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Abstract
In	modern	wildlife	ecology,	spatial	population	genetic	methods	are	becoming	increas-
ingly	applied.	Especially	for	animal	species	in	fragmented	landscapes,	preservation	of	
gene	flow	becomes	a	high	priority	target	in	order	to	restore	genetic	diversity	and	pre-
vent	local	extinction.	Within	Central	Europe,	the	Alps	represent	the	core	distribution	
area	of	the	black	grouse,	Lyrurus tetrix.	At	its	easternmost	Alpine	range,	events	of	sub-
population	extinction	have	already	been	documented	in	the	past	decades.	Molecular	
data	combined	with	spatial	analyses	can	help	to	assess	landscape	effects	on	genetic	
variation	 and	 therefore	 can	 be	 informative	 for	 conservation	 management.	 Here,	
we	addressed	whether	the	genetic	pattern	of	the	easternmost	Alpine	black	grouse	
metapopulation	system	is	driven	by	 isolation	by	distance	or	 isolation	by	resistance.	
Correlative	ecological	niche	modeling	was	used	to	assess	geographic	distances	and	
landscape	resistances.	We	then	applied	regression-	based	approaches	combined	with	
population	genetic	analyses	based	on	microsatellite	data	to	disentangle	effects	of	iso-
lation	by	distance	and	isolation	by	resistance	among	individuals	and	subpopulations.	
Although	population	genetic	analyses	revealed	overall	low	levels	of	genetic	differenti-
ation,	the	ecological	niche	modeling	showed	subpopulations	to	be	clearly	delimited	by	
habitat	structures.	Spatial	genetic	variation	could	be	attributed	to	effects	of	isolation	
by	distance	among	individuals	and	isolation	by	resistance	among	subpopulations,	yet	
unknown	effects	might	factor	in.	The	easternmost	subpopulation	was	the	most	dif-
ferentiated,	and	at	the	same	time,	immigration	was	not	detected;	hence,	its	long-	term	
survival	might	be	 threatened.	Our	 study	provides	valuable	 insights	 into	 the	 spatial	
genetic	variation	of	this	small-	scale	metapopulation	system	of	Alpine	black	grouse.

K E Y W O R D S
conservation	genetics,	ecological	niche	modeling,	isolation	by	distance,	isolation	by	resistance,	
Lyrurus tetrix,	maximum	likelihood	population	effects	(MLPE)	models
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1  |  INTRODUC TION

Spatial	 population	 genetic	methods	 are	 increasingly	 used	 in	mod-
ern	 wildlife	 ecology	 and	 conservation.	 Particularly	 for	 species	 in	
fragmented	landscapes,	maintaining	gene	flow	is	of	high	relevance	
to	preserve	genetic	diversity	and	minimize	extinction	risks	of	pop-
ulations	 and	 species	 (Frankham	 et	 al.,	 2010).	 Various	 frameworks	
and	concepts	can	be	applied	 to	 identify	 the	 spatial	distribution	of	
genetic	data	(Sexton	et	al.,	2014;	Wagner	&	Fortin,	2013;	Wang	&	
Bradburd,	 2014)	 and	 are	 the	basis	 to	 understand	 the	 structure	of	
populations	and	infer	management	strategies.	Isolation	by	distance	
(IBD)	describes	the	positive	relationship	between	genetic	differenti-
ation	and	geographic	distance	(usually	driven	by	a	species'	dispersal;	
Wright,	1943),	a	pattern	commonly	observed	 in	panmictic	popula-
tions	 (Sexton	 et	 al.,	 2014).	However,	 the	 spatial	 genetic	 structure	
of	wildlife	species	can	be	affected	by	several	co-	occurring	 factors	
and	processes	beyond	Euclidean	distances	(Balkenhol	et	al.,	2016).	
Therefore,	the	concept	of	 isolation	by	resistance	(IBR)	 is	of	partic-
ular	 interest	 in	 wildlife	 conservation	 genetics	 (McRae,	 2006).	 IBR	
describes	the	relationship	between	genetic	differentiation	and	land-
scape	 resistance	and	can	be	affected	by	various	 factors	hindering	
the	 chance	 of	 migration	 and	 dispersal	 through	 the	 environment	
(Wagner	&	Fortin,	2013;	Wang	&	Bradburd,	2014).	Apart	 from	 in-
trinsic,	species-	specific	drivers	such	as	dispersal	strategies	(Corrales	
&	 Höglund,	 2012;	 Lampert	 et	 al.,	 2003)	 or	 dispersal	 capabilities	
(Bech	 et	 al.,	 2009),	 extrinsic	 factors	 like	 landscape	 topography,	
vegetational	cover,	and	anthropogenic	factors	might	shape	the	ex-
tent	of	gene	flow	and	spatial	genetic	variation	(Cushman,	2006).	In	
order	 to	maintain	 gene	 flow,	 preservation	 and	 reestablishment	 of	
connectivity	are	primary	targets	in	wildlife	conservation	(Kettunen	
et	 al.,	 2007).	 It	 is	 thereby	 essential	 for	 conservation	management	
to	understand	the	drivers	of	spatial	genetic	variation,	especially	for	
connectivity	 assessments	 and	 conservation	 strategies	 for	 ground-	
dwelling,	elusive	species.

Forest	grouse	(Galliformes,	Tetraoninae)	are	such	species.	Many	
populations	of	these	birds	are	of	high	conservation	concern	due	to	
declining	trends	and	increasing	habitat	fragmentation	(Storch,	2007).	
Well-	documented	dispersal	capabilities	combined	with	general	site	
fidelity	of	adult	individuals	result	in	genetic	structure	on	a	fine	spa-
tial	 scale	 (Klinga	 et	 al.,	 2015;	 Rutkowski	 et	 al.,	 2017;	 Sittenthaler	
et	al.,	2018),	making	grouse	important	model	systems	to	study	driv-
ers	of	spatial	genetic	variation.	The	black	grouse	(Lyrurus tetrix)	was	
specifically	targeted	by	several	genetic	studies	as	it	 is	of	high	con-
servation	concern	(Corrales	et	al.,	2014;	Höglund,	2009;	Rutkowski	
et	 al.,	 2018).	 Having	 a	 distribution	 range	 from	 Great	 Britain	 to	
Siberia,	it	shows	a	worldwide	decreasing	population	trend	(BirdLife	
International,	2016),	and	especially	European	populations	declined	
dramatically	or	became	extinct	in	the	past	decades	(Höglund	et	al.,	
2007;	Larsson	et	al.,	2008;	Rutkowski	et	al.,	2018;	Segelbacher	et	al.,	
2014;	Watson	&	Moss,	2008).	Most	of	the	remaining	populations	are	
either	isolated	or	exist	within	a	metapopulation	context	(Caizergues	
et	al.,	2003;	Höglund	et	al.,	2007).	It	is	consequently	listed	in	Annex	I	
and	II	of	the	EU	Birds	Directive	(Directive	2009/147/EC),	and	special	

conservation	measurements	must	be	taken	to	ensure	its	long-	term	
survival.	Core	areas	of	the	black	grouse	Central	European	distribu-
tion	are	located	in	the	Alps	(BirdLife	International,	2016;	Klaus	et	al.,	
1990),	where	the	species	shows	a	strong	affinity	to	the	tree-	line	eco-
tone	(Sachser	et	al.,	2017).	This	ecosystem	is	mainly	characterized	by	
a	patchy	mixture	of	open,	grassy	vegetation	and	woody	plants	with	
varying	but	typically	low	canopy	closure.	Alpine	black	grouse	usually	
avoid	patches	with	a	dense	tree	canopy	closure	(Immitzer	et	al.,	2014;	
Patthey	 et	 al.,	 2012;	 Sachser	 et	 al.,	 2017;	 Schweiger	 et	 al.,	 2012),	
and	open,	elevated	habitat	patches	are	preferred	sites	 for	 lekking.	
Dispersal	of	black	grouse	 is	 typically	 sex-	biased	with	natal	disper-
sal	of	females	and	philopatry	of	males	(Caizergues	&	Ellison,	2002;	
Corrales	 &	 Höglund,	 2012).	 Female	 dispersal	 usually	 occurs	 over	
distances	of	up	 to	8	km	 (Caizergues	&	Ellison,	2002;	Marjakangas	
&	 Kiviniemi,	 2005;	 Warren	 &	 Baines,	 2002;	 Willebrand,	 1988).	
Although	 in	 rare	events,	black	grouse	 traverse	 longer	distances	 in	
flight	(potentially	enabling	gene	flow	over	impermeable	landscapes),	
it	is	in	general	a	sedentary	bird	species,	responding	sensitively	to	the	
spatial	 structure	 of	 habitats.	 Being	mainly	 ground-	dwelling	 (Klaus	
et	al.,	1990),	black	grouse	therefore	serves	as	an	 indicator	species	
for	its	ecosystem	(Storch,	2007),	and	habitat	factors	are	assumed	to	
be	key	factors	for	movement	behavior	and	dispersal.

