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Abstract

Introduction

Individual patient data (IPD) present particular advantages in network meta-analysis (NMA)

because interactions may lead an aggregated data (AD)-based model to wrong a treatment

effect (TE) estimation. However, fewer works have been conducted for IPD with time-to-

event contrary to binary outcomes. We aimed to develop a general frequentist one-step

model for evaluating TE in the presence of interaction in a three-node NMA for time-to-event

data.

Methods

One-step, frequentist, IPD-based Cox and Poisson generalized linear mixed models were

proposed. We simulated a three-node network with or without a closed loop with (1) no inter-

action, (2) covariate-treatment interaction, and (3) covariate distribution heterogeneity and

covariate-treatment interaction. These models were applied to the NMA (Meta-analyses of

Chemotherapy in Head and Neck Cancer [MACH-NC] and Radiotherapy in Carcinomas of

Head and Neck [MARCH]), which compared the addition of chemotherapy or modified radio-

therapy (mRT) to loco-regional treatment with two direct comparisons. AD-based (contrast

and meta-regression) models were used as reference.

Results

In the simulated study, no IPD models failed to converge. IPD-based models performed well

in all scenarios and configurations with small bias. There were few variations across differ-

ent scenarios. In contrast, AD-based models performed well when there were no interac-

tions, but demonstrated some bias when interaction existed and a larger one when the

modifier was not distributed evenly. While meta-regression performed better than contrast-

based only, it demonstrated a large variability in estimated TE. In the real data example,

Cox and Poisson IPD-based models gave similar estimations of the model parameters.
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Interaction decomposition permitted by IPD explained the ecological bias observed in the

meta-regression.

Conclusion

The proposed general one-step frequentist Cox and Poisson models had small bias in the

evaluation of a three-node network with interactions. They performed as well or better than

AD-based models and should also be undertaken whenever possible.

1 Introduction

Direct treatment effect (TE) estimation between two treatments from a single randomized

clinical trial (RCT) is prone to sampling variability and the “traditional” meta-analyses (MA)

aim to reduce this variability by gathering TE estimates from several trials. Network meta-anal-

yses (NMA), first described in 2002 [1] extend this principle when more than two therapeutic

options are available. NMA can also be applied to interventions such as diagnostic or preven-

tive measures. In NMAs of treatments, a network is created whose nodes are therapeutic

options (subsequently designated by “treatment”) and edges (subsequently designated by

“comparisons”) are pairwise treatment comparisons. The information used for TE estimation

can vary from one edge to another, from no comparison to several ones. According to the net-

work geometry, treatment comparison might be estimated by either indirect comparison only

or combining information from both direct and indirect comparison [2].

In both MA and NMAs, the first step is to identify all studies (published or unpublished) to

reduce publication bias. This step can be long and usually relies on standardized search strate-

gies [3]. While, any type of study can be used (observationaland RCT), the quality of the MA/

NMA relies on the quality of the underlying studies. We focused on RCTs as they are consid-

ered to provide the the highest level of evidence for treatment effect evaluation in the context

of evidence-based medicine and because the incorporation of non RCT in NMA would

address new challenges not considered here [4]. For each RCT, an assessment of the risk of

bias should be made. The trial TE can be retrieved in two ways, based on either AD or IPD. In

AD, the most common, researchers only retrieve the TE and its precision for each study. This

approach is easier and faster to perform because researchers “only” have to retrieve the infor-

mation published in the literature (article, abstract, . . .). In IPD, researchers retrieve the full

dataset of each trial, including covariates for each patient, and the TE, along with its precision,

is recalculated. The latter is a fastidious work because of the difficulty to effectively retrieve

individual information and laws regarding IPD are becoming more complex. Yet, IPD is con-

sidered the gold standard as it allows more control on the data to update follow-up and evalu-

ate the heterogeneity of TE by including covariate-treatment interactions [5]. For NMA based

on non-randomized studies, IPD may also be used to reduce confusion bias [6].

In the absence of a TE modifier (i.e., interaction), both AD-MA and IPD-MA should lead

to similar TE estimation [7]. In the presence of a modifier, AD-MA may lead to incorrect TE

estimation [7]. Meta-regression might be an alternative to identify variation in TE related to

trial aggregated patient characteristics, but is less powerful and prone to ecological bias [7].

Besides, sufficient information on the TE modifiers may not have been reported in the original

publication (or even recorded). It should be noted that the TE modifier can also be at the trial-

level (rather than at the patient-level) and in this case, it may be taken into account in AD-MA.

IPD-MA is able to estimate both between- and within-trial interaction and leads to more
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accurate TE estimation [8]. Interactions are even more challenging in NMA as they may only

exist in some comparisons and not in others and the distribution of the modifiers may not be

the same across comparisons. If not taken into consideration, these differences can sometimes

invalidate the estimation of TE, as illustrated by Jansen and Naci in 2013 [9]. Besides, these dif-

ferences can, in the absence of IPD, lead to difficulties in verifying the statistical assumption of

NMA: transitivity [10–12] and consistency [13]. Transitivity corresponds to the fact that all

patients of the network could have been randomized to any treatment options or in other

words that there are no systematic differences between the comparisons. Transitivity assump-

tion does not hold when an effect modifier has not a similar distribution across comparisons.

Consistency, which can be considered as the manifestation of transitivity in the data, means

that for a particular treatment comparison where both direct and indirect evidence are avail-

able, they provide similar estimations [14].

Over the past years, this interaction topic in NMA has been the subject of several works for

a binomial outcome [15]. However, due to more complex models, potential issues for time-to-

event outcomes have been minimally studied. Three options are mainly available for NMA

with survival data: (i) AD with its limitations with a variety of methods [2], some of them

allowing meta-regression [16]; (ii) when IPD is available, a two-step approach, in which pair-

wise treatment comparisons are independently evaluated in a first step and then combined in

a second step, but continuous variables need to be categorized; and (iii) an IPD one-step

model that often relies on a hierarchical random effects model and, most of the time, is imple-

mented in a Bayesian framework for computational reasons [17].

The aim of this study was to develop a general one-step IPD approach for a time-to-event

outcome in a three-node network under the frequentist paradigm. The bias in indirect and

mixed TE estimation in presence of a TE modifier measured at patient level was evaluated.

