cell homeostasis is more
complex than previously revealed, as it plays a role in the inflammatory process. These findings indicate that the CAV1−/−

mouse model could prove to be a useful tool for inflammation-related studies.

1. Introduction

A low-grade chronic inflammatory status is defined as a
persistent, mild increase (2 to 4 times greater than normal)
in circulating inflammation mediators [1]. Chronic inflam-
mation is associated with a plethora of conditions, including
aging (inflammaging) [2], autoimmune diseases [3], cardio-
vascular pathologies [4, 5], and carcinogenesis [6], as well
as the formation and maintenance of a (pre)metastatic niche
[7]. Systemic contributors to chronic inflammation are endo-
thelial cells and immune cells, which are also now recognized
as important players in tumorigenesis and metastasis [8, 9].
Caveolin-1 (CAV1), the scaffold protein of caveolae, could
represent a link between inflammation and tumorigenesis,
as it has been associated with both processes. In addition
to its scaffolding role, CAV1 acts as a “guardian” by select-
ing the messages that are sent into cells from the outer

environment. CAV1 recruits various cytoplasmic proteins
involved in cell signaling via its caveolin-scaffolding domain.
Loss of CAV1 has been associated with a proinflammatory
status in senescent endothelial cells [10] and with premature
senescence in fibroblasts [11] and was protumorigenic for
selected cancers, such as prostate [12] and gastric [13]
cancer and glioblastoma [14]. Loss of CAV1 in stromal cells,
most notably in the cancer-associated fibroblasts, negatively
affected the relapse-free survival of prostate cancer [15],
breast cancer [16], and gastric cancer [17] patients. However,
whether the lack of CAV1 is directly correlated with chronic
inflammation has been insufficiently explored. The involve-
ment of CAV1 in inflammation has only been sporadically
addressed, with reports mainly focused on the evaluation of
endothelial cells and their role in atherosclerosis [18, 19]
and the lung response to sepsis [20–22]. For immune cells
involved in the production of inflammatory mediators,
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CAV1 has seldom been reported as related to lymphocyte
migration [23, 24] and the inhibition of proinflammatory
cytokine production in macrophages [18].

The aim of this study was to specifically address the
hypothesis that the loss of CAV1 is involved in the patho-
geny of the inflammatory response. We examined more than
30 pro- and anti-inflammatory cytokines in the plasma of
CAV1−/− mice to assess their inflammatory status, as well
as the ability of circulating leukocytes to respond to nonspe-
cific stimuli through the production of cytokines.

2. Materials and Methods

2.1. Mice and Sample Collection. Blood samples were
obtained from CAV1−/− mice (CAV1 KO: CAV1tm1Mls/J)
and CAV1+/+ mice (B6129PF2/J), purchased from Jackson
Laboratory (Bar Harbor, ME) (n = 9). For this study, we used
3-month-old male knockout mice weighing 22± 4 g and
age-, gender-, and weight-matched control mice. All animal
experiments were conducted in accordance with the respec-
tive animal welfare guidelines, the Guide for the Care and
Use of Laboratory Animals published by the US National
Institutes of Health, and the study was approved by the
Institutional Ethical Committee of “Victor Babes” National
Institute of Pathology in Bucharest. The adult mice were fed
with standard chow and water ad libitum.

2.2. Plasma Preparation. Collection of whole peripheral
blood from knockout mice, the STOCK CAV1tm1Mls/J and
control B6129PF2/J mice, was achieved using vacuum blood
tubes (Systems, Becton Dickinson) with heparin (for cell cul-
ture/plasma). For plasma extraction, the blood was allowed
to clot for at least 30min at room temperature before centri-
fugation at 2500 rpm for 10min. Samples were then ali-
quoted and stored at −80°C until the multiplex analyses.
The plasma samples were collected from mice in a consistent
manner, at the same time of the day, between 10:00 a.m. and
11:00 a.m.