Black	grouse	habitats	within	the	Alps	are	naturally	separated	by	
high	mountain	ridges	and	 low	valleys	 (Caizergues	&	Ellison,	2002).	
Over	 the	 last	 decades,	 abandonment	 of	 alpine	 pastures	 (Groier,	
2010)	and	impacts	of	climate	change	affected	the	plant	community	
distribution	 (Gehrig-	Fasel	 et	 al.,	 2007;	 Theurillat	&	Guisan,	 2001),	
which	resulted	 in	a	distinct	 loss	of	open	habitats	and	 in	altitudinal	
shifts	of	the	tree-	line	ecotone	(Tasser	et	al.,	2007),	significantly	re-
ducing	the	available	habitat	for	black	grouse.	Furthermore,	habitats	
became	increasingly	fragmented	by	human	settlements,	agricultural	
areas,	expanding	skiing	areas,	wind	power	facilities,	and	other	human	
activities	(Arlettaz	et	al.,	2007;	Coppes	et	al.,	2017;	Immitzer	et	al.,	
2014;	 Ingold,	 2005).	 These	 effects	 become	 particularly	 important	
at	 the	marginal	areas	of	 the	species'	distribution.	For	 the	eastern-
most	black	grouse	occurrences	of	 the	Alpine	distribution,	situated	
in	the	Austrian	province	of	Styria	(Figure	1),	genetic	differentiation	
into	distinct	clusters	has	already	been	observed	(Sittenthaler	et	al.,	
2018),	 and	 multiple	 extinction	 events	 of	 marginal	 subpopulations	
have	been	documented	in	the	past	decades	(Wöss	&	Zeiler,	2003).	
It	remained	unclear	whether	the	spatial	genetic	variation	was	driven	
by	the	mere	geographic	distance	or	the	resistance	of	the	landscape.	
Yet,	such	knowledge	 is	of	major	 importance	to	 infer	targeted	con-
servation	actions,	in	order	to	preserve	threatened	populations	and	
to	adjust	ongoing	landscape	planning	processes.

Here,	we	aimed	 to	 study	 the	population	genetic	 structure	and	
habitat	suitability	of	a	Central	European	black	grouse	metapopula-
tion	system	to	infer	drivers	of	spatial	genetic	variation	and	to	under-
stand	 their	 effects	on	 the	 conservation	 status	of	 the	 species.	We	
modeled	 connectivity	 using	 least-	cost-	path	 (LCP)	 lengths	 and	 ef-
fective	 resistances	 and	 parameterized	 regression-	based	 landscape	
genetic	analyses	among	individuals	and	subpopulations.	Our	study	
helps	to	understand	drivers	of	the	genetic	structure	of	Alpine	black	
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grouse	populations	at	 the	edge	of	 their	 range.	This	 is	 the	basis	 to	
infer	conservation	strategies	and	can	help	to	prevent	the	loss	of	this	
characteristic	bird	species	of	Alpine	ecosystems.

2  |  METHODS

2.1  |  Study site and collection of samples

Samples	 of	 black	 grouse	 were	 obtained	 from	 the	 entire	 Austrian	
province	of	 Styria	 (Figure	1),	 representing	 the	 easternmost	 occur-
rence	of	the	species'	Alpine	distribution	range	(BirdLife	International,	
2016).	 The	 study	 area	 shows	 a	 high	 portion	 of	 mountain	 areas,	
ranging	 from	200	 to	 almost	 3000	m.a.s.l.,	 a	 high	 cover	 of	 conifer	

forests	 (>55%),	 a	 prominent	 portion	 of	 alpine	meadows	 (7%),	 and	
gradients	 between	 alpine	 and	 pannonic	 climate	 (Land	 Steiermark,	
2019).	 Black	 grouse	 occurrences	 are	 structured	 in	 subpopulations	
based	 on	 topographical	 criteria	 and	 average	 dispersal	 distances	
(Sittenthaler	 et	 al.,	 2018).	 Several	 subpopulations	 at	 the	 edges	 of	
the	 distribution	 range	 have	 already	 gone	 extinct	 (Wöss	 &	 Zeiler,	
2003),	and	the	remaining	10	subpopulations	form	a	metapopulation	
system	(Table	1;	Sittenthaler	et	al.,	2018).	We	used	genetic	data	of	
black	grouse	individuals	from	a	previous	population	genetic	survey	
from	all	subpopulations	(Sittenthaler	et	al.,	2018).	Samples	were	ob-
tained	from	feces,	feathers,	and	muscle	tissue	(n =	250)	and	stored	in	
ethanol	(for	muscle	tissue)	and	frozen	(for	feces	and	feathers).	DNA	
extraction	and	polymerase	chain	reaction	(PCR)	amplification	were	
performed	as	described	in	Sittenthaler	et	al.	(2018).	Each	individual	

F I G U R E  1 Results	of	population	
genetic	analyses,	ecological	niche	
modeling,	and	landscape	genetic	
approaches	on	195	Styrian	black	grouse	
individuals.	(a)	Digital	elevation	model	
of	the	study	area	Styria,	with	all	195	
individuals,	classified	in	10	subpopulations	
(black	outline,	5-	km	buffer	around	
presence	points,	identified	by	Sittenthaler	
et	al.,	2018)	and	four	clusters	(green-	,	
yellow-	,	orange-	,	and	gray-	colored	
areas	of	suitable	habitat,	as	identified	
in	this	study).	Least-	cost-	paths	by	
Linkage	Mapper	1.1	were	classified	into	
five	quantiles	of	effective	resistances	
calculated	by	Circuitscape	4.0.	The	inset	
shows	the	area	of	the	Alps	(dark	gray)	
provided	by	the	European	Environment	
Agency	and	the	location	of	our	study	
area	(black	square).	(b)	Ecological	niche	
model	by	MaxEnt	3.4.1,	representing	the	
resistance	surface



4 of 17  |     KUNZ et al.

was	genotyped	at	nine	microsatellite	loci	using	a	multiple	tubes	ap-
proach	for	noninvasive	samples	(Navidi	et	al.,	1992;	Taberlet	et	al.,	
1996).	A	total	of	195	individuals	were	fully	genotyped.	A	consensus	
genotype	was	accepted	when	at	least	two	(for	heterozygote	loci)	or	
three	(for	homozygote	loci)	independent	replications	of	a	single	al-
lele	were	recorded.

2.2  |  Population genetic analysis

Summary	statistics	were	calculated	per	subpopulation	using	 the	R	
package	hierfstat	0.5-	7	(Goudet,	2005).	In	addition	to	FST	values	(Weir	
&	Cockerham,	1984),	we	calculated	the	pairwise	fixation	indices	GST 
(Nei	&	Chesser,	1983)	and	G′

ST
	(Hedrick,	2005)	and	the	differentiation	

index DJost	(Jost,	2008),	using	the	R	package	diveRsity	1.9.9	(Keenan	
et	al.,	2013).	As	G′′

ST
	(Meirmans	&	Hedrick,	2011)	is	not	implemented	

within	diveRsity,	we	used	the	R	package	mmod	1.3.3	(Winter,	2012)	
and	 calculated	 bias-	corrected	 confidence	 intervals	 following	 the	
method	 implemented	 in	diveRsity.	For	all	 indices,	confidence	 inter-
vals	were	based	on	10,000	bootstrap	iterations.	Although	correlated	
(Pearson's	correlation	coefficients	ranging	from	0.8	to	0.9),	these	in-
dices	quantify	complementary	aspects	of	population	structure	and	
should	therefore	be	considered	separately	for	subsequent	analyses	

(Jost	et	al.,	2018;	Meirmans	&	Hedrick,	2011).	To	assess	clustering	
within	 the	 genetic	 dataset,	 a	 principle	 component	 analysis	 (PCA)	
was	calculated	using	the	R	package	adegenet 2.0.1	(Jombart,	2008;	
Jombart	&	Ahmed,	2011)	in	addition	to	the	discriminant	analysis	of	
principle	components	(DAPC)	and	Structure	analyses	by	Sittenthaler	
et	al.	 (2018).	Given	the	previously	reported	low	amount	of	genetic	
differentiation	among	subpopulations	(Sittenthaler	et	al.,	2018),	we	
further	used	the	R	package	memgene 1.0.1	(Galpern	et	al.,	2014)	to	
explore spatial genetic patterns in detail. memgene	was	specifically	
designed	to	detect	and	visualize	weak	or	cryptic	structure	within	a	
genetic	pattern	by	using	Moran's	eigenvector	maps	(MEMs;	Galpern	
et	al.,	2014),	thus	being	a	suitable	approach	to	detect	genetic	struc-
ture	in	our	study	system.	We	used	the	function	mgQuick	to	assess	
population	structure,	with	the	response	variable	being	the	propor-
tions	 of	 shared	 alleles	DPS	 (calculated	with	memgene)	 among	 indi-
viduals.	Subpopulations	in	our	study	area	were	assigned	to	clusters	
based	on	the	combined	interpretation	of	Structure	and	DAPC	results	
by	 Sittenthaler	 et	 al.	 (2018),	 our	memgene	 analysis	 and	 significant	
indices	of	genetic	fixation	and	differentiation.

