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Abstract: 

Proprietary genetic datasets are valuable for boosting the statistical power of genome-

wide association studies (GWASs), but their use can restrict investigators from publicly 

sharing the resulting summary statistics. Although researchers can resort to sharing down-

sampled versions that exclude restricted data, down-sampling reduces power and might 

change the genetic etiology of the phenotype being studied. These problems are further 

complicated when using multivariate GWAS methods, such as genomic structural equation 

modeling (Genomic SEM), that model genetic correlations across multiple traits. Here, we 

propose a systematic approach to assess the comparability of GWAS summary statistics that 

include versus exclude restricted data. Illustrating this approach with a multivariate GWAS of 

an externalizing factor, we assessed the impact of down-sampling on (1) the strength of the 

genetic signal in univariate GWASs, (2) the factor loadings and model fit in multivariate 

Genomic SEM, (3) the strength of the genetic signal at the factor level, (4) insights from 

gene-property analyses, (5) the pattern of genetic correlations with other traits, and (6) 

polygenic score analyses in independent samples. For the externalizing GWAS, down-

sampling resulted in a loss of genetic signal and fewer genome-wide significant loci, while 

the factor loadings and model fit, gene-property analyses, genetic correlations, and polygenic 

score analyses are robust. Given the importance of data sharing for the advancement of open 

science, we recommend that investigators who share down-sampled summary statistics report 

these analyses as accompanying documentation to support other researchers’ use of the 

summary statistics. 

 

Abstract word count: 241.  
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Introduction  

The success of genome-wide association studies (GWASs) depends on sample size 

(Abdellaoui et al., 2023). Accordingly, genetics researchers increasingly depend on public-

private partnerships that pool data collected by academic researchers, national biobanks, and 

private companies. For example, the company 23andMe Inc. contributed an astonishing 2.5 

million observations to a recent GWAS of height (Yengo et al., 2022). However, to protect 

their interests, private companies place restrictions on the public sharing of GWAS summary 

statistics and require a potentially lengthy and burdensome application process for 

researchers to gain access. In some cases, researchers’ institutions are unwilling to agree to 

the legal terms set by private companies in their material transfer agreements. These 

restrictions pose a challenge to scientific transparency and slow the pace of genetic discovery. 

To address this challenge, researchers can publicly share down-sampled GWAS summary 

statistics that exclude restricted data (Coleman et al., 2020; Lee et al., 2018; Yengo et al., 

2022). This is an imperfect solution, as leaving out a large part of the study sample not only 

reduces power but can also change the genetic etiology of the trait being studied, potentially 

leading to substantial differences in downstream analyses (de Vlaming et al., 2017). For 

instance, down-sampling could influence estimates of genetic correlations with other traits, 

associations in polygenic score analyses, and insights from bioannotation analyses. We are 

only aware of one study investigating the effects of excluding restricted data from a 

univariate depression GWAS (Coleman et al., 2020), prior to including them in a meta-

analysis of mood disorders. The authors examined the robustness of SNP heritability 

estimates, genetic correlations, and gene identification. Although they identified fewer 

variants in the down-sampled analyses, results were otherwise similar, suggesting that 

excluding data in their study did not markedly change the genetic etiology of their focal 

phenotype. However, most of the studies providing down-sampled summary statistics have 

not evaluated the comparability with restricted data counterparts (Lee et al., 2018; Liu et al., 

2019; Wray et al., 2018). 

There have been few, if any, systematic investigations of how down-sampling affects 

results from multivariate GWASs. Multivariate GWAS methods, such as genomic structural 

equation modeling (Genomic SEM; Grotzinger et al., 2019), have become increasingly 

popular, as there is substantial genetic overlap across psychiatric and behavioral phenotypes. 

Genomic SEM models the shared genetic architecture among traits with latent factors 

representing cross-cutting genetic liabilities. Rather than just examining genetic associations 

with individual phenotypes, Genomic SEM enables the identification of shared genes. As in 
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phenotypic factor analysis, the construct represented by a latent factor could be sensitive to 

the choice of indicator phenotypes used in the factor analysis, or the construct might be fairly 

robust to this decision (Johnson et al., 2004, 2008). Using down-sampled univariate GWAS 

summary statistics as inputs in Genomic SEM could, therefore, identify a genetic factor 

structure that occupies a different position in genetic multivariate space. Yet, no studies to 

our knowledge have examined how down-sampling affects multivariate GWAS in the context 

of Genomic SEM.  

Here, we present a systematic approach to assess the comparability of down-sampled 

summary statistics with their full data counterparts and examine their suitability for typical 

follow-up analyses. We used externalizing, a latent factor representing a cross-cutting 

liability to behaviors and disorders characterized by problems with self-regulation, as our 

model phenotype. A previous multivariate GWAS by the Externalizing Consortium identified 

several hundred genomic loci associated with an externalizing (EXT) factor, reflecting shared 

genetic liability among seven indicator phenotypes (Karlsson Linnér et al., 2021): (1) 

attention-deficit/hyperactivity disorder (ADHD; Demontis et al., 2019), (2) problematic 

alcohol use (ALCP; Sanchez-Roige et al., 2019),  (3) lifetime cannabis use (CANN; Pasman 

et al., 2018), (4) reverse-coded age at first sexual intercourse (FSEX; Karlsson Linnér et al., 

2019), (5) number of sexual partners (NSEX; Karlsson Linnér et al., 2019), (6) general risk 

tolerance (RISK; Karlsson Linnér et al., 2019), and (7) lifetime smoking initiation (SMOK; 

Liu et al., 2019). However, the univariate GWASs on two of the seven phenotypes, SMOK 

and CANN, contain restricted data, which limits public sharing of the summary statistics 

from this multivariate GWAS (hereafter, the original study).  