2.3. Cell Culture.Whole peripheral blood of both the CAV1−/−

and control mice was obtained through retroorbital blood
collection and diluted to 5% with RPMI-1640 culture
medium (supplemented with 1% antibiotic), in the absence
and presence of the polyclonal lymphocyte stimulator,
5mg/L PHA (Difco, Augsburg, Germany), or 5mg/L ConA
(Difco, Augsburg, Germany) [25]. Whole-blood cell culture
was performed in 96-well round bottom plates (Corning
CLS3360); after the indicated exposure time to compounds,
the plates were centrifuged at 250g for 10minutes and
100 μL supernatants from each sample was collected and
stored in 1.8mL cryo tubes. Cultures were incubated for
24 h and 48 h at 37°C and 5% CO2 (Shell Lab). Samples were
made in triplicate. After 24 h or 48 h of treatment, the super-
natant was removed, following centrifugation for 5min at
250g. Samples were stored at −80°C until further analysis.

2.4. Assessment of Cytokines by xMAP Analysis. The xMAP
array was performed according to the manufacturer’s proto-
cols, and the plates were analyzed using a Luminex® 200™
system (Luminex, Austin, TX). Cell culture cytokine levels

were determined using the Fluorokine MAP Mouse Base
Kit (R&D Systems, USA), with the following analyte-
specific bead sets: GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-
10, IL-12p70, IL-13, IL-17, CCL2/JE/MCP-1, CXCL1/KC,
MIP-2, TNF-α, and VEGF. Plasma cytokine levels were deter-
mined using the MILLIPLEX MAP Cytokine Magnetic Bead
Panel Kit—GM-CSF, IL-1β, IL-2, IL-4, IL-6, IL-12p70, IL-13,
CXCL1/KC, VEGF, and TNF-α (Merck-Millipore, Billerica,
MA, USA). Briefly, the beads were incubated with the
samples, buffers, and standards in a 96-well plate at 4°C
overnight. All further incubations with the detection anti-
bodies and streptavidin phycoerythrin (SAPE) conjugate
were performed at room temperature in the dark with
shaking at 800 rpm. Multiplex data acquisition and analysis
were performed using STarStation 2.3 (Applied Cytometry
Systems, Sheffield, UK) and xPONENT 3.1 software (Milli-
pore, Billerica, MA); the calibration curves were generated
with a 5-parameter logistic fit.

2.5. Proteome Profiler™ Antibody Array: A Membrane-
Based Assay. Array images were scanned with MicroChemi
4.2 (Berthold Technologies, Chennai, India), and the signal
intensity of each spot was analyzed with ImageJ software;
the average intensity was calculated by subtracting the
average background signal. The cytokine profile assess-
ment, including CXCL13/BLC/BCA-1, IL-5, M-CSF, C5a,
IL-6, CCL2/JE/MCP-1, G-CSF, IL-7, CCL12/MCP-5, GM-
CSF, IL-10, CXCL9/MIG, CCL1/I-309, IL-12 p70, CCL3/
MIP-1α, CCL11/eotaxin, IL-13, CCL4/MIP-1β, ICAM-1,
IL-16, CXCL2/MIP-2, IFNγ, IL-17, CCL5/RANTES, IL-1α,
IL-23, CXCL12/SDF-1, IL-1β, IL-27, CCL17/TARC, IL-1ra,
CXCL10/IP-10, TIMP-1, IL-2, CXCL11/I-TAC, TNF-α, IL-
3, CXCL1/KC, TREM-1, and IL-4, was performed using
Mouse Cytokine Array Panel A (R&D Systems Inc., Minne-
apolis, MN, USA), according to the manufacturer’s instruc-
tions. Briefly, after the membrane blocking, the plasma
samples and detection antibody cocktail were added and
incubated overnight at 4°C on a rocking platform shaker.
After the unbound proteins were removed by washing, the
membranes were incubated with a streptavidin-HRP solu-
tion for 30min at room temperature on a rocking platform
and then washed again. Subsequently, protein spots were
visualized using the chemiluminescence detection reagents.