Furthermore,	 we	 estimated	 recent	 migration	 rates	 to	 analyze	
potential	 asymmetric	 migration	 using	 BayesAss	 3.0.4	 (Wilson	 &	
Rannala,	 2003).	Migration	 rates	were	 calculated	 between	 clusters	
based	on	the	analyses	of	population	genetic	structure	(Table	2).	We	

TA B L E  1 Characterization	of	the	subpopulations	within	the	metapopulation	system	of	black	grouse	in	Styria

Subpopulation Abbreviation PE N
cluster 
assignment HO HE FIS

Aussee AUS 1200 7 Inneralpine 0.65 0.66 0.02

Liezen	North LIN 450 5 Inneralpine 0.69 0.63 −0.09

Hoschschwab	South HSS 925 13 Inneralpine 0.76 0.71 −0.07

Hochschwab	West HSW 925 13 Inneralpine 0.68 0.70 0.02

Tauern TAU 6.850 56 Inneralpine 0.66 0.69 0.04

East	Styria/Wechsel OSW 400 41 Eastern 0.60 0.64 0.07

Turrach TUR 850 4 Inneralpine 0.75 0.69 −0.08

Zirbitzkogel ZIK 500 18 Zirbitzkogel 0.54 0.62 0.12

Gleinalm/Stubalm GLS 700 23 Southern 0.62 0.68 0.09

Koralm KOR 150 15 Southern 0.61 0.62 0.03

Note: Overall FIS:	−0.04;	Overall	FIT: 0.04; Overall FST: 0.08.
Cluster	assignment	based	on	Sittenthaler	et	al.	(2018),	results	from	memgene	and	indices	of	fixation	and	differentiation.	Population	size	estimates	are	
rough	expert-	based	estimates	to	characterize	the	subpopulations.
Abbreviations:	FIS,	inbreeding	coefficient;	HE,	expected	heterozygosity;	HO,	observed	heterozygosity;	N,	number	of	individual	genotypes;	PE,	
population	size	estimate	(Sittenthaler	et	al.,	2018).

To

From

Inneralpine Eastern Southern Zirbitzkogel

Inneralpine 0.700 (±0.040) 0.046 (±0.100) 0.251 (±0.112) 0.006 (±0.012)

Eastern 0.021 (±0.040) 0.812 (±0.248) 0.154 (±0.258) 0.013 (±0.025)

Southern 0.030 (±0.044) 0.019	(±0.037) 0.941 (±0.057) 0.010 (±0.020)

Zirbitzkogel 0.018 (±0.034) 0.056 (±0.133) 0.239 (±0.122) 0.687 (±0.040)

Note: Significant	values	based	on	the	credible	intervals	are	in	bold	emphasis.

TA B L E  2 Migration	rates	as	estimated	
by	BayesAss	3.0.4	with	95%	credible	
intervals	among	the	genetic	clusters	of	
black	grouse	as	in	Table	1
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conducted	10	independent	repeats	of	50	∗ 106 iterations (including 
5 ∗ 106	iterations	burn-	in)	with	a	sampling	frequency	of	2000,	each	
initiated	with	a	different	random	seed	for	each	dataset.	In	order	to	
keep	the	acceptance	rates	for	proposed	changes	between	40%	and	
60%,	delta	values	were	adjusted	to	Δm =	0.1,	Δa =	0.3,	and	Δf = 0.7. 
Convergence	of	chains	was	confirmed	using	Tracer	1.7.1	(Rambaut	
et	al.,	2018)	and	by	checking	for	concordance	between	repeats.	We	
used	the	Bayesian	deviance	as	calculated	by	Meirmans	(2014)	 in	R	
3.6.0	(R	Core	Team,	2019)	to	search	for	the	best	fitting	model	(the	
one	with	the	lowest	Bayesian	deviance	was	selected)	(Faubet	et	al.,	
2007).	Credible	 intervals	 (CIs	 95%)	 of	migration	 rates	were	 calcu-
lated	 as	 standard	 deviation	multiplied	 by	1.96	 as	 described	 in	 the	
program's	manual.	Migration	 rates	 that	 included	 zero	within	 their	
95%	CI	were	considered	not	significant.

2.3  |  Ecological niche modeling and 
resistance surface

In	 order	 to	 parameterize	 a	 model	 representing	 the	 resistance	 of	
the	 landscape	 to	 movement	 and	 dispersal	 for	 black	 grouse,	 we	
used	 a	 correlative	 ecological	 niche	 model	 (ENM).	 The	 process	 of	
parameterization	of	resistance	models	is	broadly	discussed	(Mateo-	
Sánchez	 et	 al.,	 2015;	Milanesi,	Holderegger,	 Caniglia,	 et	 al.,	 2017;	
Roffler	 et	 al.,	 2016;	 Wang	 et	 al.,	 2008),	 and	 several	 approaches	

have	 been	 suggested.	 Black	 grouse	 are	 mainly	 ground-	dwelling	
and	 react	 sensitively	 to	habitat	 structures.	Movement	 and	disper-
sal	are	most	probably	directly	 linked	to	habitat	factors,	as	suitable	
habitats	provide	 food	 resources	 and	protection	 (against	predators	
and	adverse	weather	conditions).	Therefore,	we	assume	that	the	re-
sistance	of	a	landscape	to	movement	and	dispersal	is	best	reflected	
by	the	distribution	of	suitable	habitat	areas	(Milanesi,	Holderegger,	
Caniglia,	et	al.,	2017).	Furthermore,	ENMs	have	already	been	used	
successfully	to	parameterize	resistance	surfaces	for	the	closely	re-
lated	Western	 capercaillie	 (Tetrao urogallus)	 (Milanesi	 et	 al.,	 2017).	
Accordingly,	we	 selected	 15	 topographic,	 climatic,	 and	 land	 cover	
variables	that	might	affect	dispersal	and	movement	(Table	3).

The	topographic	variables	(altitude,	slope,	exposure,	and	rugged-
ness,	Sappington	et	al.,	2007)	were	calculated	based	on	the	digital	
elevation	model.	The	climatic	variables	were	taken	from	the	official	
geodata	catalog	of	climate	of	the	province	of	Styria	(GIS-	Steiermark,	
2018).	 The	 land	 cover	 dataset	 was	 based	 on	 an	 extensive	 land	
cover	classification	(Wrbka	et	al.,	2002).	It	comprises	42	landscape	
types,	 which	 were	 grouped	 into	 the	 eight	 categories	 relevant	 for	
black	 grouse	 (Table	4):	 summits	 and	 glaciers;	 subalpine	 grasslands	
(including	pastures	and	meadows);	continuous	forests;	lowland	for-
est	 patches;	 submountainous	 grasslands;	 lowland	 grasslands	 and	
pastures;	 lowland	 arable	 land;	 and	 human	 settlements	 and	 indus-
trial	areas.	We	included	two	variables	representing	the	distance	to	
the	 land	 cover	 type	positively	 (subalpine	 grasslands)	 or	 negatively	

TA B L E  3 Environmental	input	data	used	for	the	ecological	niche	modeling	of	black	grouse	in	Styria	with	MaxEnt	3.4.1	(Phillips	et	al.,	
2006;	Phillips	&	Dudík,	2008)

Environmental variable
Final model 
contribution (%) Source

Distance	to	subalpine	grasslands 55.7 Derived	from	the	land	use	classification

Altitude 37.8 Derived	from	a	digital	elevation	model	(DEM)	by	LiDAR	
data	(Land	Kärnten,	2015)

Land	use	classification 4.3 Classified	into	eight	categories	based	on	Wrbka	et	al.	
(2002)

Distance	to	human	settlements	and	industrial	areas 1.6 Derived	from	the	land	use	classification

Ruggedness,	vector	ruggedness	measure	(VRM) 0.7 Derived	from	the	DEM	following	Sappington	et	al.	
(2007),	neighborhood	size:	11

Aspect — Derived	from	the	DEM

Slope — Derived	from	the	DEM

Buffered	single	tree	individuals	above	1200	m.a.s.l. — Derived	from	LiDAR	data	(GIS-	Steiermark,	2018),	
includes	vegetation	between	6	and	15	m	height	
outside	of	areas	classified	as	forest

Distance to single tree individuals — Derived	from	the	single	tree	individuals

Climatic	variables	(duration	of	vegetation	period,	
precipitation	per	season,	days	of	frost,	and	days	of	snow	
cover)

— Klimaatlas	Steiermark/climate	data	(GIS-	Steiermark,	
2018)

Tree	composition — Waldatlas	Steiermark/forest	data	(GIS-	Steiermark,	
2018)

Tree height — Waldatlas	Steiermark/forest	data	(GIS-	Steiermark,	
2018)