Therefore, we developed the following six steps to investigate the robustness of down-

sampling and applied them to our scenario of assessing the impact of excluding restricted 

data from the original study (Karlsson Linnér et al., 2021). As an initial check, we suggest 

testing whether the genetic correlation between full and down-sampled GWASs on the same 

trait is less than unity, which would suggest imperfectly overlapping genetic etiology. The 

greater the discrepancy between the genetic correlation of the full and down-sampled 

GWASs on the same trait, the more important it is to evaluate the comparability of down-

sampled analyses. 

We recommend that investigators sharing down-sampled GWAS summary statistics 

report these analyses as documentation for use by other researchers: 

1. What is the loss of genetic signal in down-sampled univariate GWASs (which may 

later be used as indicator phenotypes in Genomic SEM)?  
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2. How do the factor loadings and factor model fit differ in multivariate Genomic SEM 

when the indicator phenotypes are down-sampled univariate GWASs?  

3. What is the loss of genetic signal at the factor level of multivariate GWAS when the 

indicator phenotypes are down-sampled univariate GWASs? 

4. How similar are gene-property analyses when using down-sampled GWASs? 

5. How similar is the pattern of genetic correlations with other traits when using down-

sampled GWASs?  

6. How much explanatory power is lost when using polygenic scores (PGSs) constructed 

from down-sampled GWASs?  
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Methods  

The code for the following analyses is publicly available here: 

https://github.com/Camzcamz/EXTminus23andMe and the externalizing minus 23andMe 

summary statistics are available here: https://externalizing.rutgers.edu/request-data/.    

1. What is the loss of genetic signal in down-sampled univariate GWASs? 

The following five key indicators are useful for evaluating the loss of genetic signal in 

down-sampled univariate GWASs: (1) effective sample size (EffN), (2) heritability, (3) mean 

χ
2, (4) genomic inflation factor, and (5) attenuation/stratification bias ratio of LD Score 

regression (see formula in Table 1). EffN is a transformation relevant for GWAS on binary 

traits that transforms an unbalanced number of cases and controls to effectively reflect the 

sample size of a balanced analysis (i.e., 50% cases). For a meta-analysis of k cohort-level 

univariate summary statistics, it is the sum of EffNk = 4*Vk (1-Vk)Nk, where ��  is the cohort-

specific proportion of cases, and �� is the cohort-specific total number of cases and controls. 

For GWAS on continuous traits, EffN can be replaced by the total sample size (N). The 

remaining four key indicators are standard estimates of LD Score regression (version 1.0.1; 

Bulik-Sullivan et al., 2015). 

We down-sampled the univariate GWASs of SMOK and CANN by mirroring the meta-

analysis protocol of the original study (Karlsson Linnér et al., 2021) and excluding restricted 

23andMe data. We then used these five key indicators to assess the loss of genetic signal in 

the down-sampled univariate GWASs (Table 1). Finally, we estimated genetic correlations 

among the seven indicator phenotypes in the down-sampled analysis using LD Score 

regression (Bulik-Sullivan et al., 2015) and compared them to genetic correlations among the 

indicator phenotypes in the original study (Figure 1, Table S1). 

Stable heritability estimates and attenuation ratios across the original and down-sampled 

indicators should yield comparable factor loadings in the down-sampled Genomic SEM 

factor analysis (Step 2), whereas loss of genetic signal, indicated by a decrease in mean χ2, 

should yield larger standard errors in the factor analysis and loss of statistical power to detect 

SNP effects in the multivariate GWAS (Step 3). 

2. How do the factor loadings and factor model fit differ in Genomic SEM when the 

indicator phenotypes are down-sampled univariate GWASs?  

Genomic SEM is a flexible modeling approach that (1) estimates an empirical genetic 

covariance matrix and sampling covariance matrix from input GWAS summary statistics, and 

(2) evaluates a set of conventional parameters for structural equation modeling, such as factor 

loadings and residual variances, to minimize the discrepancy between the model-implied and 
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empirical genetic covariance matrices (Grotzinger et al., 2019). Typically, a number of 

alternative models are compared (e.g., a single-factor model versus a two-factor model) 

followed by multivariate GWAS to estimate SNP effects on each of the factors in the 

preferred factor solution (Step 3). 

To assess the impact of down-sampling on the factor loadings and model fit, we 

suggest forcing the best-fitting factor solution from the Genomic SEM analysis of the full 

dataset (that includes restricted data) onto the empirical genetic covariance matrix of the 

down-sampled summary statistics, and then evaluating the stability of the factor loadings and 

factor model fit indicators (e.g., the comparative fit index or the root mean square residual). 

