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Abstract
In modern wildlife ecology, spatial population genetic methods are becoming increas-
ingly applied. Especially for animal species in fragmented landscapes, preservation of 
gene flow becomes a high priority target in order to restore genetic diversity and pre-
vent local extinction. Within Central Europe, the Alps represent the core distribution 
area of the black grouse, Lyrurus tetrix. At its easternmost Alpine range, events of sub-
population extinction have already been documented in the past decades. Molecular 
data combined with spatial analyses can help to assess landscape effects on genetic 
variation and therefore can be informative for conservation management. Here, 
we addressed whether the genetic pattern of the easternmost Alpine black grouse 
metapopulation system is driven by isolation by distance or isolation by resistance. 
Correlative ecological niche modeling was used to assess geographic distances and 
landscape resistances. We then applied regression-based approaches combined with 
population genetic analyses based on microsatellite data to disentangle effects of iso-
lation by distance and isolation by resistance among individuals and subpopulations. 
Although population genetic analyses revealed overall low levels of genetic differenti-
ation, the ecological niche modeling showed subpopulations to be clearly delimited by 
habitat structures. Spatial genetic variation could be attributed to effects of isolation 
by distance among individuals and isolation by resistance among subpopulations, yet 
unknown effects might factor in. The easternmost subpopulation was the most dif-
ferentiated, and at the same time, immigration was not detected; hence, its long-term 
survival might be threatened. Our study provides valuable insights into the spatial 
genetic variation of this small-scale metapopulation system of Alpine black grouse.
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1  |  INTRODUC TION

Spatial population genetic methods are increasingly used in mod-
ern wildlife ecology and conservation. Particularly for species in 
fragmented landscapes, maintaining gene flow is of high relevance 
to preserve genetic diversity and minimize extinction risks of pop-
ulations and species (Frankham et al., 2010). Various frameworks 
and concepts can be applied to identify the spatial distribution of 
genetic data (Sexton et al., 2014; Wagner & Fortin, 2013; Wang & 
Bradburd, 2014) and are the basis to understand the structure of 
populations and infer management strategies. Isolation by distance 
(IBD) describes the positive relationship between genetic differenti-
ation and geographic distance (usually driven by a species' dispersal; 
Wright, 1943), a pattern commonly observed in panmictic popula-
tions (Sexton et al., 2014). However, the spatial genetic structure 
of wildlife species can be affected by several co-occurring factors 
and processes beyond Euclidean distances (Balkenhol et al., 2016). 
Therefore, the concept of isolation by resistance (IBR) is of partic-
ular interest in wildlife conservation genetics (McRae, 2006). IBR 
describes the relationship between genetic differentiation and land-
scape resistance and can be affected by various factors hindering 
the chance of migration and dispersal through the environment 
(Wagner & Fortin, 2013; Wang & Bradburd, 2014). Apart from in-
trinsic, species-specific drivers such as dispersal strategies (Corrales 
& Höglund, 2012; Lampert et al., 2003) or dispersal capabilities 
(Bech et al., 2009), extrinsic factors like landscape topography, 
vegetational cover, and anthropogenic factors might shape the ex-
tent of gene flow and spatial genetic variation (Cushman, 2006). In 
order to maintain gene flow, preservation and reestablishment of 
connectivity are primary targets in wildlife conservation (Kettunen 
et al., 2007). It is thereby essential for conservation management 
to understand the drivers of spatial genetic variation, especially for 
connectivity assessments and conservation strategies for ground-
dwelling, elusive species.