2.6. Statistical Analysis. Data were expressed as mean± stan-
dard error of the mean (SEM), and minimum and maximum
values were provided when necessary. Duplicate/triplicate
samples were used for all specimens, and the average con-
centrations were used for statistical analysis. Differences
between groups were analyzed by two-tailed unpaired Stu-
dent’s t-test. Statistical significance has been indicated as
∗p < 0 05, ∗∗p < 0 01, or ∗∗∗p < 0 001. Statistical analysis
was performed using GraphPad Software.

3. Results

In order to evaluate the inflammatory status of the CAV1−/−

mice, we assessed the levels of circulating pro- and anti-
inflammatory cytokines and growth factors in plasma. The
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pattern of the cytokine and growth factor production in
the CAV1−/− mice, compared to the controls, was evaluated
by two different multiplex analyses: xMAP technology and
proteome profiler analysis. We examined adult animals, for
which we confirmed the lack of CAV1 expression, before
the onset of any macroscopic tumors (data not shown), in
order to discriminate between existing pretumor inflamma-
tion and a tumor-driven inflammatory milieu, as these mice
have been reported to be prone to tumorigenesis [26].

3.1. Increased Levels of IL-6, TNF-α, and IL-12p70 in the
Plasma of CAV1−/−Mice.Overexpression of the plasma levels
of the proinflammatory cytokines IL-6 (over a 5-fold change
in the KO mice versus control, p < 0 001) and TNF-α and IL-
12p70 (over a 3-fold change, p < 0 05) was detected using the
xMAP Luminex 200 platform. IL-4, as well as CXCL1/KC,
was also found to be upregulated in the KO mice compared
to the control mice (over a 3-fold change and up to 2-fold
change, resp.; p < 0 05) (Figure 1).

3.2. Proteome Profiler Analysis of Proinflammatory Cytokines
and Chemokines in the Plasma of CAV1−/− Mice. In order to
establish an overall perspective of the inflammatory status of
the CAV1−/− mice, we also performed an array analysis of
multiple circulating pro- and anti-inflammatory cytokines
and growth factors in plasma. A dot blot assay revealed a rel-
evant pattern for the proinflammatory status (Figures 2(a)
and 2(c)). The results showed overexpression of the majority
of the cytokines and growth factors in the KOmice, especially
for IL-6 (8.6-fold increase in the KOmice versus the control),
IL-5 (5.8-fold increase), IL-12p70 (3.8-fold increase),
CXCL13/BLC (2.7-fold increase), and G-CSF, CCL2/JE/
MCP-1, TARC, and TIMP-1 (~1.7-fold increase for these
4). By comparing the KO and control groups for cytokine
expression, the obtained dot blot values were similar to the
outline obtained by the xMAP array analysis.

Proteome profiler analysis confirmed that a set of cyto-
kines, chemokines, and growth factors was overexpressed in
the plasma of the CAV1−/− mice compared with that of the
control mice, with significant differences for CXCL13/BLC,
G-CSF, GM-CSF, CCL1/I-309, IL-3, and CXCL10/IP-10
(p < 0 05).

At this point in our study, we concluded that the
CAV1−/− mice are characterized by a low-grade systemic
proinflammatory status.

3.3. Nonspecific Stimulation of the Lymphocytes of KO Mice
with PHA and ConA. CAV1-KO mice were previously
reported to show no changes in the percentages of lympho-
cyte subpopulations [27]; therefore, we used whole periph-
eral blood to initiate cell cultures and treated them with
lymphocyte-targeting stimulants, that is, concanavalin A
(ConA) and phytohemagglutinin (PHA). Using whole
peripheral blood was reported as a valid method to assess
cytokine production [25, 28]. We assessed whether the lym-
phocytes’ response to stimuli is modified by the chronic
inflammatory milieu. We found that upon stimulation with
ConA or PHA, the production of cytokines/chemokines
and growth factors increased, showing that even if these cells

are derived from a medium abundant with proinflammatory
cytokines, their response has not reached saturation.