We do not suggest searching for a better factor solution with the down-sampled indicators 

because the aim is to evaluate whether down-sampled analyses are representative of their 

corresponding versions with restricted data. 

Thus, we ran the best-fitting Genomic SEM factor model of the original study 

(Karlsson Linnér et al., 2021): a single-factor model with seven indicator phenotypes 

(ADHD, ALCP, CANN, FSEX, NSEX, RISK, and SMOK), using unit variance identification 

of the factor model without SNP effects. However, in the analysis reported here, the input 

summary statistics for SMOK and CANN were replaced by down-sampled versions (see Step 

1). We refer to the original factor model based on analyses with 23andMe data as the EXT 

factor and the down-sampled version as the EXT-minus-23andMe factor (Table S2).  

3. What is the loss of genetic signal at the factor level of down-sampled multivariate 

GWAS when the indicator phenotypes are down-sampled univariate GWASs?  

After conducting a multivariate GWAS on the latent factors in down-sampled 

analyses with Genomic SEM, the loss of genetic signal at the factor level can be assessed by 

(i) examining the genetic correlation between the respective latent factors of the full and 

down-sampled summary statistics using bivariate LD Score regression (Bulik-Sullivan et al., 

2015) and by (ii) estimating the decrease in genetic signal with key indicators (1), (3), and (4) 

from Step 1. Please note that key indicators (2) and (5) are not used to evaluate the genetic 

signal of the latent factor because they are not clearly defined (e.g., heritability is defined as a 

ratio with phenotypic variance as denominator, which is arguably absent in latent genetic 

factors). 

To evaluate the overall loss of statistical power, we need to make assumptions about 

the magnitude of the SNP effects. One approach is to compute the squared standardized 
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coefficients1, approximated as �� � ��/�, and then evaluate the median among the subset of 

genome-wide significant SNPs (P < 5×10–8) in the down-sampled GWAS. Given that 

statistical power is the probability of correctly rejecting the null hypothesis when the 

alternative hypothesis is true, it can be computed as 1 � 	
����
�(c)], where 	
�� is the 

cumulative distribution function for a 2 distribution with 1 degree of freedom and the non-

centrality parameter � � ��� . The sample size, �, is set to the EffN of the summary statistics 

being evaluated. The term �
�(c) is the critical value (~29.7) at the threshold of genome-wide 

significance (P < 5×10–8) for a 2-test with 1 degree of freedom. As a complement, we 

suggest evaluating the power to detect arbitrary effect-size magnitudes, for which we selected 

three magnitudes representative of effects reaching genome-wide significance in recent large-

scale GWAS (�� � 0.003%, 0.004%, or 0.005%).  

As in the original study (Karlsson Linnér et al., 2021), we estimated individual SNP 

effects on the latent EXT-minus-23andMe factor with Genomic SEM, which we refer to as 

the EXT-minus-23andMe summary statistics. We then evaluated the loss of signal at the 

factor level (Figure S1–2). We expect the loss of power to be more noticeable at the level of 

individual loci compared to the follow-up analyses presented, which aggregate genetic signal 

across larger sets of SNPs or genome wide. 

4. How similar are gene-property analyses when using down-sampled GWASs? 

The biological correspondence of down-sampled univariate or multivariate GWAS 

can be evaluated by comparing the results from the Multi-marker analysis of genomic 

annotation (MAGMA) gene-property analyses in the SNP2GENE function of Functional 

Mapping and Annotation of Genome-Wide Association Studies (FUMA; Watanabe et al., 

2017); version 1.5.0e) software using Spearman rank correlations of point estimates.  

As done in the original paper, we ran gene-property analyses on the EXT minus 

23andMe summary statistics to (1) test 54 tissue-specific gene expression profiles, and (2) 

test gene expression profiles across 11 brain tissues and developmental stages with reference 

data from BrainSpan (Allen Institute for Brain Science., 2022). We used the default settings 

of SNP2GENE, which match those used to conduct the gene-based analyses reported in the 

original study (Karlsson Linnér et al., 2021).  

We additionally used FUMA to extract the number of lead SNPs associated with EXT 

and EXT-minus-23andme. FUMA conducts conventional linkage-disequilibrium (LD) 

                                                 
1 An approximate measure of variance explained (R2), standardized with respect to the outcome. 
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informed pruning (“clumping”) of GWAS summary statistics to count the number of near-

independent genome-wide significant lead SNPs. When clumping, FUMA computes LD with 

the publicly available European subsample of the 1000 Genomes Phase 3 reference panel as 

the default setting (though, researchers should depart from this default to match the genetic 

ancestry of the down-sampled GWAS being evaluated). Please note that these analyses differ 

from the original study in terms of clumping parameters and LD reference panel.  

Because power loss is more noticeable at the level of individual SNPs compared to 

methods that aggregate genetic signal among sets of SNPs or genome-wide, we recommend 

researchers interested in following up on individual SNPs use the original and not the down-

sampled summary statistics for best precision.  