Note: Final	model	contribution	gives	the	relative	contribution	of	the	variable	to	the	final	model.	Most	important	variable	based	on	jackknife	tests	was	
altitude.
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(human	settlements	and	industrial	areas)	affecting	black	grouse	dis-
tribution.	Hence,	we	accounted	for	potential	push	or	pull	effects	of	
these	areas.	As	the	inclusion	of	local	habitat	structures	is	crucial	for	
ENMs	 to	 parameterize	 resistance	 surfaces	 (Milanesi,	Holderegger,	
Bollmann,	 et	 al.,	 2017),	 we	 included	 variables	 representing	 tree	
height,	tree	composition,	and	the	existence	of	single	tree	individu-
als.	Tree	height	and	composition	directly	link	to	black	grouse	habitat	
preferences	and	were	based	on	the	official	geodata	catalog	of	for-
estry	of	the	province	of	Styria	(GIS-	Steiermark,	2018).	Single	trees	in	
open	subalpine	areas	might	also	positively	affect	habitat	suitability	
by	offering	 resting	 sites	 and	 food	 resources.	We	 therefore	 gener-
ated	 a	 dataset	 representing	 single	 trees	 in	 subalpine	 areas	 by	 ex-
tracting	vegetation	between	6	and	15	m	height	outside	of	the	land	
cover	 categories	 “continuous	 forest”	 and	 “lowland	 forest	 patches”	
from	 light	 detection	 and	 ranging	 (LiDAR)	 data	 (GIS-	Steiermark,	
2018).	Additionally,	we	calculated	distance	to	single	trees	to	assess	
potential	 pull	 effects.	 Based	 on	 Pearson's	 correlation	 coefficient,	
we	excluded	highly	correlated	variables	(coefficients	≥	|0.7|).	For	all	
data,	we	used	 a	 resolution	of	 100	m	grain	 size.	 Preparation	 steps	
and	further	spatial	analyses	were	done	in	ArcGIS	10.5	(ESRI,	2016).	
The	study	area	was	buffered	20	km	around	the	political	boundary	of	
Styria,	allowing	the	analyses	to	explore	areas	of	biological	relevance	
beyond	administrative	borders.

The	ENM	was	calculated	using	maximum	entropy	modeling	im-
plemented	 in	MaxEnt	3.4.1	 (Phillips	 et	 al.,	 2006;	Phillips	&	Dudík,	
2008).	The	underlying	principle	of	maximum	entropy	uses	machine	
learning	concepts	 to	minimize	 the	difference	between	 two	proba-
bility	 density	 functions	 of	 environmental	 variables,	 one	 based	 on	
our	presence	locations	and	the	other	one	based	on	the	entire	study	
area	(background	locations)	(Elith	et	al.,	2011).	We	calibrated	mod-
els	with	varying	sets	of	environmental	variables	and	regularization	

parameters	 and	 combinations	 of	 features	 (Merow	 et	 al.,	 2013;	
Phillips	et	al.,	2017).	We	followed	a	stepwise	top-	down	procedure	
of	model	selection,	evaluating	model	fit	and	adequacy	by	their	av-
erage	area	under	the	receiver	operating	characteristics	curve	(AUC)	
value	through	cross-	validation	and	together	with	regional	experts	as	
recommended	by	Morales	et	al.	(2017).	The	final	model	parameters	
were	set	to	20	replications	of	5,000	iterations,	and	the	regularization	
parameter	was	set	to	1.5.	To	account	for	a	potential	sampling	bias,	
we	included	background	manipulation	via	a	Gaussian	kernel	density	
of	sampling	locations	calculated	with	SDMtoolbox	2.2	(Brown,	2014;	
Brown	et	al.,	2017)	as	bias	file.	The	final	ENM	was	inverted	into	a	re-
sistance	surface	using	SDMtoolbox	2.2.	Additionally,	we	created	an	
alternative	resistance	surface	based	on	an	inverted	ENM	of	altitude	
only	(altitude_inv),	as	altitude	was	the	most	explanatory	variable	be-
side	land	cover	classification	in	the	ENM.

2.4  |  Measures of IBR

We	applied	two	distinctly	different	approaches	to	extract	distances	
and	resistance	values	of	the	resistance	surface	that	might	explain	
IBR:	(1)	LCP	lengths	were	extracted	according	to	the	cost	distance	
approach	 (Adriaensen	 et	 al.,	 2003),	 and	 (2)	 effective	 resistances	
were	calculated	according	 to	 the	circuit	 theory	approach	 (McRae	
et	al.,	2008).	Whereas	the	cost	distance	approach	assumes	an	indi-
vidual's	full	a	priori	knowledge	of	the	 landscape	when	calculating	
the	 LCP,	 circuit	 theory	 assumes	 random	 movement	 and	 there-
fore	yields	higher	connectivity	where	higher	redundancy	in	travel	
routes	exist	(McClure	et	al.,	2016).	LCPs	and	effective	resistances	
between	subpopulations	 (areas	defined	as	suitable	habitat	within	
a	 conservative	 5	 km	 buffer	 around	 individual	 presence	 points;	
Figure	1)	were	generated	using	the	geographical	 information	sys-
tem	routine	within	LinkageMapper	1.1	(McRae	&	Kavanagh,	2011)	
and	PinchPoint	Mapper	(McRae,	2012)	(making	use	of	Circuitscape	
4.0;	McRae	et	al.,	2013).

2.5  |  Identifying spatial genetic pattern

At	 the	 individual	 level,	we	used	 the	 function	mgLandscape	within	
memgene	 to	address	whether	 IBD	or	 IBR	might	explain	 the	spatial	
genetic	pattern.	This	function	computes	LCPs	from	provided	resist-
ance	surfaces	to	extract	MEM	eigenvectors	and	subsequently	per-
forms	a	regression	framework.	We	used	DPS	as	response	variable	and	
the	following	landscape	distances	as	predictors	(Table	5):	Euclidean	
distances	resembling	 IBD	 (Euc.	dist.),	our	 resistance	surface	based	
on	the	ENM	resembling	IBR	(res.	surface),	and	the	resistance	surface	
based	on	altitude	alone	(altitude_inv).	By	including	altitude	as	a	pre-
dictor,	we	assessed	whether	IBR	effects	are	driven	by	the	complex	
ENM	(including	topography,	climate,	and	 land	cover)	or	by	altitude	
alone	(irrespective	of	anthropogenic	influence).

At	the	subpopulation	level,	we	contrasted	IBD	versus	IBR	using	
the	 regression	 framework	 within	 the	 function	 mgLandscape_list	

TA B L E  4 Summary	of	land	use	classification	by	Wrbka	et	al.	
(2002)	into	eight	categories	relevant	for	black	grouse	in	Styria	used	
in the present study

Land use category used in 
the present study

Land 
cover (%)

Identifier of Wrbka 
et al. (2002)

Summits	and	glaciers 3.2 101

Subalpine	grasslands	and	
pastures

7 102,	103

Continuous	forests 22.8 201

Lowland	forest	patches 35.3 202,	203,	204,	205

Submountainous	grasslands	
and pastures

8.6 301,	302,	303

Lowland	grasslands	and	
pastures

11.3 304,	305,	307,	312,	
313

Lowland	arable	land 9.9 401,	402,	404,	405,	
406,	407,	411,	
604

Human	settlements	and	
industrial areas

1.9 701,	702,	703,	704,	
705,	706

Note: Land	cover	displays	the	proportion	of	study	area	covered	by	the	
respective category.
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by	 Polato	 et	 al.	 (2017).	 Although	 following	 the	 same	 approach	 as	
mgLandscape	 within	 memgene,	 this	 adapted	 function	 allowed	 us	
to	test	the	aforementioned	indices	of	pairwise	genetic	fixation	and	
differentiation	 as	 response	 variables	 against	 pairwise	 geographic	
distances	as	predictors.	The	pairwise	Euclidean	distances	(IBD),	LCP	
lengths	 (IBR),	 and	effective	 resistances	 (IBR)	were	used	as	predic-
tors.	 Additionally,	 we	 calculated	 maximum	 likelihood	 population	
effects	 (MLPE)	models	 (Clarke	 et	 al.,	 2002)	 implemented	 in	 the	R	
package	ResistanceGA	 (Peterman,	2018).	MLPE	models	account	for	
nonindependence	 of	 pairwise	 distance	 data	 due	 to	 population	 ef-
fects	and	have	been	identified	as	best-	suited	regression-	based	ap-
proaches	for	model	selection	(Shirk	et	al.,	2017,	2018).	We	used	the	
same	response	and	explanatory	variables	as	for	the	mgLandscape_
list	approach.	Due	to	strong	correlations	between	the	explanatory	
variables	and	the	small	sample	size	within	each	model,	each	variable	
was	tested	separately	resulting	in	20	models	(five	response	variables	
and	three	explanatory	variables	plus	a	null	model	assuming	that	the	
response	variable	is	constant	for	the	explanatory	variable).	We	then	
applied	deltas	and	weights	of	the	Akaike	Information	Criterion	cor-
rected	for	small	sample	sizes	(AICc;	Anderson	&	Burnham,	2002)	and	
R2	to	compare	the	candidate	models	and	select	the	best	model	(Row	
et	al.,	2017).