Forest grouse (Galliformes, Tetraoninae) are such species. Many 
populations of these birds are of high conservation concern due to 
declining trends and increasing habitat fragmentation (Storch, 2007). 
Well-documented dispersal capabilities combined with general site 
fidelity of adult individuals result in genetic structure on a fine spa-
tial scale (Klinga et al., 2015; Rutkowski et al., 2017; Sittenthaler 
et al., 2018), making grouse important model systems to study driv-
ers of spatial genetic variation. The black grouse (Lyrurus tetrix) was 
specifically targeted by several genetic studies as it is of high con-
servation concern (Corrales et al., 2014; Höglund, 2009; Rutkowski 
et al., 2018). Having a distribution range from Great Britain to 
Siberia, it shows a worldwide decreasing population trend (BirdLife 
International, 2016), and especially European populations declined 
dramatically or became extinct in the past decades (Höglund et al., 
2007; Larsson et al., 2008; Rutkowski et al., 2018; Segelbacher et al., 
2014; Watson & Moss, 2008). Most of the remaining populations are 
either isolated or exist within a metapopulation context (Caizergues 
et al., 2003; Höglund et al., 2007). It is consequently listed in Annex I 
and II of the EU Birds Directive (Directive 2009/147/EC), and special 

conservation measurements must be taken to ensure its long-term 
survival. Core areas of the black grouse Central European distribu-
tion are located in the Alps (BirdLife International, 2016; Klaus et al., 
1990), where the species shows a strong affinity to the tree-line eco-
tone (Sachser et al., 2017). This ecosystem is mainly characterized by 
a patchy mixture of open, grassy vegetation and woody plants with 
varying but typically low canopy closure. Alpine black grouse usually 
avoid patches with a dense tree canopy closure (Immitzer et al., 2014; 
Patthey et al., 2012; Sachser et al., 2017; Schweiger et al., 2012), 
and open, elevated habitat patches are preferred sites for lekking. 
Dispersal of black grouse is typically sex-biased with natal disper-
sal of females and philopatry of males (Caizergues & Ellison, 2002; 
Corrales & Höglund, 2012). Female dispersal usually occurs over 
distances of up to 8 km (Caizergues & Ellison, 2002; Marjakangas 
& Kiviniemi, 2005; Warren & Baines, 2002; Willebrand, 1988). 
Although in rare events, black grouse traverse longer distances in 
flight (potentially enabling gene flow over impermeable landscapes), 
it is in general a sedentary bird species, responding sensitively to the 
spatial structure of habitats. Being mainly ground-dwelling (Klaus 
et al., 1990), black grouse therefore serves as an indicator species 
for its ecosystem (Storch, 2007), and habitat factors are assumed to 
be key factors for movement behavior and dispersal.

Black grouse habitats within the Alps are naturally separated by 
high mountain ridges and low valleys (Caizergues & Ellison, 2002). 
Over the last decades, abandonment of alpine pastures (Groier, 
2010) and impacts of climate change affected the plant community 
distribution (Gehrig-Fasel et al., 2007; Theurillat & Guisan, 2001), 
which resulted in a distinct loss of open habitats and in altitudinal 
shifts of the tree-line ecotone (Tasser et al., 2007), significantly re-
ducing the available habitat for black grouse. Furthermore, habitats 
became increasingly fragmented by human settlements, agricultural 
areas, expanding skiing areas, wind power facilities, and other human 
activities (Arlettaz et al., 2007; Coppes et al., 2017; Immitzer et al., 
2014; Ingold, 2005). These effects become particularly important 
at the marginal areas of the species' distribution. For the eastern-
most black grouse occurrences of the Alpine distribution, situated 
in the Austrian province of Styria (Figure 1), genetic differentiation 
into distinct clusters has already been observed (Sittenthaler et al., 
2018), and multiple extinction events of marginal subpopulations 
have been documented in the past decades (Wöss & Zeiler, 2003). 
It remained unclear whether the spatial genetic variation was driven 
by the mere geographic distance or the resistance of the landscape. 
Yet, such knowledge is of major importance to infer targeted con-
servation actions, in order to preserve threatened populations and 
to adjust ongoing landscape planning processes.

Here, we aimed to study the population genetic structure and 
habitat suitability of a Central European black grouse metapopula-
tion system to infer drivers of spatial genetic variation and to under-
stand their effects on the conservation status of the species. We 
modeled connectivity using least-cost-path (LCP) lengths and ef-
fective resistances and parameterized regression-based landscape 
genetic analyses among individuals and subpopulations. Our study 
helps to understand drivers of the genetic structure of Alpine black 
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grouse populations at the edge of their range. This is the basis to 
infer conservation strategies and can help to prevent the loss of this 
characteristic bird species of Alpine ecosystems.