5. How similar is the pattern of genetic correlations with other traits when using down-

sampled GWASs?  

To assess the convergent and discriminant validity of down-sampled multivariate 

GWAS on latent factors, we can examine potential changes in the pattern of genetic 

correlation with other traits. If the down-sampled analysis tags the same genetic etiology, the 

confidence intervals of the point estimates should display considerable overlap. The overall 

pattern can be examined by estimating the rank correlation of the point estimates across traits, 

whereas significance of changes to individual genetic correlations can be assessed using a t-

test. 

The original study estimated genetic correlations between EXT and 91 other traits 

(Karlsson Linnér et al., 2021). Here, we performed the same analysis for EXT-minus-

23andMe and then examined whether the pattern of genetic overlap was preserved after 

removing restricted data. Since the summary statistics of some of the 91 traits in the original 

study include restricted data, we conducted these analyses on the 79 traits with publicly 

available summary statistics (Table S5). 

6. How much explanatory power is lost when using polygenic scores (PGSs) constructed 

from down-sampled GWASs?  

Generally, the loss of genetic signal from down-sampling will only exacerbate the 

problem of measurement error in PGSs constructed with finite-sample estimates as weights 

(Becker et al., 2021). As one of the most common third-party applications of publicly 

available GWAS summary statistics, we strongly encourage researchers to evaluate the loss 

of explanatory power in their main PGS analysis before they share down-sampled summary 

statistics with other users. This loss can be evaluated (i) across traits, as indicated by the 

overall reduction in variance explained (R2/pseudo-R2) and (ii) with the rank correlation of 
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point estimates to evaluate the comparability of the overall pattern of polygenic score 

associations. 

Following the original study protocol (Karlsson Linnér et al., 2021), we constructed 

PGSs in two hold-out samples: the Collaborative Study on the Genetics of Alcoholism 

(COGA; Begleiter, 1995; Bucholz et al., 2017; Edenberg, 2002); N = 7,594) and the National 

Longitudinal Study of Adolescent to Adult Health (Add Health; Harris et al., 2013; McQueen 

et al., 2015); N = 5,107). We constructed the PGSs from the EXT-minus-23andMe summary 

statistics (EXT-minus-23andMe PGS), adjusted for LD with PRS-CS (version 20 October 

2019; Ge et al., 2019), which restricts the PGS to ~1 million HapMap3 SNPs. The default 

settings are sensible for most standard uses (Bayesian gamma-gamma prior of 1 and .5, and 

1,000 Monte Carlo iterations with 500 burn-in iterations).  

We compared the explanatory power of the EXT-minus-23andMe PGSs with the one 

reported in the original study from analyses of a phenotypic externalizing factor, followed by 

a set of outcomes related to, or affected by, externalizing behaviors and disorders (e.g., 

smoking initiation, substance-use disorders, or childhood developmental disorders) (Table 

S6). Linear regression was applied to continuous outcomes and logistic regression to 

dichotomous outcomes. We evaluated the incremental R2/pseudo-R2 by subtracting the 

variance explained by a baseline model with only covariates (age, sex, and the first ten 

genetic principal components) from the variance explained by a model with the covariates 

and PGS. Confidence intervals were estimated with the percentile bootstrap method (1,000 

iterations). We then evaluated whether the coefficient estimates of the down-sampled EXT-

minus-23andMe PGSs were comparable to the estimates of the PGS of EXT from the original 

paper (Figure 4). 

We are aware of recent suggestions to evaluate the squared (semi-)partial correlation 

in favor of the incremental R2/pseudo-R2, but the results of these two alternatives approaches 

are often highly similar (except when analyzing height). For comparability with the original 

study, we retained the incremental R2/pseudo-R2 measure.  
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Results  

1. What is the loss of genetic signal in down-sampled univariate GWASs? 

In the initial check of genetic overlap between the full and down-sampled summary 

statistics of the same trait, we found genetic correlations close to, but still significantly less 

than unity: 0.966 (SE = 0.007) for SMOK and 0.953 (SE = 0.012) for CANN2, which 

motivated us to apply our approach to evaluate the comparability of the down-sampled 

summary statistics to those from the original paper.  

The loss of genetic signal was evaluated using the five key indicators. First, down-

sampling reduced the EffN of the two univariate GWASs on SMOK and CANN by about 

47% and 12%, respectively (Table 1), which is a marked reduction with potential down-

stream consequences. However, down-sampling did not meaningfully impact heritability 

estimates nor the attenuation/stratification bias ratio, which is important for expecting a 

comparable factor structure in the multivariate analysis below. Similarly, down-sampling did 

not meaningfully influence the genetic correlations among the seven indicator phenotypes 

(Figure 1), which increases the expectation of obtaining a similar factor structure. 