3  |  RESULTS

3.1  |  Spatial genetic structure

Overall,	 a	 low	amount	of	genetic	differentiation	among	subpopu-
lations	was	detected.	Although	the	PCA	could	not	resolve	a	clear	
cluster	 assignment	 (Figure	 2),	 the	 spatial	 genetic	 structure	 de-
tected	by	the	mgQuick	approach	of	memgene	 (Figure	3)	 indicated	
the	presence	of	clusters.	The	first	memgene	variable	explaining	the	
highest	 amount	of	 spatial	 genetic	 variation	 found	 the	 subpopula-
tion	OSW	to	be	distinct.	The	second	variable	suggested	a	cluster	
of	the	northern	subpopulations,	and	subpopulation	ZIK	seemed	to	
be	connected	to	the	southeastern	ones.	The	third	variable	showed	
mixed	results	for	the	northern	subpopulations,	and	ZIK	seemed	to	
be	distinct	from	the	southeastern	subpopulations.	Significant	indi-
ces	 of	 genetic	 fixation	 and	differentiation	 (Table	6	 and	Table	A1)	

provided	 further	 evidence	 for	 genetically	 discrete	 clusters;	 both	
OSW	 and	 ZIK	 were	 differentiated.	 Taken	 together,	 our	 data	 and	
the	Structure	and	DAPC	results	by	Sittenthaler	et	al.	(2018)	imply	
that	the	ten	subpopulations	can	be	differentiated	into	four	clusters	
(Table	1).	The	subpopulations	AUS,	LIN,	HSS,	HSW,	TAU,	and	TUR	
are	situated	in	the	Central	Alps	and	together	formed	the	Inneralpine	
cluster.	The	southern	subpopulations	GLS	and	KOR	formed	a	clus-
ter	called	Southern.	The	easternmost	subpopulation	OSW	was	the	
most	differentiated	and	formed	 its	own	cluster	Eastern.	The	sub-
population	 ZIK	 showed	 ambiguous	 results	 and	was	 therefore	 as-
signed	its	own	cluster	Zirbitzkogel.

The	proportion	of	genetic	variation	found	by	memgene that can 
be	 attributed	 to	 spatial	 patterns	 (R2

adj
,	 Galpern	 et	 al.,	 2014)	 was	

0.07,	indicating	weak	overall	genetic	structure.	This	is	in	line	with	
the	indices	of	fixation	and	differentiation	showing	overall	low	fix-
ation	and	differentiation	(range	of	values	for	FST: 0.001– 0.103; GST

: 0.001– 0.053; G′

ST
:	 0.007–	0.207,	G′′

ST
: 0.008– 0.306; DJost: 0.001– 

0.124).	Results	of	the	first	and	second	memgene	variables	(explain-
ing	 28%	 and	 19%	 of	 the	 spatial	 genetic	 variation,	 respectively)	
resolved	 the	 four	 genetic	 clusters,	 with	 ambiguous	 assignments	
for	 ZIK.	 In	 estimation	 of	 migration	 rates,	 BayesAss	 chains	 con-
verged	well,	and	log-	likelihood	and	Bayesian	deviance	were	com-
parable	 between	 repeats.	 The	 estimates	 indicate	 unidirectional	
migration	patterns	between	the	clusters	(Table	2).	Individuals	ap-
peared	 to	 be	migrating	 from	 Southern	 into	 the	 Zirbitzkogel	 and	
Inneralpine	 clusters.	 Migration	 rates	 from	 Southern	 to	 Eastern	
were	not	significant.	Therefore,	no	immigration	into	Southern	and	
Eastern	was	found.

3.2  |  Ecological niche modeling and 
resistance surfaces

All	 climatic	 variables	 were	 excluded	 due	 to	 their	 high	 correlation	
with	 altitude	 prior	 to	 the	 parameterization	 of	 the	 ENM.	 The	 final	
ENM	(Figure	1)	comprised	the	following	five	environmental	variables	
reflecting	 relevant	 topographical	 and	 land	 cover	 criteria	 for	 black	
grouse	 (model	contributions	 in	parentheses):	distance	to	subalpine	
grasslands	 (55.7%);	 altitude	 (37.8%);	 land	 use	 classification	 (4.3%);	

TA B L E  5 Comparison	of	the	proportion	of	spatial	genetic	variation	(R2
adj
)	among	black	grouse	individuals	in	Styria	explained	by	Moran's	

eigenvector	maps	derived	from	different	models

Model [abc] P[abc] [a] P[a] [c] P[c] [b] [d]

Euc. dist. 0.080 0.001 0.052 0.001 0.005 0.060 0.023 0.920

res.	surface 0.074 0.001 0.047 0.001 0.003 0.126 0.024 0.926

altitude_inv 0.055 0.001 0.028 0.001 −0.001 0.631 0.029 0.945

Note: The	table	describes	the	proportion	of	variation	in	pairwise	genetic	distances	that	can	be	attributed	to	the	different	spatial	predictors	[abc]	
and	to	the	particular	pattern	in	the	landscape	resistance	surface	[a],	the	coordinates	of	the	individuals	in	the	landscape	resistance	surface	[c],	or	to	
confounded	pattern	of	the	landscape	resistance	surface	and	coordinates	[b].	Additionally,	residuals	not	explained	by	spatial	predictors	are	reported	
[d].	P[abc],	P[a],	and	P[c]	represent	the	p	values	of	each	calculated	proportion.	Tested	models	are	Euclidean	distances	(Euc.	dist.),	pairwise	least-	cost-	
path	(LCP)	lengths	between	individuals	across	the	resistance	surface	based	on	the	ENM	(res.	surface),	and	pairwise	LCPs	between	individuals	across	a	
resistance	surface	based	on	altitude	only	(altitude_inv).
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distance	to	human	settlements	and	industrial	areas	(1.6%);	and	ter-
rain	 ruggedness	 (0.7%)	 (Table	3).	The	model	 corresponded	well	 to	
regional	 expert	 assessment	 and	 showed	 an	 averaged	 test	AUC	of	

0.954,	which	indicated	strong	model	fit	and	high	predictive	perfor-
mance.	The	single	most	 important	variable	in	terms	of	 information	
not	covered	by	other	variables	was	altitude.

F I G U R E  2 Principal	component	analysis	with	four	retained	PCs	of	the	195	Styrian	black	grouse	genotypes.	PC1	(x	axis;	3.9%	explained	
variance)	versus	PC2	(y	axis;	3.6%	explained	variance)	(top)	and	PC1	(x	axis,	3.9%)	versus	PC3	(y	axis,	3.5%)	(bottom).	Different	colors	indicate	
the	assignment	of	subpopulations	to	four	clusters

F I G U R E  3 Spatial	genetic	structure	of	the	195	Styrian	black	grouse	samples	as	found	by	memgene	1.0.1	(Galpern	et	al.,	2014).	Circles	
of	similar	size	and	color	indicate	individuals	with	similar	scores	(large	black	and	large	white	circles	describe	opposite	extremes).	The	first	
memgene	variable	explains	28%	of	the	spatial	genetic	variation	and	the	second	and	third	variable	19%	and	15%,	respectively.	Colored	
polygons	indicate	the	assignment	of	subpopulations	to	the	four	clusters.	Axes	in	UTM	WGS84
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3.3  |  Identifying spatial genetic pattern

Within	the	mgLandscape	approach	on	the	 individual	 level,	MEM	
eigenvectors	derived	from	Euclidean	distances	([abc],	Table	5)	be-
tween	individuals	explained	a	slightly	higher	proportion	of	spatial	
genetic variation (R2

adj,[abc]
 =	0.08)	than	MEM	eigenvectors	derived	

from	the	resistance	surface	based	on	the	ENM	and	the	resistance	
surface	 based	 on	 altitude	 alone	 (R2

adj,[abc]
 =	 0.074	 and	 0.055,	 re-

spectively).	The	fraction	of	genetic	distance	that	 is	explained	by	
the	model	[a]	is	notably	higher	than	the	fraction	explained	by	co-
ordinates	 [c],	 indicating	 good	 model	 fit	 (Table	 5).	 Although	
Euclidean	distances	 (testing	 for	 the	effect	of	 IBD)	are	 therefore	

TA B L E  6 Pairwise	FST	(Weir	&	Cockerham,	1984)	and	G′′

ST
	(Meirmans	&	Hedrick,	2011)	comparisons	among	black	grouse	subpopulations	in	

Styria

Subpopulation ID AUS LIN HSS HSW TAU OSW TUR ZIK GLS KOR

AUS — 0.044 0.044 0.073 0.008 0.119 0.040 0.121 0.034 0.091

LIN 0.017 — 0.070 0.116 0.026 0.081 0.156 0.132 0.120 0.221

HSS 0.016 0.026 — 0.047 0.040 0.121 0.198 0.223 0.040 0.162

HSW 0.022 0.037 0.015 — 0.069 0.124 0.136 0.144 0.039 0.171

TAU 0.001 0.005 0.012 0.021 — 0.093 0.079 0.116 0.037 0.100

OSW 0.039 0.026 0.040 0.041 0.030 — 0.306 0.141 0.085 0.203

TUR 0.015 0.063 0.064 0.041 0.023 0.103 — 0.273 0.190 0.242

ZIK 0.040 0.045 0.076 0.048 0.038 0.050 0.094 — 0.123 0.177

GLS 0.007 0.035 0.012 0.010 0.011 0.028 0.056 0.040 — 0.036

KOR 0.032 0.083 0.056 0.058 0.032 0.073 0.087 0.065 0.010 — 

Note: FST	values	below	the	diagonal	and	G′′

ST
	above.	Significant	values	based	on	95%	bias	corrected	confidence	intervals	in	bold.