Overall, we noticed an activated status of the CAV1−/−

lymphocytes, characterized by an increased response to
PHA and ConA stimulation by IL-6, TNF-α, CXCL1/KC,
IL-4, and IL12p70, while IL-1β did not show the same trend
(Figures 3(a) and 3(f)).

Expression of IL-6 in the CAV1−/− lymphocytes
increased at 24 h (7.4-fold compared to the control) and
48 h (17-fold versus the control), following ConA stimulation
(Figure 3(a)).

Although TNF-α secretion was not inducible in the con-
trol lymphocytes, it increased in the CAV1−/− lymphocytes
upon stimulation. The relative increase was 2.8-fold and 7-
fold, at 24 h and 48h, respectively, for ConA stimulation
and 5.8-fold and 14-fold, at 24 h and 48 h, respectively, for
PHA stimulation (Figure 3(b)). CXCL1/KC was also overex-
pressed to 1.8-fold and 3.6-fold, at 24 h and 48 h, respectively,
for ConA stimulation and to 2.7-fold and 5-fold, at 24 h and
48 h, respectively, for PHA stimulation (Figure 3(c)).

Expression of IL-12p70 in the CAV1−/− lymphocytes
increased, but only for the first 24h after ConA stimulation
(3-fold compared with the control), as well as after PHA stim-
ulation (2.5-fold compared with the control) (Figure 3(d)).

IL-4 expression was also elevated in a time-dependent
manner upon stimulation in the CAV1−/− mice. Thus, 24 h
after ConA stimulation, we observed an increase of almost
7-fold compared to the control, and at 48 h, the increase
was 10-fold (Figure 3(e)). Similar to the control lympho-
cytes, the CAV1−/− lymphocytes were nonresponsive to
PHA stimulation.

For IL-1β, the response of the CAV1−/− lymphocytes was
time-dependent following ConA stimulation (1.5-fold and
2.5-fold compared to the control at 24 h and 48 h, resp.)
(Figure 3(f)).

In conclusion, the circulating levels of the proinflam-
matory cytokines could generate a chronic inflammatory
status; additionally, the lymphocytes of these mice are
readily responsive to stimuli, further contributing to the
inflammatory status, which can be a useful tool for future
studies of the tumor environment or other low-grade chronic
inflammatory diseases.

4. Discussion

CAV1 has been repeatedly linked to cancer progression,
either as a tumor suppressor, as its absence is associated with
a poor prognosis [29] (e.g., aggressive prostate cancer [30,
31], breast cancer [32], and gastric cancer [33]), or as a tumor
and metastasis promoter [34–38]. CAV1-KOmice have been
used extensively as a model to investigate tumor-related
mechanisms, such as tumor growth, pathologic angiogenesis,
and tumor invasion [26, 39]. In addition, CAV1-KO cells
also activate inflammation-related signaling pathways (e.g.,
Akt signaling, TLR4 signaling, and ERK signaling), resulting
in the production of proinflammatory cytokines, chemo-
kines, and extracellular matrix remodeling enzymes [40].
Less is known about the contribution of CAV1 to the inflam-
matory milieu. Thus far, studies on CAV1 and inflammation
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have focused on organ-specific effects (lung [41, 42], colon
[43, 44], and eye [45]). Additionally, different subsets of leu-
kocytes derived from CAV1-null mice have been analyzed in
terms of response to either parasitic [46] or bacterial infec-
tion [27]. Also, the ability of lymphocytes from CAV1-null
mice to induce a humoral [47] or cytotoxic immune response
[48] has been reported. However, studies have not focused on
systemic inflammation in the absence of immune triggers.