Nevertheless, there was a noticeable loss of genetic signal as measured by mean χ2 and 

the genomic inflation factor. The greatest decrease was observed for the down-sampled 

GWAS on SMOK (Δ mean χ2 = 2.06 – 3.15 = –1.09; –34.6%), while the decrease for CANN 

was less pronounced (–1.3%). Similar decreases were observed for the genomic inflation 

factor: –25.9% and –1.0% for SMOK and CANN, respectively. The overall stability we 

observed for the heritability estimates and attenuation ratios suggest that the factor loadings 

in the down-sampled Genomic SEM factor analysis will resemble those of the original paper 

(Step 2). The decrease in genetic signal in SMOK and CANN should translate into larger 

standard errors in the factor analysis and loss of statistical power to detect SNP effects in the 

multivariate GWAS of EXT-minus-23andMe (Step 3). 

 

                                                 
2 Estimated with the chi-square cut-off set to 30, i.e., the default cut-off applied by bivariate LD Score 
regression when estimating the heritability. To our knowledge, there is no consensus on the best cut-off to use. 
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Table 1. Summary of GWAS summary statistics with and without 23andMe data for seven externalizing-related disorders and behaviors  

 EXT (Karlsson Linnér et al., 2021) Down-Sampled EXT (minus 23andMe) 

Phenotype  
Max N 
(EffN)  

h2  
(SE) 

λGC Mean χ2 Intercept Ratio 
Max N 
(EffN)  

h2  

(SE) 
λGC Mean χ2 Intercept Ratio 

ADHD 
53,293 

(49,017) 
0.235 

(0.015) 
1.25 1.297 1.034 0.113 

53,293 
(49,017) 

0.260 
(0.017) 

1.253 1.297 1.034  0.113  

ALCP 
164,684 

(150,640) 
0.055 

(0.004) 
1.15 1.174 1.013 0.073 

164,684 
(150,640) 

0.055 
(0.004) 

1.149 1.174 1.013 0.073 

CANN 
186,875 

(179,534) 
0.066 

(0.004) 
1.23 1.267 1.026 0.098 

164,192 
(157,230) 

0.068 
(0.004) 

1.217 1.245 1.028  0.113  

FSEX* 357,187 
0.115 

(0.004) 
1.62 1.869 1.036 0.041 357,187 

0.115 
(0.004) 

1.626 1.868 1.036  0.041 

NSEX 336,121 
0.097 

(0.004) 
1.49 1.682 1.027 0.041 336,121 

0.099 
(0.004) 

1.493 1.674 1.027  0.041 

RISK 426,379 
0.053 

(0.002) 
1.37 1.461 1.019 0.041 426,379 

0.053 
(0.002) 

1.372 1.461 1.019  0.041 

SMOK 
1,251,809 

(1,232,397) 
0.078 

(0.002) 
2.33 3.152 1.126 0.058 

652,520 
(652,518) 

0.079 
(0.003) 

1.726 2.062 1.037  0.035  

EXT: Externalizing. Highlighted cells indicate down-sampled summary statistics. EffN = sum of cohort-level effective sample sizes. The 
statistics reported in this table were all estimated with LD Score regression (v1.0.1)(Bulik-Sullivan et al., 2015) : Heritability (h2) is on the 
observed scale. The genomic inflation factor, λGC, is the median χ2 statistic divided by the expected median of the χ2 distribution with 1 degree of 
freedom. Mean χ2 is the average χ2 statistic. Intercept is the estimated LD Score regression intercept. The ratio measures stratification bias, 
defined as (intercept�−�1)/(mean χ2

�−�1). Abbreviations: ADHD = attention-deficit/hyperactivity disorder; ALCP = problematic alcohol use; 
CANN = lifetime cannabis use; FSEX = age at first sexual intercourse (reverse coded*); NSEX = number of sexual partners; RISK = risk 
tolerance; SMOK = lifetime tobacco initiation. *Age at first sex was reverse coded so as to expect a positive relationship with EXT.
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Fig 1. LD Score genetic correlations and heritability estimates for the seven indicator phenotypes of the 

single-factor models of EXT and EXT-minus-23andMe (see Step 1). The left panel displays the analysis of 

the original study with 23andMe data, the middle panel displays the down-sampled analysis excluding 

23andMe data, and the right panel displays the difference in estimates computed by subtracting the values in 

the middle panel from those in the left panel. The lower and upper triangles display pairwise genetic 

correlation (rg) estimates and standard errors, respectively. The diagonals display the observed-scale 

heritability (h2; see Table 1 for standard errors). These results are also reported in Table S1. Abbreviations: 

ADHD = attention-deficit/hyperactivity disorder; ALCP = problematic alcohol use; CANN = lifetime 

cannabis use; FSEX = age at first sexual intercourse (reverse coded); NSEX = number of sexual partners; 

RISK = risk tolerance; SMOK = lifetime tobacco initiation.  
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2. How do the factor loadings and factor model fit differ in multivariate Genomic SEM 

when the indicator phenotypes are down-sampled univariate GWASs?  