The usual AD methods with their expected bias were used as references. A simulation study

was used to precisely quantify the bias and a real example of an IPD-NMA from the Meta-anal-

yses of chemotherapy in Head and Neck Cancer (MACH-NC) and Radiotherapy in Carcino-

mas of Head and Neck (MARCH) was used for illustration [18,19]. This NMA was chosen

because of a previously observed interaction between age and treatment effect as published in

the main papers of MARCH/MACH-NC.

2 Statistical approaches for a network meta-analysis

2.1 IPD-based model

In the one-step IPD-based approach, a multilevel hierarchical model was used in which

patients were nested within trials and trials nested within a comparison. For a time-to-event

outcome, the TE was the log(Hazard Ratio) (log[HR]). In a three-treatment network (A-B-C),

the three evaluated treatments A, B and C were coded as two dummy variables. Only two coef-

ficients βAC and βBC representing the TEs of the comparisons A versus C (A-C) and B versus C

(B-C) were needed, as the third one βAB for the comparison A versus B (A-B), also called a

functional parameter, could be indirectly deduced by contrast under the consistency assump-

tion from the following equation:

logðHRABÞ ¼ bAB ¼ bAC � bBC

Similarly, the covariate-treatment interaction for A-B comparison γAB could be estimated

from the two covariate-treatment interactions from A-C comparison γAC and B-C comparison

γBC as:

gAB ¼ gAC � gBC
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Therefore, for a given age x, the log hazard-ratio of TE comparing A to B is given by:

b
age¼x
AB ¼ ðbAC � bBCÞ þ ðgAC � gBCÞ � x

To ensure that the variance is correctly estimated in every group, treatment indicators were

coded as -0.5/+0.5 and not 0/1 [20]. The sign of the coefficients were arbitrarily set to follow

the direction of the arrow in Fig 1 and respect the consistency. A summary of the coding is

provided in Table 1.

2.1.1. Mixed-effects Cox’s proportional hazard model (IPD-CoxME). A multilevel Cox

proportional hazard model (CoxME) can be used for IPD NMA [21,22]. However, this

approach leads to extensive calculation times when the complexity of the network and the

number of random effects increase. BIn order to reduce computation time in the simulation

study, this model was not used in the simulation study, but only in the MARCH/MACH-NC

NMA data application.

2.1.2. Mixed-effects Poisson’s model (IPD-Poisson1). A mixed-effects Poisson model

(Poisson ME1) can be used, after transformation of IPD, to perform survival analysis and has

led to results similar to the Cox model and has already been used for standard meta-analyses

[23,24]. The transformation consisted in dividing the individual follow-up time into several

time intervals. Baseline risk was coded as a global intercept plus a trial-specific random effect.

Baseline risk was allowed to vary in each of the intervals coded with a spline to allow non-lin-

ear relation while maintaining continuity between interval-specific risks [23]. Between-trial

heterogeneity of the TEs was taken into account by a random effect. Therefore, for patient i, in

trial j, comparison k, and time interval l, the model is written as follows:

dijkl � PoissonðmijklÞ

where dijkl corresponds to the event indicator taking the value of 0 or 1, and

logðmijklÞ ¼ ðb0 þ b1k þ b0jÞ þ splineðllÞ þ logðyijklÞþ

bage � ageijk þ ðb1 þ b2jÞ � treat1ijk þ ðb2 þ b3jÞ � treat2ijk

þ g1 � treat1ijk � ageijk � g2 � treat2ijk � ageijk

where β0 is the overall baseline risk, b1k represents the deviation in the k-th comparison from

the overall underlying baseline risk, b0j represents the deviation in the j trial from the compari-

son specific baseline risk and accounts for the second level of clustering (trials nested into

comparison), spline(λl) is the spline function modeling the baseline risk over time-interval, the

constant log(yijkl) is the time at risk of patient considered as an offset in the model, βage is age-

coefficient regression, ageijk is the patient age, β1 + b2j is the random A-B TE with the average

log hazard ratio β1 plus a trial-specific random effect b2j, β2 + b3j is the random A-C TE with

the average log hazard ratio β2 plus a trial-specific random effect b3j, γ1 is the age-treatment

A-C interaction effect and γ2 is the age-treatment A-B interaction effect. The different

between-trial random effects were assumed to follow a multivariate normal distribution with

mean zero and a variance-covariance matrix defined as:
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Fig 1. Three-node network according to available trials, the distribution of age and presence of age-treatment interaction. Upper panel represents the two

configurations, and lower panel represents the three scenarios. For each configuration, the three scenarios were simulated. The total number of patients and trial are

indicated over each arrow. The direction of the arrows indicates the direction (sign) of the comparison when estimating the treatment effect; therefore, X! Y indicates a

X versus Y comparison and log(HR)(XY) denotes the log hazard ratio of the X versus Y comparison. Density plots are the distribution of age with the dashed line

indicating age 60. For scenarios 1 and 2, the distribution of age was identical for A-C and B-C pairwise treatment comparisons, while the distribution is opposite in

scenario 3: Mean age is higher in A-C trials and lower in B-C trials. Each configuration was simulated according to the three scenarios as represented in the lower panel.
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heterogeneity in the baseline risk, and t2
1
; t2

2
measured the between-trial heterogeneity in the

TE A-B and A-C. For simplicity, we assumed independent random effects for intercepts and

slopes. Multi-arm studies can be used with proper coding.

As specified earlier, only two dummy variables for treatment effects were necessary in net-

work with or without AB trials, but when AB trials are present, patients must be carefully

coded (Table 1).

2.1.3. Decomposition of the interaction (IPD-Poisson2). Both Cox and Poisson models

can be reparametrized to separate the global interaction into a within- and between-trial inter-

action [8]. In the previous model, the interaction between treatment indicator 1 and age was

parameterized as:

g1 � treat1ij � ageij

The model can be reparametrized as follows:

g1w � treat1ij � ðageij � agejÞ þ g1b � treat1ij � agej

where γ1w is the within-trial, γ1b is the between-trial interaction terms and agej is the mean age

of patients in trial j. The difference between γ1w and γ1b is, therefore, an indicator of an ecologi-

cal bias. This decomposition was applied to both interaction terms (i.e., the two treatment

indicators). We used this parameterization of the Poisson model (PoissonME2) only for the

NMA of the real data as in the simulation study, the same mean age was simulated for all trials

within a comparison (no ecological bias).

Both the IPD-Poisson1 and IPD-Poisson2 models can use age as a continuous variable or

categorical one with dummy coding.