Response variable
Explanatory 
variable ΔAICc w R2

FST	(Weir	&	Cockerham,	1984) LCP	length 0.00 0.60 0.17/0.66

Euclidean dist. 0.97 0.37 0.16/0.65

Effective	resist. 6.09 0.03 0.10/0.58

Null	model 8.84 0.01 0.00/0.57

GST
	(Nei	&	Chesser,	1983) LCP	length 0.00 0.61 0.19/0.66

Euclidean dist. 1.01 0.37 0.16/0.65

Effective	resist. 6.49 0.02 0.10/0.56

Null	model 9.54 0.01 0.00/0.55

G′

ST
	(Hedrick,	2005) LCP	length 0.00 0.59 0.20/0.64

Euclidean dist. 0.88 0.38 0.19/0.63

Effective	resist. 6.65 0.02 0.10/0.53

Null	model 9.57 0.00 0.00/0.52

G′′

ST
	(Meirmans	&	Hedrick,	2011) LCP	length 0.00 0.59 0.20/0.64

Euclidean dist. 0.87 0.38 0.19/0.64

Effective	resist. 6.66 0.02 0.10/0.54

Null	model 9.66 0.00 0.00/0.53

DJost
	(Jost,	2008) LCP	length 0.00 0.28 0.07/0.38

Euclidean dist. 0.17 0.26 0.06/0.37

Null	model 0.39 0.23 0.00/0.34

Effective	resist. 0.44 0.23 0.06/0.33

Note: Response	variables	were	fixation	and	differentiation	indices	of	genetic	distances;	explanatory	
variables	were	a	null	model,	Euclidean	distances	(Euclidean	dist.),	least-	cost-	path	(LCP)	lengths	
based	on	the	ecological	niche	model	(ENM)	(LCP	length),	and	effective	resistances	(Effective	
resist.).

TA B L E  7 Maximum	likelihood	
population-	effects	models	for	the	black	
grouse	subpopulations	in	Styria,	ranked	by	
weights	(w)	of	the	delta	of	the	corrected	
Akaike	Information	Criterion	for	small	
sample	sizes	(ΔAICc)	and	R2	(marginal/
conditional)
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preferred	over	the	resistance	surface	based	on	the	ENM	(testing	
for	 the	effect	of	 IBR),	 the	small	difference	 in	the	proportions	of	
spatial	genetic	variation	explained	by	the	spatial	predictors	[abc]	
suggests	that	IBD	and	IBR	effects	cannot	be	easily	distinguished.	
Among	subpopulations,	 the	mgLandscape_list	approach	was	not	
able	to	detect	significant	Moran's	eigenvectors,	as	the	spatial	sig-
nal	within	the	pairwise	genetic	distance	matrices	was	presumably	
too	weak.	 All	MLPE	models,	 however,	 showed	 positive	 signs	 of	
relationships	 between	 the	 predictors	 and	 dependent	 variables.	
The	predictors	were	 significant	 (α =	 0.05)	 for	 all	models	 except	
the	ones	built	with	DJost	as	dependent	variable.	The	models	using	
LCP	length	as	predictor	were	preferred	for	all	indices	of	fixation	or	
differentiation	(Table	7).

4  |  DISCUSSION

We	applied	several	consecutive	analyses	to	disentangle	the	drivers	
of	spatial	genetic	variation	within	an	Alpine	black	grouse	metapopu-
lation	system	at	the	easternmost	edge	of	the	species'	distribution.	
Although	 low	 levels	of	population	differentiation	and	only	a	 slight	
difference	 among	models	 testing	 for	 IBD	 or	 IBR	were	 found,	 our	
results	provide	valuable	 insights	 into	the	spatial	genetic	pattern	of	
this	 small-	scale	 metapopulation	 system	 with	 a	 high	 conservation	
concern.

4.1  |  Migration rates and population structure

The	 migration	 rates	 estimated	 by	 BayesAss	 indicated	 emigrat-
ing	 individuals	 from	 the	 two	 clusters,	 Eastern	 and	 Southern.	
However,	BayesAss	estimates	should	be	viewed	with	caution	as	
the	maximum	proportion	of	immigrated	individuals	within	a	clus-
ter	 is	 assumed	 to	not	exceed	one	 third	of	 its	 size	 (Faubet	et	 al.,	
2007).	Although	the	overall	genetic	differentiation	 is	 low	within	
our	study	system,	black	grouse	are	sedentary	birds	with	interme-
diate	juvenile	dispersal	(Caizergues	&	Ellison,	2002;	Marjakangas	
&	Kiviniemi,	2005;	Warren	&	Baines,	2002),	presumably	not	vio-
lating	 this	 assumption.	 Additionally,	 BayesAss	 decreases	 in	 ac-
curacy	 when	 sample	 sizes	 are	 differing	 among	 subpopulations	
(Meirmans,	2014).	Although	this	is	the	case	in	our	study	(as	is	for	
the	most	studies	on	rare	and	elusive	species),	BayesAss	estimates	
correspond	well	to	our	other	results.	Especially	the	subpopulation	
OSW	(Eastern	cluster)	appears	to	be	of	high	concern.	Separated	
by	a	major	valley	(the	Mur-	Mürz-	Furche),	it	is	the	most	differenti-
ated	subpopulation	within	 the	metapopulation,	and	no	 immigra-
tion	from	other	subpopulations	was	found.	Losing	connection	to	
the	metapopulation	system,	subpopulation	OSW	might	end	up	in	
reproductive	isolation.	Given	ongoing	range	contraction	through	
the	 loss	 and	 degradation	 of	 habitat	 (Gehrig-	Fasel	 et	 al.,	 2007;	
Groier,	2010;	Tasser	et	al.,	2007;	Theurillat	&	Guisan,	2001)	and	
increasing	 disturbance	 within	 the	 remaining	 habitats	 (Arlettaz	
et	 al.,	 2007;	 Coppes	 et	 al.,	 2017;	 Immitzer	 et	 al.,	 2014;	 Ingold,	

2005),	the	subpopulations'	long-	term	survival	is	therefore	threat-
ened	(Frankham	et	al.,	2010).	Our	results	might	be	an	early	warn-
ing	signal	(Kunz	et	al.,	2021),	as	extinction	events	of	isolated	black	
grouse	populations	have	been	observed	in	various	cases	over	the	
past	decades	(Höglund,	2009;	Höglund	et	al.,	2007	and	references	
therein).

Individuals	 from	 the	 Southern	 cluster	 seem	 to	 be	 migrating	
into	the	Zirbitzkogel	and	Inneralpine	cluster.	The	subpopulations	
within	the	Southern	cluster	are	situated	at	the	administrative	bor-
der,	and	 it	 is	very	 likely	that	they	are	connected	to	black	grouse	
populations	in	Carinthia.	Especially	the	subpopulation	KOR	might	
therefore	act	as	an	important	stepping	stone.	Surprisingly,	no	mi-
gration	was	found	between	the	Zirbitzkogel	and	the	 Inneralpine	
cluster.	 Considering	 the	 landscape's	 permeability,	 we	 therefore	
assume	 individuals	 emigrating	 from	 the	 Southern	 cluster	 to	 ei-
ther	 settle	 within	 Zirbitzkogel	 or	 continue	 dispersing	 into	 the	
Inneralpine	cluster.	 Its	 role	as	potential	stepping	stone	for	black	
grouse	populations	in	Carinthia	still	remains	unresolved,	and	more	
samples	 are	 needed,	 spanning	 a	wide	 geographic	 region.	As	we	
only	 found	 unidirectional	 migration,	 unknown	 effects	 might	 be	
leading	 individuals	 to	 emigrate	 and,	 at	 the	 same	 time,	 prevent	
immigration.