The factor loadings, residual variances, and model fit statistics were comparable in the 

down-sampled single factor solution (Figure 2; Table S2). Neither the factor loadings nor 

residual variances were statistically different from the original estimates. The largest non-

significant difference was observed for the factor loading of the indicator phenotype RISK, 

which increased from 0.54 (SE = 0.03) to 0.56 (SE = 0.03). A similar-sized, non-significant 

decrease was observed for CANN: from 0.77 (SE = 0.03) to 0.75 (SE = 0.03). Furthermore, 

the comparative fit index (CFI) and standardized root mean square residual (SRMR) were 

similar between the down-sampled and original factor models and were within the 

preregistered thresholds for “good fit” (i.e., CFI > 0.9, and SRMR < 0.08) of the original 

study (Karlsson Linnér et al., 2021). In our example, we obtain close to identical factor 

loadings and model fit when applying the best-fitting factor solution of the original study to 

the empirical genetic covariance matrix of the down-sampled summary statistics. 

 
Fig 2. Path diagram of a single-factor model with seven indicator phenotypes, of which SMOK and CANN are 

down-sampled, as estimated with Genomic SEM. These results are also reported in Table S2. The same figure 

displaying the results of the original study is available here: https://www.nature.com/articles/s41593-021-00908-

3/figures/1 Abbreviations: EXT g = genetic externalizing factor; ADHD = attention-deficit/hyperactivity 

disorder; ALCP = problematic alcohol use; CANN = lifetime cannabis use; FSEX = age at first sexual 

intercourse (reverse coded); NSEX = number of sexual partners; RISK = risk tolerance; SMOK = lifetime 
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tobacco initiation; AIC = Akaike Information Criterion; CFI = comparative fit index; SRMR = standardized root 

mean square residual.
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3. What is the loss of genetic signal at the factor level of multivariate GWAS when the 

indicator phenotypes are down-sampled univariate GWASs?  

We estimated a multivariate GWAS of the EXT-minus-23andMe factor (see Step 2). 

The genetic correlation between the summary statistics from the multivariate GWAS of EXT 

and EXT-minus-23andMe was strong but significantly less than unity (rg = 0.978, SE = 

0.001), which motivated Steps 4–6. The ���� of the multivariate GWAS of EXT-minus-

23andMe was 1,045,957 (about 70.1% of that on EXT). The mean χ2s of the EXT and EXT-

minus-23andMe factors were 3.12 and 2.37, respectively, corresponding to a 24% decrease. 

The reduction in the genomic inflation factor was similar (–18%). Thus, there was an 

appreciable loss of genetic signal in the down-sampled GWAS of EXT-minus-23andMe. 

The reduction in mean χ2 and genomic inflation factor suggested some loss of power 

to detect SNP effects. Down-sampling decreased the power by 17.8pp to detect the median of 

squared standardized coefficients among the genome-wide significant SNPs (i.e., median r2 = 

0.0038%), and about 5–45pp less power to detect the three assumed effect-size magnitudes 

(�� � 0.003%, 0.004%, or 0.005%) (Figures S1–2).  

4. How similar are the gene-property analyses when using down-sampled GWASs? 

We ran gene-property analyses using MAGMA on the EXT-minus-23andMe 

summary statistics. The Spearman rank correlation of the point estimates from the MAGMA 

54 tissues-specific gene expression profiles on the down-sampled and restricted data 

multivariate GWAS summary statistics was 0.98, suggesting a comparable pattern of gene-

tissue expression (Table S3 and Figure S4). The Spearman rank correlation of the point 

estimates from the MAGMA gene expression profiles across 11 brain tissues and 

developmental stages also suggested great similarity (r = 0.98) (Table S4 and Figure S5). 

Furthermore, the same 14 tissues, and three developmental stages, remained significant after 

Bonferroni-correction in the down-sampled analysis (Table S3–4). This evaluation showed 

that, in the case of EXT-minus-23andMe, the down-sampled gene-property analyses led to 

similar biological insights as those from the original paper (Karlsson Linnér et al., 2021). 

Pruning of the summary statistics to near-independent lead SNPs (using the FUMA 

default settings), identified 358 lead SNPs for EXT-minus-23andMe, as compared to 825 lead 

SNPs for EXT. Note that the number of lead SNPs reported here for EXT differs from the 

original study because that study used a restricted-access genetic reference panel and 

different settings for the pruning parameters. In our scenario, down-sampling reduced the 

number of near-independent lead SNPs by 56.6%. Therefore, we recommend that users 
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interested in following up on individual genome-wide significant SNPs associated with 

externalizing prioritize the version with 23andMe data. 

5. How similar is the pattern of genetic correlations with other traits when using down-

sampled GWASs?  

We assessed the pattern of genetic correlations of EXT-minus-23andMe with other traits 

and found this pattern to nearly identical to that of the original study (Spearman r ~ 1) 

(Figure 3, Table S5). Furthermore, none of the point estimates were statistically different. 

Thus, in our scenario, down-sampling did not meaningfully impact the genetic correlations 

with other traits, meaning that researchers interested in such analyses can safely proceed with 

using the down-sampled summary statistics. 

 

Fig 3. Scatterplot of genetic correlations (rg) and marginal density plots between EXT (y-axis) or EXT-

minus-23andMe (x-axis) with 77 other phenotypes. Each point corresponds to the genetic correlation 

coefficient with its 95% confidence intervals (�� �1.96 � �	) estimated with bivariate LD Score regression. 