2.2 AD-based model

Models used for AD-NMA were based on trial-level TE (comparison) and varied on how they

combined these TEs. These models are mainly used when only aggregated data are available.

Solid arrows indicate trials available in all configurations and dashed arrows indicate trials only available in configuration 2. Black arrows indicate no age-treatment

interaction, while red arrows indicate an age-treatment interaction.

https://doi.org/10.1371/journal.pone.0259121.g001

Table 1. Treatment coding in the one-step individual patient data (IPD) model and the aggregated data (AD) meta-regression.

Type of trial Treatment allocated Treatment 1 Dummy variable Treatment 2 Dummy variable�

IPD-Model
A vs C A +0.5 0

C -0.5 0

B vs C B 0 +0.5

C 0 -0.5

A vs B A +0.5 -0.5

B -0.5 +0.5

AD-Meta-regression
A vs C - 1 0

B vs C - 0 1

A vs B - 1 -1

�Treatment-2 dummy variables is necessary in meta-regression for a network where three types of trials (AB, AC and BC) are present.

The IPD-based model includes a random intercept for the trial-specific baseline risk and two random effects (one for each dummy variable) for the trial-specific TEs.

https://doi.org/10.1371/journal.pone.0259121.t001
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They can also be used with IPD in a two-step approach. At the first step, adjusted or unad-

justed TEs are computed for each trial. At the second step they are combined with these

models.

2.2.1. Contrast-based model (AD-Netmeta). Recently, a frequentist AD-NMA method

was proposed by Rücker et al. [25] This graph-based method based on the analogy with electri-

cal network allowed consideration of various situations, including multi-arm studies, inconsis-

tency and random effects. It has been shown to be consistent with other approaches while

being computationally simple. This method does not currently allow the inclusion of treat-

ment modifiers, and therefore, will be limited to the situation in which the interaction is not

taken into consideration. For j two-arms trial of n treatments, the model is written as follows:

y ¼ Xmþ bþ ε

with y as a vector of j values of log(HR), X as a (j, n-1) design matrix of the model, μ as a vector

of underlying means of the (n-1) TE, b as a vector of j trial-specific random effects, and ε as a

vector of j random error with:

b � Nð0; t2Þ

ε � Nð0;VÞ; V ¼ diagfvjg

with V as a diagonal matrix whose jth entry is vj, the variance of the jth trial.

For example, in a three-treatment network with three two-arm studies: two A-C trials, one

B-C trial and no A-B trial, the model would be:
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with indirect comparison AB estimated from μAB = μAC−μBC.

The design matrix and V can be adapted to allow for multi-arm studies.

In an IPD-two step approach, this model can be used to derive adjusted TE. Continuous

variables are transformed to categorical ones then an adjusted TE for each category is com-

puted separately in each trial. Then, TEs are combined separately for each category.

2.2.2. Meta-regression (AD-Metareg). Under the consistency hypothesis, a NMA can

also be seen as a special case of meta-regression using n-1 dummy variables to code the n treat-

ment comparison [2]. This method has the advantages to allow the introduction of between-

trial interaction terms. A disadvantage is that multi-arm trials are harder to account for. For a

three treatment (A, B, C) NMAs with A-C and B-C trials, the model is written for trial j as fol-

lows:

yj ¼ ðb0 þ b0jÞ þ b1 � trialAC
j þ b2 � agej þ g1 � agej � trialAC

j þ ej

b0j � Nð0; t2Þ

ej � Nð0; vjÞ

where yj is the log(HR) of treatment vs. reference in trial j, trialAC
j is a treatment indicator with

value 1 for an A-C trial and 0 for a B-C trial [2] (Table 1), agej is the mean age in trial j, vj is the

variance of the log(HR) in trial j in order to “weight” the trial by its inverse variance and b0j is

a random variable of the TE with the between-trial heterogeneity τ2.
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The same TEs and modifiers, as in the IPD models of section 2.1, can be computed as a

function of the model parameters:

bAC ¼ b0 þ b1

bBC ¼ b0

gAC ¼ b2 þ g1

gBC ¼ b2

Under the consistency assumption, indirect TE of the comparisons A-B and its interaction

with age (i.e., the functional parameters) are obtained by:

bAB ¼ bAC � bBC

gAB ¼ gAC � gBC

In a closed network i.e. when A-B trials exist, a second treatment indicator, along with a sec-

ond interaction term, is needed to account for the three trial possibilities (Table 1).

This model can be used with a 2-class categorical variable but will have results hard to inter-

pret for a variable with more categories.

3 Simulation study

Most of the work is a simulation study with no real data. All patients in the real data applica-

tions signed an informed consent in their respective trial.

We performed a simulation study to evaluate the bias and precision of the estimation of

indirect and mixed treatment comparisons in presence of modifier effect in the framework of

IPD NMA for time-to-event data. Simulations were based on a three-node network (A, B and

C). Event times of each two-arm randomized trial comparing two of the three treatments (A, B

and C) with balanced (1:1) allocation were simulated using a Weibull distribution (inter-

cept = 8, scale = 0.73). These two Weibull parameters led to a survival of 65% and 41% at 5 and

8-years, respectively, combined with a variation in shape according to randomly assigned age

and treatment group [26]. Censoring times were drawn from Weibull distribution with inter-

cept = 8.5 and scale = 0.35. All observations were administratively censored after seven years

(two years of accrual period and five years of follow-up). With this setting, the censoring rate

in each trial was 27%. The follow-up time was divided in l = 7 time-intervals of one-year for

mixed effect Poisson models. These different parameters for simulating time-to-event data

were set to mimic the timeframe of overall survival in an oncology trial for localized solid

tumors. The TE was identical for the A-C and B-C pairwise treatment comparisons. Under the

consistency assumption, this led to a null TE in the A-B pairwise treatment comparison. The

coefficients associated to treatment effect were set to log(0.82) = -0.2 and log(0.61) = -0.5 with

the sign of the coefficient arbitrary chosen, so that A and B were more effective than C. A

between-trial heterogeneity of A-C and B-C TE was assumed through a random effect follow-

ing N(0, τ2) and a deviation from the overall underlying baseline risk through another random

effect following N(0, δ2). Two values of the variance of the random effects were considered: a

large (0.12) and a small (0.012). A continuous variable representing the age of patients was

drawn from a normal (mean = 60, standard deviation [SD] = 8) distribution and considered

either as a continuous variable (IPD-Poisson and AD-Metareg) or as a categorical one with

four categories: < 55, 55–60, 60–65, and> 65 (IPD-Poisson). Cut points were chosen a priori,
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so that patients were balanced between categories. We assumed that, in every simulation, age

was associated to the survival by a coefficient regression of log(HR) = 0.011 for each increase

of one year of age.