4.2  |  Drivers of black grouse spatial 
genetic variation

We	 found	 clear	 positive	 significant	 relationships	of	 genetic	 differ-
entiation	and	geographic	distances	(LCP	length	and	effective	resist-
ances)	 for	all	our	models.	On	an	 individual	 level,	analyses	 resulted	
in	 models	 based	 on	 IBD	 being	 marginally	 more	 explanatory	 than	
models	based	on	 IBR.	The	proportion	of	shared	alleles	was	better	
explained	by	the	model	 including	the	pairwise	Euclidean	distances	
among	 individuals	 than	 by	 the	model	 including	 the	 pairwise	 LCPs	
across	 the	 resistance	 surface.	Pairwise	genetic	data	 are	 known	 to	
be	noisy,	and	therefore,	inferences	are	often	challenging	(Peterman	
&	Pope,	2020).	Among	individuals,	the	landscape's	resistance	argu-
ably	did	not	exert	a	meaningful	effect.	The	similar	performance	of	
the	tested	models	of	IBD	and	IBR	might	rather	indicate	a	cumulative	
effect	on	gene	flow,	which	seems	reasonable	for	a	species	with	re-
stricted	dispersal	capabilities.	Both	models	were	superior	to	a	model	
based	solely	on	altitude.

On	a	subpopulation	level,	the	memgene	analysis	was	not	able	to	
reproduce	the	patterns	found	among	individuals,	which	might	derive	
from	the	fact	that	memgene	is	working	best	when	genetic	distances	
are	more	pronounced	among	individuals	than	among	subpopulations	
(P.	Galpern,	pers.	comm.).	The	MLPE	models	showed	the	LCP	lengths	
to	be	the	best	explaining	predictors.	Taken	together,	our	results	sug-
gest	 the	 spatial	 genetic	pattern	 in	 the	 studied	black	grouse	meta-
population	 system	 to	 be	 driven	 by	 IBD	 among	 individuals	 and	 by	
IBR	effects	among	subpopulations.	Our	results	did	not	show	distinct	
differences	among	models,	as	shown	by	the	small	delta	AICc	and	the	
proportion	of	explained	variance.	Additional	factors	not	represented	
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within	our	 chosen	approach	might	be	 affecting	genetic	differenti-
ation	beyond	geographic	distances.	We	purposely	excluded	highly	
variable	 short-	term	 environmental	 factors.	 Anthropogenic	 factors	
and	disturbances	(e.g.,	frequencies	of	hikers	and	dogs	and	forestry)	
might	as	well	exert	effects	on	the	spatial	genetic	variation	of	black	
grouse	 (Arlettaz	 et	 al.,	 2007;	 Coppes	 et	 al.,	 2017;	 Immitzer	 et	 al.,	
2014;	 Ingold,	 2005).	 Studies	 quantifying	 these	 effects	 for	 black	
grouse	are	still	lacking	as	data	of	these	factors	are	sparse	and	mostly	
not	available	for	larger	regions.

Although	our	results	could	be	taken	as	indication	for	the	pres-
ence	of	barriers	between	subpopulations,	we	assume	the	observed	
patterns	 to	 be	 a	 consequence	 of	 unidirectional	 dispersal	 and	
short-	distance	dispersal	of	black	grouse.	Unidirectional	dispersal	
is	common	for	metapopulation	systems	experiencing	source–	sink	
dynamics	 (Kawecki,	 2004).	We	 found	 patterns	 of	 unidirectional	
dispersal	for	several	pairs,	with	especially	the	outermost	subpop-
ulations	 not	 receiving	 alleles	 from	 the	 larger,	 more	 central	 sub-
populations.	 Although	 dispersal	 in	 black	 grouse	 is	 female-	based	
(Lebigre	et	al.,	2010),	no	clear	evidence	has	been	found	for	female-	
based	 dispersal	 affecting	 black	 grouse	 spatial	 genetic	 variation	
(Corrales	&	Höglund,	2012).	Female-	based	dispersal	rather	seems	
to	counteract	differentiation	effects	(Lebigre	et	al.,	2008,	2010).	
Instead,	short-	distance	dispersal	 in	general	 is	assumed	to	lead	to	
a	 global	 IBD	pattern	 (overall	 subpopulations),	with	potential	 IBR	
effects	being	present	at	 local	 scales	only	 (Blair	et	al.,	2012).	We	
therefore	assume	our	observed	pattern	of	spatial	genetic	variation	
to	be	a	result	of	short-	distance	dispersal.	Detection	of	effects	of	
recent	barriers,	however,	might	be	difficult,	as	for	short-	distance	
dispersing	species,	such	effects	need	several	generations	to	man-
ifest	 (Landguth	et	al.,	2010).	Within	our	 study	area,	habitat	 seg-
regation	as	an	ongoing	process	might	be	too	recent	yet	to	lead	to	
distinct	genetic	differences.	Additionally,	a	network	of	remaining	
patches	 of	 suitable	 habitats	 between	 subpopulations	 serving	 as	
stepping	 stones	might	 have	 prevented	 subpopulations	 from	 dis-
tinct	differentiation	 in	the	past.	 In	the	 light	of	 increasing	habitat	
loss	 and	 fragmentation,	 it	 becomes	 vital	 to	 reassess	 population	
structure	and	connectivity	on	a	 regular	basis,	 in	order	 to	under-
stand	a	species'	response	to	landscape	features	and	detect	poten-
tial	barriers	for	gene	flow.

A	 key	 component	 within	 landscape	 genetic	 analyses	 is	 the	
parameterization	 of	 the	 resistance	 surface.	 In	 the	 past	 decades,	
expert-	based	 resistance	 surfaces	were	widely	 applied	 to	extract	
measures	of	geographic	distances	 (Epps	et	al.,	2007;	Shirk	et	al.,	
2010).	 More	 recently,	 correlative	 ENMs	 have	 increasingly	 been	
used	 due	 to	 their	 continuous	 and	 objective	 nature	 (Milanesi,	
Holderegger,	Caniglia,	 et	 al.,	2017;	Wang	et	al.,	2008).	Although	
ENMs	succeed	in	identifying	habitats	of	species,	they	were,	how-
ever,	 suspected	 to	 inaccurately	 predict	 landscape	 elements	 that	
are	 essential	 during	movement	 or	 dispersal	 (Keller	 et	 al.,	 2013).	
As	 an	 alternative,	 resistance	 surfaces	 produced	 through	 optimi-
zation	approaches	were	suggested	 (Mateo-	Sánchez	et	al.,	2015).	
There	 is,	 however,	 no	 single	 optimal	 approach	 applicable	 for	 all	
circumstances.	Instead,	the	parameterization	of	resistance	models	

depends	 on	 various	 factors,	 including	 the	 study	 objectives	 and	
the	species'	biology	(Spear	et	al.,	2010).	As	black	grouse	is	mainly	
ground-	dwelling	 and	 dispersal	 is	 generally	 low,	 movement	 and	
dispersal	 behavior	 are	 assumed	 to	 be	 driven	 by	 habitat	 struc-
tures,	especially	the	availability	of	food	resources	and	protection	
(against	predators	and	adverse	weather	conditions).	Accordingly,	
the	resistance	of	a	 landscape	can	be	assumed	to	be	reflected	by	
the	spatial	distribution	of	suitable	areas	that	offer	such	resources	
at	 finer	 scales	 (Milanesi,	Holderegger,	Caniglia,	 et	 al.,	2017).	We	
consider	black	grouse	to	exhibit	back-	and-	forth	movements	driven	
by	 the	 landscape's	 suitability	 (Baguette	 &	 Van	Dyck,	 2007;	 Van	
Dyck	&	Baguette,	2005).	We	therefore	based	our	resistance	model	
on	a	validated	correlative	ENM	by	using	a	vast	amount	of	presence	
data	and	potential	variables,	accounting	for	spatial	autocorrelation	
and	multicollinearity	and	applying	stepwise	top-	down	selection	of	
variables	and	parameters.	This	allowed	us	 to	model	a	composite	
resistance	 surface	prior	 to	extracting	distance	measures	 instead	
of	using	single	environmental	variables,	as	recently	recommended	
(Peterman	&	Pope,	2020).

Interestingly,	effective	resistances	as	circuit	theory-	based	mea-
surements	 for	 IBR	were	outperformed	 in	all	analyses	by	 the	cost	
distance-	based	 models	 (LCP	 lengths)	 between	 subpopulations.	
Dispersal	 in	 black	 grouse	 most	 likely	 happens	 at	 an	 individual's	
prereproductive	 stage	 (Caizergues	 &	 Ellison,	 2002;	 Corrales	 &	
Höglund,	2012)	and	is	not	traditionally	passed	on	over	generations.	
Therefore,	 one	might	 expect	 circuit	 theory-	based	 approaches	 to	
be	more	suited,	as	these	approaches	presume	that	individuals	have	
no	prior	 knowledge	of	 the	 landscape	apart	 from	 their	 immediate	
surroundings	 and	 incorporate	 redundancy	 in	 pathways	 between	
source	 and	 destination.	 Yet,	 LCP	 length	 showed	 higher	 explana-
tory	power.	We	assume	this	to	be	due	to	dispersal	between	pairs	
of	subpopulations	being	geographically	restricted	 (by	high	moun-
tain	ridges	and	valleys	densely	populated	by	humans)	and	therefore	
often	 only	 allowing	 for	 one	 dispersal	 route,	which	 seemed	 to	 be	
represented	by	the	LCPs.