Table S5 reports the estimates, their standard errors, and confidence intervals. The Spearman rank correlation 

reported in the figure is rounded from r = 0.9995. No particular shape, such as a normal distribution, is 

expected for the marginal density because the figure displays an arbitrary selection of traits. 
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6. How much explanatory power is lost when using polygenic scores (PGSs) constructed 

from down-sampled GWASs? 

The down-sampled PGS for EXT-minus-23andMe explained 8.4% and 8.5% of the 

variance of a phenotypic externalizing factor in Add Health and COGA, respectively, which 

is 1.9pp and 0.5pp less compared to the same analysis in the original study (Table S6). The 

overall reduction in explanatory power across other outcomes was less pronounced, on 

average 0.35pp in Add Health, and 0.23pp in COGA. The largest decrease was observed for 

lifetime smoking initiation with 2.1pp and 1.7pp, followed by lifetime cannabis use with 

1.1pp in Add Health (but only 0.55pp in COGA), which may be explained by these two 

indicator phenotypes being most affected by the down-sampling. For most other traits, the 

variance explained by the down-sampled PGS was comparable to the original study.  

Secondly, the Spearman rank correlation of the regression coefficients was 0.996, 

suggesting great similarity in point estimates (Figure 4). All the coefficients of the down-

sampled PGS fell within the confidence intervals of their original study counterparts (Table 

S6), except those for the phenotypic externalizing factor (in Add Health), lifetime smoking 

initiation, and lifetime cannabis use (in Add Health). Overall, our down-sampled polygenic 

score results were comparable to those from the original study, meaning that researchers 

interested in using the down-sampled summary statistics to construct PGS for EXT-minus-

23andMe can generally expect similar results. However, we recommend the users be aware 

of the weaker explanatory power for certain outcomes. 
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Fig 4. Comparison of the down-sampled polygenic score (PGS) analyses in Add Health (29 phenotypes) and 

the Collaborative Study on the Genetics of Alcoholism (COGA; 26 phenotypes). Panel A displays the 

standardized difference between the coefficient estimates (i.e., a Z-statistic) of the down-sampled PGS for 

EXT-minus-23andMe versus the PGS for EXT from the original study. Absolute values were evaluated so 

that a negative standardized difference refers to an attenuation towards zero in the down-sampled analysis. 

Panel B displays the same measure but as a histogram. Four coefficient estimates were significantly (at the 

5% level) attenuated in the down-sampled analysis: lifetime smoking initiation (Add Health and COGA; P = 

3.18×10–5 and 4.17×10–5, respectively), the phenotypic externalizing factor (Add Health; P = 0.046), and 

lifetime cannabis use (Add Health, P = 0.03). None of the coefficients were significantly larger in the down-

sampled analysis. Panel C displays a scatter plot of the absolute value of the coefficient estimates divided by 

their respective standard errors (i.e., a Z-statistic). These results are also reported in Table S6. 
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Discussion  

Unrestricted access to data and results is the cardinal tenet of open science. Here, we 

propose a systematic approach (i) to evaluate the comparability of down-sampled GWAS 

summary statistics with their restricted data counterparts, and (ii) to assess the impact of 

using down-sampled univariate summary statistics in multivariate GWAS with Genomic 

SEM. We examined the loss of genetic signal in down-sampled univariate GWAS (Step 1), 

the change in the factor model loadings and fit (Step 2), the loss of genetic signal at the 

factor-level of down-sampled multivariate GWAS (Step 3); and for potential changes to 

gene-property analyses (Step 4), the pattern of genetic correlations with other traits (Step 5), 

and the explanatory power of polygenic score analyses in independent samples (Step 6).  

We applied these steps to the largest available multivariate GWAS of externalizing to 

evaluate the quality and predictive performance of the results following restricted data 

removal. We found nearly identical model fit and parameter estimates, genetic correlations 

with other phenotypes, and polygenic score analyses of externalizing phenotypes in 

independent samples. As expected, we observed a decrease in power and genetic signal in the 

down-sampled univariate and multivariate summary statistics. Although fewer lead SNPs 

were identified for EXT-minus-23andMe compared to EXT, the genes associated with EXT 

and EXT-minus-23andMe were similar in terms of region and developmental timing of 

expression. In the PGS context, EXT and EXT-minus-23andMe performed similarly well. 

Therefore, while we suggest that the down-sampled summary statistics may be used in 

analyses related to gene enrichment, genetic correlations, or polygenic scores, the summary 

statistics with restricted data should be prioritized for gene identification or following up on 

genome-wide significant hits.  

In our example, removing restricted data did not change the construct that was 

identified by genetic factor analysis: The genetic correlation between the factor identified 

without 23andMe data and the factor identified with 23andMe data was near unity, and the 

factors had highly similar associations with external variables. But this outcome is not 

guaranteed. Removing restricted data may be more impactful for univariate GWASs prior to 

their inclusion in meta-analyses and multivariate GWAS with different indicator phenotypes 

and model structures. The consistency we observed between EXT and EXT-minus-23andMe 

is likely explained by the inclusion of restricted data in only a subset of indicators, with just 

one of seven summary statistics experiencing a substantive reduction in genetic signal (i.e., 

35% decrease in the mean χ2 of SMOK). In the circumstance that more indicators had 
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included 23andMe data, we could have expected greater discrepancies between EXT and 

EXT-minus-23andMe. 