Two configurations of the three-node NMA without loop (configuration 1) and with loop

(configuration 2) with different scenarios were considered. The configuration 1 consisted of a

three-node network in which two treatments (A and B) have been separately evaluated against

a common comparator C, but not directly (no A-B trial). For each comparison, we simulated

10 trials of 200 patients each (Fig 1). In this network, the TE comparing A and B were esti-

mated by indirect comparison only.

The configuration 2 completed the network of the configuration 1 by simulating A-B trials

generating a closed loop. We simulated three A-B trials of 200 patients each (Fig 1) with A-B

TE verifying the consistency hypothesis. In this network, the TE comparing A and B was esti-

mated by combining direct and indirect information. In order to avoid overrepresentation of

the part of direct information in the mixed treatment comparison, we chose a total number of

randomized patients in the A-B trial smaller than those in the A-C and B-C trials. Too much

direct information would have hidden the impact of the potentially biased indirect estimation

on the mixed treatment comparison.

For each configuration (Fig 1 upper panel), three scenarios were simulated according to the

distribution of age and the presence of age-treatment interaction between the comparisons of

the network (Fig 1).

• Scenario 1: “None”: ages in A-C and B-C trials were drawn from the same distribution and

no age-treatment interaction was present. Under the consistency assumption, this led to a

null TE in the indirect A-B pairwise treatment comparison without interaction.

• Scenario 2: “Interaction”: ages in A-C and B-C trials were drawn from the same distribu-

tion. Age-treatment interaction was simulated for A-C treatment arbitrarily chosen so that

TE decreases by 25% for an increase of one SD of age (quantitative interaction). Under the

consistency assumption, this led to an interaction in the A-B comparison identical to that in

A-C and a null TE at age 60.

• Scenario 3: “Both”: ages were drawn from different distributions in A-C and B-C trials: one

SD younger in the A-C comparison and one SD older in the B-C comparison. Age-treatment

interaction was simulated for A-C treatment, as in scenario 2. Under the consistency

assumption, this led to a null TE at age 60 in the indirect A-B comparison with the same

interaction present in A-C.

For configuration 2, which included A-B trials in a three-node network, age was drawn in

the same way, in comparison to scenarios 1 and 2 for the configuration 1.

For each combination of simulation parameters and scenarios (Table 2), the mean of the

TE-related regression coefficients (log HR) across 1,000 replications was calculated. For age as

a continuous variable, we are interested in (i) the parameter associated to the TE for a patient

with a mean age denoted as TEage or here TEage = 60 and called the conditional treatment effect

and (ii) the parameter associated to the interaction (age x TE) which is the variation in TE

(vTE) for an increase of one unit in age and denoted vTEage+1. For age as a categorical variable,

we are interested in the TE for each age class denoted: TE<55, TE55-60, TE60-65 and TE>65.

Results are also presented as mean bias, defined as the mean of the differences between the

estimated and the true value. Errors are presented as empirical standard error (ESE) and aver-

age standard error (ASE). ESE was defined as the SD of the estimated parameter over the 1,000

replicates. ASE was defined as the average of the standard errors estimated by each model

[27,28].
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All simulations were done with the R 3.5.2 software (The R Core Team, Vienna Austria,

2020) with the furrr 1.14.0 (Vaughan, 2018) packages for multicore computing and a

L’Ecuyer-CMRG random number generator to ensure that each worker started at a different

seed. Cox model was estimated by the coxme package 2.2–16, multilevel Poisson’s with lme4

1.1.21 [29], contrast based-AD with Netmeta 1.1.0 and meta-regression with metaphor [30].

The R code for all simulations is available on GitHub (https://github.com/Oncostat/One_step_

frequentitst_IPD_NMA).

4 MARCH/MACH-NC: A real example of an IPD network

The MACH-NC compared chemoradiotherapy (CTRT) to radiotherapy (RT) (first update: 64

trials and 12,129 patients) [19] and the MARCH compared mRT to RT (initial meta-analysis:

15 trials and 6,515 patients) [18]. Together, they formed a NMA without trials comparing

mRT to CTRT [31]. The primary outcome was overall survival and published results from

MARCH using IPD showed an age-RT-mRT interaction [32] and patients in the RT vs. CTRT

MA were younger than in the RT vs. mRT MA, leading to a situation similar to our scenario 3

of the configuration 1. The AD- and IPD-based models proposed in the statistical section were

applied to this three-node NMA to illustrate the potential bias in the indirect estimation of the

mRT-CTRT pairwise treatment comparison. Some simplifications were made for illustrative

purposes; readers interested in the clinical application are referred to the original publications

(S1 text).

5 Simulation results

5.1 Convergence

No models failed to converge in the IPD one-step framework. In comparison, there were

some convergence issues in the AD-meta-regression in 47 simulations (0.2%) in

Table 2. Simulation parameters.

Parameters Possible values

Treatment effect • -0.2 (hazard ratio = 0.82)

• -0.5 (hazard ratio = 0.61)

Variance of random effect of baseline

hazard (d
2

i , i = 1,2)

• 0.12

• 0.012

Variance of random effect of treatment

effect (t2
i , i = 1,2)

• 0.12

• 0.012

Configuration • 1�: No trials comparing A vs. B

• 2: 3 trials of 200 patients in the direct comparison A vs. B

Scenario • None (no age-treatment interaction, no distribution differences of

age)

• Interaction (age-treatment interaction in A-C trials, no distribution

differences of age)

• Both (age-treatment interaction in A-C trials, mean age 52 years in A

vs. C trial and 68 years in B vs. C trials)

Total number of possibilities 2 x 2 x 2 x 2 x 3 = 48

Number of replications for each

combinations of parameters

1000

Overall number of simulations: 48 x 1000 = 48000

�: Configuration 1 is a three-node (A-B-C) network, including A-C and B-C trials only. For each comparison, we

simulated 10 trials, including 200 patients per trial (See Fig 1 upper panel).

https://doi.org/10.1371/journal.pone.0259121.t002
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configuration 1, and three (0.01%) in configuration 2. The network with the simplest con-

figuration (i.e., no closed loops, configuration 1) with the simplest scenario (scenario 1:

“none”) confirmed the validity of our algorithm for generating individual time-to-event

data for a three-arm network.