CAV1 has also been linked with oxidative stress, in a dual
manner. On the one hand, CAV1 was shown to be a “critical
determinant” of oxidative stress balance. Using the same
CAV1-null mouse model, Shiroto et al. found that the redox
stress plasma biomarker 8-isoprostane was elevated in the
blood of these mice and its involvement in oxidative stress
was confirmed by knocking down CAV1 in endothelial cells
in an in vitro model [49]. Furthermore, CAV1 was recently
pinpointed as a target in cancer-related oxidative stress
(reviewed in [50]). The relationship between CAV1, oxida-
tive stress, and inflammation has been best studied in the
tumor microenvironment, where loss of CAV1 was reported
to lead to oxidative stress and to drive inflammation [51].
Moreover, loss of stromal CAV1 in a tumor model was pro-
posed as a marker of inflammation and a predictor of poor
outcome [52].

On the other hand, interesting data emerged about a
direct interaction between CAV1 and nuclear factor ery-
throid 2-related factor 2 (NFE2L2/NRF2) [53], a transcrip-
tion factor known as “master regulator of oxidative stress
response” [54]. In this regard, inhibition of NRF2-mediated
signaling by CAV1 activates the p53/senescence pathway
[53] and inhibits antioxidant enzymes with antioxidant
response element- (ARE-) dependent gene sequences [55].

In our study, we hypothesized that CAV1 has an effect
on the systemic inflammation status. We addressed the
involvement of CAV1 in enhancing the inflammatory
response and creating a low-grade systemic inflammatory
milieu. We verified the inflammation status by assessing the
pro- and anti-inflammatory cytokine levels in the plasma of
CAV1−/− mice compared with that of control mice.

4.1. CAV1−/− Mice Are Characterized by a Low-Grade
Systemic Proinflammatory Status. To investigate whether
the absence of CAV1 is related to a low-grade systemic
inflammatory milieu, we performed a series of in vitro
experiments examining the plasma protein levels of different
cytokines in caveolin-1-deficient mice (CAV1−/−). To this
end, we investigated the expression of circulating proin-
flammatory (IL-1β, IL-2, IL-6, IL-17, TNF-α, IL-8, IFNγ,
CSF, and IL-12p70) and anti-inflammatory (IL-4, IL-10,
and IL-13) members of the cytokine family in CAV1-KO
mice, before the onset of any clinically overt tumors.

We showed that CAV1−/− mice have enhanced plasma
levels of a number of proinflammatory cytokines, including
IL-1β, IL-2, IL-6, IL-12, and TNF-α, compared with those
in the control mice (Figure 1). Inflammation is an important
component of the tumor milieu and of the premetastatic
niche, in which IL-6 is an important player [56, 57]. Our
results are in agreement with recent findings that link
CAV1 expression and IL-6 production. Lee et al. reported
that the degradation of CAV1, via the ubiquitin/proteasome
pathway, leads to TLR4 activation and the enhanced pro-
duction of proinflammatory cytokines in bone marrow-
derived macrophages [58]. In vitro silencing of CAV1 in
mouse keratinocytes has been linked to STAT3 signaling
activation, leading to increased expression of IL-6 [59]. Addi-
tionally, decreased expression of CAV1 in monocytes from
diabetic peripheral neuropathy patients was negatively cor-
related with IL-6 and TNF-α plasma levels [60]. Taken
together, these results support the fact that CAV1 expression
is negatively correlated with IL-6 levels.

Weiss et al. also correlated the loss of CAV1 with
increased TNF-α and other proinflammatory cytokines in a
mouse colitis model [61].

Additionally, we found elevated levels of the anti-
inflammatory cytokine IL-4 in the CAV1−/− mice. However,
these levels did not increase to the same extent as IL-6, as
indicated by the IL-6 : IL-4 ratio of ~1 in the control group
and 1.67 in the CAV1−/− mice. One could speculate that IL-
4 increases in the CAV1−/− mice as a systemic reaction to
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compensate for the increase in the proinflammatory cyto-
kines (IL-6 and TNF-α), but further investigation would be
needed to validate such a mechanism.