The issues raised here are also relevant in the context of GWAS meta-analyses. 

Removing a restricted set of cohort-level summary statistics from a single-phenotype GWAS 

meta-analysis should mainly affect power if the genetic correlation between the cohort-level 

summary statistics is close to unity. However, considering that genetic correlations between 

cohort-level GWASs of the same trait can be substantially less than unity (Levey et al., 

2021), removing a large cohort from the meta-analysis can change the genetic etiology of the 

trait being studied (de Vlaming et al., 2017). Researchers should thus use the approach 

presented here to examine potential changes in a phenotype's genetic etiology alongside the 

expected power reduction after removing a sample from their GWAS meta-analysis. To our 

knowledge, this has only been done by one meta-analysis (Coleman et al., 2020), where the 

authors conducted a subset of the steps described in the present study (e.g., changes in 

heritability, genetic correlations with external variables, and gene enrichment analyses). 

Therefore, the utility of our systematic approach goes beyond the Genomic SEM context, as 

some of these steps may apply to other multivariate GWAS implementations.  

Providing public summary statistics to the wider research community is crucial to 

facilitating open science and advancing behavioral and biomedical research. The first step in 

this process should be to evaluate the comparability of down-sampled summary statistics and 

their restricted data counterparts. Herein, we provide a systematic approach to investigators 

who resort to sharing down-sampled GWAS summary statistics and recommend they report 

these analyses as accompanying documentation to facilitate open science and data sharing. 
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Figure S1. Power analysis of down-sampled GWAS summary statistics. The figure displays the statistical power 
to detect three arbitrary effect-size magnitudes at genome-wide significance (P < 5×10–8) as a function of sample 
size. The three magnitudes were selected to represent smaller magnitudes that reach genome-wide significance in 
recent large-scale GWAS. The dashed lines mark the sample size of the original multivariate GWAS of EXT 
(EffN = 1,492,085), and that of the down-sampled multivariate GWAS of EXT-min-23andMe (EffN = 1,045,957). 
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Figure S2. Quantile-quantile (Q-Q) plot. The y-axis shows the observed association P value on the –log10 scale (for 
a two-sided Z-test) among the 6,170,305 SNPs in the multivariate GWAS of EXT-min-23andMe (EffN = 1,045,957), 
which are plotted against the expected –log10(P) of the null distribution. The gray shaded area shows 95% 
confidence intervals centered on the null distribution. The genomic inflation factor in the figure, ���, is the median 
�� association test statistic divided by the expected median of the �� distribution with 1 degree of freedom. This 
estimate of ��� differs somewhat from that of LD Score regression, which estimates this statistic using only ~1 
million SNPs. The same plot for the original study is available here: https://www.nature.com/articles/s41593-021-
00908-3/figures/6
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Figure S3. Manhattan plot of the GWAS of the EXT-min-23andMe factor, estimated with Genomic SEM (EffN = 
1,045,957). The figure displays association P values on the –log10 scale (two-sided) for 505,254 with P < 0.01 
out of 6,170,304 SNPs tested for association. The dashed line represents genome-wide significance (P < 5×10–8) 
and the dotted line shows suggestive significance (P < 1×10–5). A Manhattan plot of the corresponding GWAS 
analysis in the original study of EXT is available here: https://www.nature.com/articles/s41593-021-00908-
3/figures/2 
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Figures S4. Bar plot of MAGMA gene-property analysis of enrichment in 54 bodily tissues. The figure displays P 
values on the –log10 scale (from one-sided Z-tests) of the point estimate from a generalized least squares 
regression, estimated with MAGMA as implemented in FUMA. The analysis was applied to the summary 
statistics from the down-sampled multivariate GWAS of EXT-min-23andMe (EffN = 1,045,957). Dashed line 
denotes Bonferroni-corrected significance, adjusted for testing 54 tissues (one-sided P�<�9.26×10–4). These 
results are also reported in ST3. The same 14 tissues identified in the original study were also found significantly 
associated with the down-sampled multivariate GWAS of EXT-min-23andMe. The same plot for the original 
study is available here: https://www.nature.com/articles/s41593-021-00908-3/figures/9 
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Figure S5. Bar plot of MAGMA gene-property analysis of enrichment in brain tissues across 11 developmental 
stages (BrainSpan). The figure displays P values on the –log10 scale (from one-sided Z-tests) of the point 
estimate from a generalized least squares regression, estimated with MAGMA as implemented in FUMA. The 
analysis was applied to the summary statistics from the down-sampled multivariate GWAS of EXT-min-
23andMe. These results are also reported in ST4. Dashed line denotes Bonferroni-corrected significance, adjusted 
for testing 11 developmental stages (one-sided P�<�4.55×10–3). The same three developmental stages identified 
in the original study were also found significantly associated with the down-sampled multivariate GWAS of EXT-
min-23andMe. The same plot for the original study is available here: https://www.nature.com/articles/s41593-
021-00908-3/figures/10 
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