5.2 Directly estimated parameters

The two direct TE (A-C and B-C), along with their interactions, were estimated using Pois-

sonME1 with no bias in all situations. Results for the simulation in which TE = -0.5 and σ = τ
= 0.01 are given in Table 3; results for all simulations are given in S1 Table. Similarly, the age

effect was also estimated with no bias in all settings (S1 and S2 Figs).

5.3 A-B TE estimation

Table 4 summarizes the result of the A-B TE estimation with the IPD-based Poisson 1 model

when age was included as a categorical variable and the true TE was -0.5, and the between-trial

heterogeneity for baseline risk and the between-trial heterogeneity of the TE were 0.01. The

results of an AD-based approach in which all trials had given TE adjusted for each age classes

which is similar to an IPD-two-step approach, were given as a comparison. Results for all sim-

ulations are represented in S2 Table for configuration 1 and S3 Table for configuration 2. Fig 2

shows the results of the simulation for the model when age was a continuous variable where

TE = - 0.5, σ = 0.01 and τ = 0.01. Two AD-based approaches (AD-Netmeta, which does not

allow for interaction, and AD-meta-regression, which does) are given as a comparison. Results

for all simulations are given in S4 Table.

5.3.1. Indirect A-B TE estimation (configuration 1). Scenario 1: “None”. The model esti-

mated the A-B TE with small to no bias with age either as a continuous (Fig 2) or categorical

variable (Table 4). As expected in this balanced design, AD-models (AD-Netmeta, AD-Me-

tareg) also performed very well.

Scenario 2: “Interaction”. When age was continuous, the model correctly estimated both the

conditional TE for a 60-old-year patient (TEage = 60) with bias = 0.004 and the conditional TE for

an increase of one unit in age (vTEage+1) with bias = 0.000. As a reference, both AD-based models

also correctly estimated the conditional TE (bias for AD-Netmeta = 0.006, for AD-Metareg = 0.005).

The AD-Metareg (which allows for interaction) also correctly estimated the vTEage+1 (bias = 0.004).

AD-Metareg, when compared to our IPD model, exhibited a large variation in estimated interac-

tion coefficient (ESE = 0.170, ASE = 0.032, vs ASE = ESE = 0.010 for IPD) (Fig 2).

When age was categorical, IPD-Poisson1 correctly estimated all age classes with bias lower

than 0.01.

Scenario 3: “Both”. When age was continuous, the model correctly estimated the conditional

TE (TEage = 60) and its variation with age (bias = -0.003 for TEage = 60 and bias = 0.000 for vTE-

age+1) demonstrating its ability to adequately estimate unbalanced design with interactions. As

expected in this complex design, both AD-based approaches demonstrated bias for the condi-

tional TE (bias for AD-Netmeta = -0.12, for AD-Metareg = -0.041) and its variation with age

for AD-Metareg (bias = -0.002). Our model was remarkably stable with ESE = 0.010 and

ASE = 0.010 for TEage = 60 and ESE = 0.113 and ASE = 0.0116 for vTEage+1. As a comparison,

AD-Meta-regression provides unstable estimations across replications resulting to a large vari-

ation in quantiles of observed values (TEage = 60: ESE = 1.381, ASE = 2.121; vTEage+1:

ESE = 0.179, ASE = 0.033) (Fig 2).

When age was categorical, our model had small bias for all categories with a maximum bias

= -0.034 for the age> 65 category) (Table 3).
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5.3.2. Mixed A-B TE estimation (configuration 2). When compared to configuration 1,

the results for our model were mostly unchanged (Fig 2). Yet, as a comparison, better precision

was observed with lower ESE and ASE for AD-based models in scenarios “none” and “interac-

tion”. In scenario “both”, adding direct comparison reduced but did not cancel the bias

observed in configuration 1 in the conditional TE (TEage = 60) for AD-Netmeta (bias = -0.075

vs -0.12 in configuration 1). AD-Metareg demonstrated a smaller confidence interval, but still

exhibit a large variability with ESE = 0.110 and ASE = 1.276 for TEage = 60 and with

ESE = 0.135 and ASE = 0.000 for vTEage+1.

6 Application to the MARCH/MACH-NC NMA

The MARCH/MACH-NC NMA has an identical geometry as that of the simulated network in

configuration 1 since there is no closed loop (no trial comparing mRT and CTRT). In addition,

mean ages were different in the two comparisons (59.9±10.1 vs 56.7±9.84) and an interaction

with age was observed in the mRT vs RT comparison. This configuration was close to our sce-

nario 3 “both”, but with smaller age differences between comparisons.

Age was used as a continuous variable for this analysis. Table 5 and Fig 3 report the results

of conditional TE for two direct comparisons (mRT vs RT and CTRT vs RT), one indirect

comparison (mRT vs CTRT) and two interactions estimated from three versions of IPD-based

models: mixed-effects Cox, and mixed-effects Poisson with and without decomposition of

interaction. Results from two AD-based approaches were given as a comparison.

Table 3. Simulation results for the A-C and B-C comparisons when treatment effect = -0.5, the between-trial heterogeneity for baseline risk was set at 0.01 and the

between-trial heterogeneity of the treatment effect set at 0.01.

Configuration 1 Configuration 2

A-C B-C A-C B-C

Scenario Parameters Bias ESE Bias ESE Bias ESE Bias ESE

Age as a continuous variable

None TEage = 60 -0.001 0.053 -0.001 0.052 -0.002 0.047 0.001 0.046

vTEage+1 0 0.007 0 0.006 0 0.006 0 0.006

Interaction TEage = 60 0.002 0.061 -0.001 0.054 0.002 0.053 0.001 0.047

vTEage+1 0 0.008 0 0.007 0 0.007 0 0.006

Both TEage = 60 -0.002 0.083 0.001 0.074 0.001 0.066 0.002 0.062

vTEage+1 0 0.008 0 0.007 0 0.006 0 0.006

Age as a qualitative variable

None TE<55 -0.003 0.103 -0.007 0.104 -0.004 0.095 0.001 0.095

TE55-60 -0.001 0.108 0.006 0.106 -0.006 0.098 -0.003 0.1

TE60-65 -0.004 0.107 -0.004 0.11 0.001 0.094 0.003 0.096

TE>65 0.001 0.103 0 0.098 0 0.09 0.002 0.087

Interaction TE<55 0.004 0.122 -0.003 0.107 0.002 0.105 0 0.095

TE55-60 -0.003 0.125 -0.003 0.106 0.001 0.115 -0.004 0.1

TE60-65 0.006 0.125 0 0.109 0 0.111 0.002 0.099

TE>65 0.002 0.115 0 0.104 0.006 0.097 0.003 0.09

Both TE<55 -0.035 0.081 -0.004 0.242 -0.037 0.077 -0.028 0.157

TE55-60 -0.004 0.135 0.002 0.169 -0.002 0.12 0.009 0.137

TE60-65 -0.011 0.175 -0.002 0.117 -0.005 0.146 0 0.109

TE>65 -0.032 0.254 0.002 0.065 -0.01 0.162 0 0.063

Configuration 1 is a 3-nodes model without a closed loop, and configuration 2 is the same model with a closed loop.