The significant increase in IL-6 was confirmed by the
Proteome Profiler, along with that in TNF-α and IL-12p70
(Figure 2). However, not all of the tested cytokines showed
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Figure 3: Cytokine production by lymphocytes upon nonspecific stimulation. Cytokine levels in the cell culture media of whole blood
cells, treated with nonspecific lymphocyte stimuli at different time points after stimulation, as assessed by the xMAP multiplex assay:
IL-6 (a), TNF-α (b), CXCL1 (c), IL-12p70 (d), IL-4 (e), and IL-1β (f). The data represent the fold modification of the cytokines from
the CAV1−/−-derived cells versus the controls.

6 Journal of Immunology Research



a modification of their circulation levels, compared with
those in the control. As CAV1 has been previously described
as an inhibitor of cell signaling, a loss of function can be cor-
related with the activation of different signaling pathways
that result in subsequent cytokine production [51]. The sig-
nificant increase in IL-6 reported in our study correlates with
the activation of the JAK2/STAT3 signaling pathway
reported by Yuan et al. in the lung endothelium of CAV1-
KOmice [62], which was involved in IL-6 gene transcription.

4.2. CAV1−/− Lymphocytes Produce Enhanced Levels of
Cytokines upon Stimulation. Endothelial cells and lympho-
cytes are common cellular sources of cytokines, and it has
been demonstrated that endothelial inflammation is sup-
pressed by CAV1 under physiological conditions [63].
Although uncontrolled inflammatory responses have been
reported previously in relation to the loss of CAV1 [64], most
of these studies have addressed the involvement of the lung
endothelium [20, 21]. Owing to the abundance of caveolae
in endothelial cells, these cells were the main target of
CAV1 inflammation studies [10, 21, 65, 66]. To complement
those studies, we addressed the contribution of other cells,
namely, circulating lymphocytes, to cytokine production.
Lymphocytes were initially considered negative controls for
CAV1 expression, as they do not form caveolae, unless trans-
fected with CAV1 [67]. Caveolin-1 has been detected and
reported in leukemic cells [68, 69], possibly in conjunction
with its involvement in cancer, and may reflect tumorigenic
changes. We tested the response of CAV1-KO lymphocytes
to nonspecific stimulation, which was quantified by the cyto-
kine output in cell culture, as a possible tool to study low-
grade inflammation. Our results showed that CAV1-KO
lymphocytes are responsible for the production of various
types of pro- and anti-inflammatory cytokines, depending
on the type of stimulation and exposure time (Figures 3(a)
and 3(f)). These results are supported by a number of studies
reporting the role of CAV1 in primary T cells [48] and
splenic B cells stimulated with LPS [27], as well as a recent
report underlining the involvement of CAV1 in the regula-
tion of B cell tolerance [47].

5. Conclusions

A CAV1-KO mouse model has been intensely used as a tool
to study endothelial dysfunction, as well as tumor biology,
owing to the increased susceptibility of these mice to cancer
[70]. We hypothesized that CAV1 loss could also be involved
in inflammation, which is a common feature of many pathol-
ogies, from cardiovascular diseases to tumor development.
We demonstrated the existence of a low-grade systemic
inflammatory milieu, characterized by moderately increased
plasma levels of IL-6, TNF-α, and IL12-70p. Circulating
lymphocytes of the CAV1−/− mice were overresponsive to
stimuli, indicating that these cells may contribute to the
maintenance of this low-grade systemic inflammatory envi-
ronment. Lymphocytes could also prove to be a useful tool
to assess anticancer therapies that target inflammation. Our
findings showed that CAV1-KO mice can also be used as
an in vivo model for studying inflammation and could serve

in the assessment of the anti-inflammatory effect of potential
novel therapies. Given the strong association between
inflammation and cancer [71–73], CAV1-KO mice may be
useful for studies focusing on the intricate connections
between inflammation and cancer. Finally, it could be added
that CAV1, besides being a tumor suppressor, can also act as
an inflammation suppressor that can be considered in the
studies on CAV1-null tumors.
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