4.3  |  Consequences for conservation

Black	grouse	were	historically	widespread	 in	Europe,	ranging	from	
Alpine	 areas	 to	 lowland	 habitats,	 yet	 human	 landscape	 alteration	
within	 the	 last	 centuries	 in	Central	Europe	 resulted	 in	 the	 species	
to	retract	to	the	subalpine	tree-	line	ecotones	(Sachser	et	al.,	2017).	
Our	ENM	clearly	 shows	current	habitats	 to	be	 restricted	 to	 those	
areas.	The	landscape	is	highly	fragmented,	with	unsuitable	areas	to	
some	 extend	 exceeding	 dispersal	 distances	 (approximately	 8	 km;	
Caizergues	&	Ellison,	2002;	Marjakangas	&	Kiviniemi,	2005;	Warren	
&	Baines,	 2002;	Willebrand,	 1988).	 Such	 areas	 are	 predominately	
major	valleys	of	several	kilometers	widths,	characterized	by	low	alti-
tude	and	high	density	of	anthropogenic	settlements	and	infrastruc-
ture	or	high	mountain	ridges.	Connectivity	of	subpopulations	seems	
to	follow	a	metapopulation	network	(Sittenthaler	et	al.,	2018),	with	
corridors	alongside	the	LCPs.
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The	easternmost	occurrences	of	black	grouse	in	our	study	area	
also	 represent	 the	 easternmost	 Alpine	 distribution	 of	 the	 species	
(BirdLife	 International,	2016)	and	 losses	of	connectivity	 in	 this	 re-
gion	might	not	be	compensated,	as	shown	by	past	extinction	events	
(Wöss	&	Zeiler,	2003).	Despite	large	valleys	representing	barriers	to	
connectivity,	other	barriers	like	power	lines	might	impede	successful	
dispersal	by	causing	collision	mortality	(Baines	&	Andrew,	2003	and	
references	therein).	Thus,	two	major	conservation	targets	should	be	
particularly	 addressed	 for	 this	 high	 priority	 conservation	 zone:	 (1)	
prevention	 of	 a	 further	 increase	 of	 distances	 between	 patches	 of	
high	habitat	suitability	paired	with	establishment	of	potential	step-
ping	stones;	this	 includes	all	management	actions,	which	aim	at	an	
improvement	or	maintenance	of	high-	quality	habitat	patches	for	the	
target	 species	 (e.g.,	 alpine	 pasturing,	 no	 further	 development	 for	
recreational	issues,	and	reduction	of	human	disturbances;	Immitzer	
et	al.,	2014;	Sachser	et	al.,	2017;	Schweiger	et	al.,	2012).	(2)	Removal	
of	any	additional	barrier	effects,	for	example,	deriving	from	power	
lines.	 Our	 results	 indicate	 that	 habitat	 management	 and	 species	
conservation	actions	need	to	be	based	on	landscape	ecological	anal-
yses,	which	 have	 in	 turn	 to	 be	 translated	 into	 landscape	 planning	
processes.

5  |  CONCLUSION

For	 the	Alpine	 black	 grouse	metapopulation	 system,	 preservation	
of	gene	flow	appears	as	a	primary	conservation	target	(Caizergues	
et	 al.,	 2003;	 Höglund,	 2009).	 Extinction	 events	 of	 several	 occur-
rences	in	the	past	decades	(Wöss	&	Zeiler,	2003)	and	recent	genetic	
differentiation	 (Sittenthaler	et	al.,	2018)	highlight	the	need	for	 im-
proved	connectivity	between	subpopulations	(Höglund	et	al.,	2007).	
Within	 in-	situ	conservation	and	 landscape	planning,	Euclidean	dis-
tances	between	habitats	of	subpopulations	are	often	considered	and	
compared	with	average	and	maximum	dispersal	distances	of	the	tar-
geted	species	(Segelbacher	&	Storch,	2002;	van	Strien	et	al.,	2015),	
thereby	 accounting	 for	 IBD.	This	 approach	 is	 uncoupled	 from	any	
underlying	 landscape	characteristics.	We	 showed	 that	 IBR	effects	
between	local	subpopulations	should	be	considered.	Therefore,	our	
ENM	provides	a	valuable	addition	to	landscape	planning	processes.	
Overall,	Alpine	black	grouse	in	the	Austrian	province	of	Styria,	situ-
ated	at	the	eastern	border	of	the	species'	Alpine	distribution,	exist	
within	a	metapopulation	system	with	currently	moderate	 levels	of	
differentiation.	 However,	 the	 easternmost	 subpopulation	 OSW,	
separated	from	the	Inneralpine	occurrences	by	a	major	valley,	shows	
first	signs	of	isolation	and	should	be	monitored	with	special	atten-
tion	to	prevent	its	extinction	in	the	upcoming	years.
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APPENDIX A

TA B L E  A 1 Pairwise	indices	of	genetic	fixation	and	
differentiation	among	black	grouse	subpopulations	in	Styria,	
rounded to three digits

FST GST
G′

ST
G′′

ST
DJost

AUS	vs.	LIN 0.017 0.008 0.037 0.044 0.002

AUS	vs.	HSS 0.016 0.007 0.037 0.044 0.000

AUS	vs.	HSW 0.022 0.012 0.062 0.073 0.010

AUS	vs.	TAU 0.001 0.001 0.007 0.008 0.000

AUS	vs.	OSW 0.039 0.021 0.100 0.119 0.028

AUS	vs.	TUR 0.015 0.006 0.034 0.040 0.000

AUS	vs.	ZIK 0.040 0.022 0.102 0.121 0.004

AUS	vs.	GLS 0.007 0.006 0.029 0.034 0.002

AUS	vs.	KOR 0.032 0.017 0.076 0.091 0.009

LIN	vs.	HSS 0.026 0.012 0.059 0.070 0.008

LIN	vs.	HSW 0.037 0.020 0.098 0.116 0.026

LIN	vs.	TAU 0.005 0.004 0.022 0.026 0.002

LIN	vs.	OSW 0.026 0.015 0.067 0.081 0.008

LIN	vs.	TUR 0.063 0.026 0.133 0.156 0.010

LIN	vs.	ZIK 0.045 0.025 0.110 0.132 0.007

LIN	vs.	GLS 0.035 0.021 0.102 0.120 0.045

LIN	vs.	KOR 0.083 0.043 0.188 0.221 0.054

HSS	vs.	HSW 0.015 0.007 0.040 0.047 0.007

HSS	vs.	TAU 0.012 0.006 0.034 0.040 0.006

HSS	vs.	OSW 0.040 0.020 0.103 0.121 0.042

HSS	vs.	TUR 0.064 0.030 0.174 0.198 0.037

HSS	vs.	ZIK 0.076 0.039 0.193 0.223 0.046

HSS	vs.	GLS 0.012 0.006 0.034 0.040 0.006

FST GST
G′

ST
G′′

ST
DJost

HSS	vs.	KOR 0.056 0.028 0.139 0.162 0.027

HSW	vs.	TAU 0.021 0.011 0.059 0.069 0.028

HSW	vs.	OSW 0.041 0.021 0.106 0.124 0.047

HSW	vs.	TUR 0.041 0.021 0.118 0.136 0.033

HSW	vs.	ZIK 0.048 0.025 0.122 0.144 0.009

HSW	vs.	GLS 0.010 0.006 0.033 0.039 0.004

HSW	vs.	KOR 0.058 0.030 0.146 0.171 0.059

TAU	vs.	OSW 0.030 0.016 0.079 0.093 0.047

TAU	vs.	TUR 0.023 0.012 0.068 0.079 0.005

TAU	vs.	ZIK 0.038 0.021 0.098 0.116 0.022

TAU	vs.	GLS 0.011 0.006 0.032 0.037 0.010

TAU	vs.	KOR 0.032 0.018 0.084 0.100 0.011

OSW	vs.	TUR 0.103 0.053 0.270 0.306 0.094

OSW	vs.	ZIK 0.050 0.027 0.118 0.141 0.055

OSW	vs.	GLS 0.028 0.015 0.072 0.085 0.036

OSW	vs.	KOR 0.073 0.039 0.172 0.203 0.080

TUR vs. ZIK 0.094 0.049 0.237 0.273 0.124

TUR	vs.	GLS 0.056 0.030 0.166 0.190 0.035

TUR vs. KOR 0.087 0.043 0.210 0.242 0.062

ZIK	vs.	GLS 0.040 0.022 0.104 0.123 0.014

ZIK vs. KOR 0.065 0.035 0.149 0.177 0.034

GLS	vs.	KOR 0.010 0.006 0.030 0.036 0.002

Note: Significant	values	via	95%	bias-	corrected	confidence	intervals	
indicated	in	bold.

TA B L E  A 1 (Continued)