TE: treatment effect, vTE: Variation in TE for an increase of one unit in age, ESE: Empirical standard error.

https://doi.org/10.1371/journal.pone.0259121.t003
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MARCH/MACH-NC: Meta-analyses of Chemotherapy in Radiotherapy in Carcinomas of

Head and Neck/Meta-analysis of Chemotherapy in Head and Neck Cancer, log(HR): log(haz-

ard ratio), mRT: modified radiotherapy, RT: radiotherapy, CTRT: chemoradiotherapy,

CoxME: mixed-effects Cox’s model, Poisson ME1: mixed-effects Poisson’s model with one

interaction term for a particular treatment effect, Poisson ME2: mixed-effects Poisson’s model

within and between interaction term for a particular treatment effect (b: between-trial, w:

within-trial), Netmeta: aggregate data-based model using contrasts (mRT vs RT and CTRT vs

RT), Meta-regression: aggregate data-based model using contrasts (mRT vs RT and CTRT vs

RT) and adjusted on age, NA: not applicable.

Estimation of the conditional TEs for the two direct comparisons (mRT-RT and CTRT-RT)

were similar between models with similar uncertainty. IPD-based models without interaction

decomposition (CoxME and PoissonME1) estimated a significant interaction at 5% between

mRT vs RT and age (0.006 (SD = 0.003); p = 0.046) and no significant interaction between

Table 4. Simulation results of the indirect and mixed A-B treatment comparisons in the different scenarios when the true treatment effect was -0.5, the between-

trial heterogeneity for baseline risk was set at 0.01 and the between-trial heterogeneity of the treatment effect was set at 0.01.

IPD-Poisson AD-Netmeta

Scenario Age True value of log HR Mean Bias ESE ASE Mean Bias ESE ASE

Configuration 1: indirect comparison only

1: None

(no interaction.

same age

distribution)

TE<55 0.000 0.004 0.004 0.143 0.020 0.000 0.000 0.076 0.006

TE55-60 0.000 -0.008 -0.008 0.154 0.024 0.000 0.000 0.076 0.006

TE60-65 0.000 0.000 0.000 0.154 0.024 0.000 0.000 0.076 0.006

TE>65 0.000 0.001 0.001 0.143 0.020 0.000 0.000 0.076 0.006

2: Interaction

(interaction.

same age

distribution)

TE<55 -0.154 -0.147 0.008 0.158 0.025 0.006 0.160 0.081 0.032

TE55-60 -0.038 -0.037 0.000 0.162 0.026 0.006 0.044 0.081 0.008

TE60-65 0.038 0.044 0.006 0.159 0.025 0.006 -0.032 0.081 0.008

TE>65 0.154 0.156 0.002 0.155 0.024 0.006 -0.148 0.081 0.028

3: Both

(interaction.

different age

distribution)

TE<55 -0.154 -0.186 -0.031 0.259 0.068 -0.120 0.034 0.084 0.008

TE55-60 -0.038 -0.044 -0.006 0.214 0.046 -0.120 -0.083 0.084 0.014

TE60-65 0.038 0.029 -0.009 0.213 0.045 -0.120 -0.158 0.084 0.032

TE>65 0.154 0.121 -0.034 0.264 0.071 -0.120 -0.275 0.084 0.082

Configuration 2: mixed (direct/indirect) comparison

1: None

(no interaction.

same age

distribution)

TE<55 0.000 -0.005 -0.005 0.112 0.013 -0.003 -0.003 0.057 0.003

TE55-60 0.000 -0.003 -0.003 0.125 0.016 -0.003 -0.003 0.057 0.003

TE60-65 0.000 -0.002 -0.002 0.115 0.013 -0.003 -0.003 0.057 0.003

TE>65 0.000 -0.002 -0.002 0.105 0.011 -0.003 -0.003 0.057 0.003

2: Interaction

(interaction.

same age

distribution)

TE<55 -0.154 -0.153 0.002 0.129 0.017 0.003 0.157 0.064 0.029

TE55-60 -0.038 -0.033 0.005 0.135 0.018 0.003 0.040 0.064 0.006

TE60-65 0.038 0.036 -0.002 0.131 0.017 0.003 -0.035 0.064 0.005

TE>65 0.154 0.157 0.003 0.113 0.013 0.003 -0.152 0.064 0.027

3: Both

(interaction.

different age

distribution)

TE<55 -0.154 -0.164 -0.010 0.156 0.024 -0.075 0.079 0.065 0.011

TE55-60 -0.038 -0.049 -0.011 0.153 0.024 -0.075 -0.037 0.065 0.006

TE60-65 0.038 0.033 -0.004 0.152 0.023 -0.075 -0.113 0.065 0.017

TE>65 0.154 0.144 -0.010 0.160 0.026 -0.075 -0.229 0.065 0.057

Age was considered as a categorical covariable with classes: < 55, 55–60, 60–65 and > 65.

Configuration 1 represents a three-arm network with B-C and A-C trials, from which we estimated the indirect treatment effect A-B. Configuration 2 represents a three-

arm network with A-B, A-C and B-C trials, from which we estimated the mixed (direct and indirect) treatment effect A-B. AD: aggregated data, IPD: individual patient

data, ESE: empirical standard error, ASE: average standard error.

https://doi.org/10.1371/journal.pone.0259121.t004
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CTRT vs RT and age (0.002 (SD = 0.002); p = 0.317). Meta-regression estimated larger point

estimates of interaction 0.032 (SD = 0.019) and 0.023 (SD = 0.010), respectively, with larger

variability, as reported in Fig 3. The Poisson model with decomposition of the interaction

(PoissonME2) estimated (i) a within-trial interaction terms close to those of the IPDs models

and (ii) a between-trial interaction close to those of the meta-regression. This result indicated

an ecological bias in the estimation of interaction terms when using the meta-regression

model. For summarize, these different results suggest/show that, (i) to perfectly identify the

structure of the data, the interest of interaction decomposition in an IPD-based approach

should be considered, and (ii) while better than the simpler AD-based approach, meta-regres-

sion was not as effective as the IPD-based approach.

Concerning the indirect comparison (mRT-CTRT), no significant difference between mRT

and CTRT was observed in the IPD-based models, as well as in the meta-regression models

(all 95% confidence intervals included the value zero). Yet, a significant difference in favor of

mRT was observed in the AD-Netmeta modeI, as reported by the 95% confidence interval in

Fig 3 (last column). SDs were similar across the models.

These results were in accordance with those observed for the configuration 1 and the sce-

nario 3 “both” of the simulated study (Fig 2, left panel at bottom). They illustrate the ability of

one-step IPD-based models to estimate unbiased parameters, even when interaction is present

and the bias magnitude of AD-based methods.

7 Discussion

NMA can be used to estimate TEs when there is no (configuration 1) or few (configuration 2)

pairwise comparisons between two treatments and are usually approached with AD-based

models or in a Bayesian framework. In this paper, we proposed a frequentist one-step IPD-

Fig 2. Simulation results for A-B treatment comparison in different scenarios and configurations. The indirect (configuration 1, left part) and mixed (configuration

2, right part) are represented with the three scenarios (none, interaction, and both) as rows. Age was considered a continuous variable for a treatment effect = -0.5, a

between-trial heterogeneity of the baseline risk set at σ = 0.01, and a between-trial heterogeneity of the treatment effect set at τ1 = τ2 = 0.01. Red-dashed lines represent

the true value of A-B treatment effect (log[HR]) according to age. Blue shaded zone represents the 2.5–97.5% and 25–75% quantiles of the estimated treatment effect

across the 1,000 replications. IPD: individual patient data, AD: aggregated data, TEage = 60: conditional treatment effect at age 60, the mean age of the simulation, vTEage

+1: the conditional variation in treatment effect with age, B: bias, ESE: empirical standard error, ASE: average standard error.

https://doi.org/10.1371/journal.pone.0259121.g002
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based mixed Poisson models for time-to-event outcomes. In a simulated three-node network

with (configuration 2) or without (configuration 1) closed loop, our models performed well in

all scenarios. Notably, even in the presence of an interaction with an unbalanced distribution

of the TE modifier, the model was able to correctly estimate both the conditional TE at mean

age and its variation with age. This model also demonstrated remarkable stability across simu-

lations with low ESE. In this simulation study, AD-based models served as a reference of

expected magnitude of bias. As expected, AD-based models produce similar results than IPD-

based models when no interaction exists. This was not the case in the presence of an interac-

tion in which AD-based models were unreliable in a form that depended on whether one is

interested by the TE at any age or only the TE at the mean age. In the former case, in the pres-

ence of any interaction (scenario 2 and 3), TE estimates from AD-based models that did not

Table 5. Analysis of the real data network meta-analysis MARCH/MACH-NC with IPD- and AD-based models.

Parameters Models Log(HR) Standard deviation 95% Confidence interval

mRT vs RT CoxME -0.123 0.045 -0.211; -0.035

(direct comparison) Poisson ME1 -0.120 0.048 -0.215; -0.026

TEage Poisson ME2 -0.146 0.041 -0.225; -0.066

Netmeta -0.120 0.056 -0.225; -0.066

Meta-regression -0.161 0.058 -0.274; -0.047

CTRT vs RT CoxME -0.139 0.032 -0.203; -0.075

(direct comparison) Poisson ME1 -0.138 0.032 -0.202; -0.075

TEage Poisson ME2 -0.107 0.033 -0.173; -0.042

Netmeta -0.148 0.033 -0.212; -0.084

Meta-regression -0.110 0.034 -0.176; -0.044

Interaction between CoxME 0.006 0.003 0.000; 0.012

age (continuous) Poisson ME1 0.006 0.003 0.000; 0.012

and (mRT vs RT) Poisson ME2b 0.028 0.012 0.004; 0.053

vTEage+1 Poisson ME2w 0.005 0.003 -0.001; 0.011

Netmeta NA NA

Meta-regression 0.032 0.019 -0.005; 0.069

Interaction between CoxME 0.002 0.002 -0.002; 0.007

age (continuous) Poisson ME1 0.002 0.002 -0.002; 0.007

and (CTRT vs RT) Poisson ME2b 0.023 0.010 0.003; 0.043

vTEage+1 Poisson ME2w 0.001 0.002 -0.004; 0.006

Netmeta NA NA

Meta-regression 0.023 0.010 0.003; 0.043

mRT vs CTRT CoxME -0.016 0.078 -0.168; 0.136

(indirect comparison) Poisson ME1 -0.018 0.081 -0.176; 0.140

TEage Poisson ME2 0.038 0.074 -0.107; 0.183

Netmeta -0.148 0.065 -0.275; -0.021

Meta-regression 0.032 0.091 -0.147; 0.211

Interaction between CoxME -0.004 0.006 -0.014; 0.007

age (continuous) Poisson ME1 -0.004 0.006 -0.015; 0.007

and (mRT vs CTRT) Poisson ME2b -0.005 0.022 -0.049; 0.039

(indirect) Poisson ME2bw -0.004 0.006 -0.015; 0.007

vTEage+1 Netmeta NA

Meta-regression -0.009 0.029 -0.066; 0.048

In this open network, mRT vs RT and CTRT vs RT relies on direct comparison, while mRT vs CTRT relies on indirect only.

https://doi.org/10.1371/journal.pone.0259121.t005
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allow for interaction (Netmeta) were logically biased. AD-based models that allowed for inter-

action (meta-regression) were less biased, but demonstrated large ASE and ESE over 1,000 rep-

licates, suggesting that in a single experiment, results may be unreliable, particularly when

there are few studies. For the latter case, conditional TE at mean age may be biased or not in

presence of an interaction according to the distribution of the modifiers. In scenario 2 (in

which the modifier was evenly distributed), conditional TEs at mean age were not biased. In

scenario 3 (in which the modifier did not have the same distribution in all comparisons), the

conditional TE at mean age was biased in AD-based models.

Similar findings were observed on real data. One-step IPD-based Cox and Poisson models

led to remarkably similar estimates and found no statistically significant differences between

the indirectly compared treatments. On the other hand, an AD-based model, ignoring age,

would have concluded that mRT was superior to chemoradiotherapy at a 0.05 significance

level. Meta-regression performed well in this (highly powered) datasets and correctly estimated

the TE with a non-significant difference. Yet, this dataset illustrated an advantage of the one-

step model and an issue of meta-regression: the ecological bias that led to the overestimation

of the interaction magnitude. Decomposition of the interaction in IPD-based models, as pro-

posed by Hua et al. [8] revealed that the within-trial interaction (estimated by standard IPD

models) was much lower than the between-trial interaction (estimated by meta-regression).

Our study also demonstrates the possibility to use either the Cox or Poisson model in a fre-

quentist paradigm, both of them leading to similar results with our dataset. All models were

successfully applied to the real data, including 79 trials and more than 18,000 patients, without

convergence issues. IPD-based models were not too computationally intensive and took, on a

standard desktop computer, 400 seconds for the mixed-effects Cox model and 100 seconds for

Fig 3. Estimation of regression coefficients (log[HR]) by the models in the MARCH/MACH-NC dataset. log(HR): log(hazard ratio), MARCH/MACH-NC:

Meta-analyses of Chemotherapy in Radiotherapy in Carcinomas of Head and Neck/Meta-analysis of Chemotherapy in Head and Neck Cancer, CoxME:

mixed-effects Cox Model, Poisson ME1: mixed-effects Poisson without interaction decomposition, Poisson ME2: mixed-effects Poisson with interaction

decomposition, mRT: modified radiotherapy, RT: radiotherapy, CTRT: chemoradiotherapy, age:(mRT vs RT) and age:(CTRT vs RT) are the interaction

between age (entered as a continuous variable) and treatment effect, ind.: indirect estimation of the treatment effect since no trial comparing mRT to CTRT

exist. Vertical dashed lines indicate no effect. Blue and green bars indicate the between- and within-trial decomposition of the interaction, respectively.

https://doi.org/10.1371/journal.pone.0259121.g003
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the mixed-effects Poisson model. These figures are reasonable for a single application, notably

when compared to Bayesian approaches. The Cox model however can become very computer

intensive as compared to the Poisson implementation, and for this reason, we only used the

Poisson model in the simulation. We used here the Poisson model as an alternative to the Cox

model for survival analysis but other teams use the flexible Royston-Parmar model [20].

Correctly estimating networks may be computationally challenging. Both Bayesian and fre-

quentist estimation tools are available for AD-NMA and considered to deliver similar results.

For IPD, most teams use either frequentist two-step or Bayesian one-step IPD. The former use

IPD data to derive trial-specific log hazard ratios adjusted for other variables which are then

combined. The latter allows more complex models, sometimes at the price of long calculation

times. In practice, very few one-step frequentist studies have been published, especially for

time-to-event outcomes, as specifying the model may be challenging and models with multiple

random effects and interactions may never converge. The approach used here was to replace

the traditional Cox model with a Poisson generalized mixed linear model, which often benefits

of more robust software implementations. In this way, Ollier et al. proposed to extend this

model by a penalized Lasso Poisson model for more complex NMA allowing to include covari-

ates effects, inconsistency terms, covariate-treatment interactions and non-proportional treat-

ment effects [33]. Another approach was proposed by Jackson et al. for models in MA for

binary outcomes [34] and could be adapted to the IPD-NMA to solve convergence issues. In

this approach, the model is gradually simplified (i.e., by removing random effects or interac-

tion terms) until convergence is obtained. Others have proposed to combine RCT and non

RCT study in the network. Cameron et al. published a good overview of potential advantages

and challenges of such an approach [4]. This approach may help to obtain a greater sample

size, greater follow-up or to include treatments not evaluated in RCT. Another advantages, in

a disconnected network, or a network with very unbalanced geometry, i.e. would be to re-

inforce a weak comparison or reconnect a disconnected network [35]. This appealing method

need to satisfy the transitivity assumption and consider the additional uncertainty in treatment

effect estimation.

Consistency may be an issue in presence of interaction and treatment modifiers varying

across comparison. Researchers relying only on AD may observe an inconsistency if modifier

distributions are not equal across comparisons. In our simple network, all data were simulated

under the consistency hypothesis, but one-step IPD models could be reformulated (by adding

a new term) to detect inconsistency [36,37]. When inconsistency is detected, adjusting for the

confounders and/or adding an interaction term may mitigate the issue [11,12,15]. In a recent

work, Donegan et al. demonstrated that this problem is more subtle, as it involves both the

intercept and slope of the covariate to TE relation [13]. One-step IPD-based models allow flex-

ible handling of this situation with comparison-specific intercept and interaction.

Several strengths of our study should be highlighted. Simulations were done according to

48 scenarios representing a wide set of possibilities and two types of coding (continuous or

qualitative) were used for age. Several statistical models were used, including two IPD one-step

propositions. Finally, we observed on our real data application that our findings are not just

theoretical but can lead to erroneous conclusions in the real world.

Our study had some limitations. On one hand, we restricted our work to a relatively simple

three-node network. Whether the model will perform as well and be able to have low bias in a

larger network with more complex interaction pattern is unknown. As models become larger,

the computational challenge raises, and multiple modifiers can be present. Further works is

needed to better address this situation. Another issue may be the geometry of the network [38]

as odd geometry can be harder to investigate. For instance, we observed that the ratio between

direct and indirect evidence plays a role in the magnitude of the bias). However, it is the first
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simulation work to quantify the bias of a frequentist IPD-based approach in presence of inter-

action for time-to-event data. Our model was fitted on a balanced network i.e with the same

amount of information in each comparison, and even if it was not a large network, there was

enough information to regress the full model without convergence issues. Whether this

approach will work in an unbalanced network or with fewer patients need further works.

Future studies may also confirm our findings when inconsistencies in principal effects or inter-

actions are present.

8 Conclusion

We proposed a general IPD-based mixed Poisson model in a frequentist framework for net-

work-meta-analysis in presence or not of a modifier treatment for time-to-event data. This

model performed well, even in the presence of a TE modifier with unbalanced distribution,

and results were stable. When compared to AD-based models, the one-step IPD was the less

biased method in all settings and should, therefore, be considered as the gold standard in

NMA.
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