2  |  METHODS

2.1  |  Study site and collection of samples

Samples of black grouse were obtained from the entire Austrian 
province of Styria (Figure 1), representing the easternmost occur-
rence of the species' Alpine distribution range (BirdLife International, 
2016). The study area shows a high portion of mountain areas, 
ranging from 200 to almost 3000 m.a.s.l., a high cover of conifer 

forests (>55%), a prominent portion of alpine meadows (7%), and 
gradients between alpine and pannonic climate (Land Steiermark, 
2019). Black grouse occurrences are structured in subpopulations 
based on topographical criteria and average dispersal distances 
(Sittenthaler et al., 2018). Several subpopulations at the edges of 
the distribution range have already gone extinct (Wöss & Zeiler, 
2003), and the remaining 10 subpopulations form a metapopulation 
system (Table 1; Sittenthaler et al., 2018). We used genetic data of 
black grouse individuals from a previous population genetic survey 
from all subpopulations (Sittenthaler et al., 2018). Samples were ob-
tained from feces, feathers, and muscle tissue (n = 250) and stored in 
ethanol (for muscle tissue) and frozen (for feces and feathers). DNA 
extraction and polymerase chain reaction (PCR) amplification were 
performed as described in Sittenthaler et al. (2018). Each individual 

F I G U R E  1 Results of population 
genetic analyses, ecological niche 
modeling, and landscape genetic 
approaches on 195 Styrian black grouse 
individuals. (a) Digital elevation model 
of the study area Styria, with all 195 
individuals, classified in 10 subpopulations 
(black outline, 5-km buffer around 
presence points, identified by Sittenthaler 
et al., 2018) and four clusters (green-, 
yellow-, orange-, and gray-colored 
areas of suitable habitat, as identified 
in this study). Least-cost-paths by 
Linkage Mapper 1.1 were classified into 
five quantiles of effective resistances 
calculated by Circuitscape 4.0. The inset 
shows the area of the Alps (dark gray) 
provided by the European Environment 
Agency and the location of our study 
area (black square). (b) Ecological niche 
model by MaxEnt 3.4.1, representing the 
resistance surface
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was genotyped at nine microsatellite loci using a multiple tubes ap-
proach for noninvasive samples (Navidi et al., 1992; Taberlet et al., 
1996). A total of 195 individuals were fully genotyped. A consensus 
genotype was accepted when at least two (for heterozygote loci) or 
three (for homozygote loci) independent replications of a single al-
lele were recorded.

2.2  |  Population genetic analysis

Summary statistics were calculated per subpopulation using the R 
package hierfstat 0.5-7 (Goudet, 2005). In addition to FST values (Weir 
& Cockerham, 1984), we calculated the pairwise fixation indices GST 
(Nei & Chesser, 1983) and G′

ST
 (Hedrick, 2005) and the differentiation 

index DJost (Jost, 2008), using the R package diveRsity 1.9.9 (Keenan 
et al., 2013). As G′′

ST
 (Meirmans & Hedrick, 2011) is not implemented 

within diveRsity, we used the R package mmod 1.3.3 (Winter, 2012) 
and calculated bias-corrected confidence intervals following the 
method implemented in diveRsity. For all indices, confidence inter-
vals were based on 10,000 bootstrap iterations. Although correlated 
(Pearson's correlation coefficients ranging from 0.8 to 0.9), these in-
dices quantify complementary aspects of population structure and 
should therefore be considered separately for subsequent analyses 

(Jost et al., 2018; Meirmans & Hedrick, 2011). To assess clustering 
within the genetic dataset, a principle component analysis (PCA) 
was calculated using the R package adegenet 2.0.1 (Jombart, 2008; 
Jombart & Ahmed, 2011) in addition to the discriminant analysis of 
principle components (DAPC) and Structure analyses by Sittenthaler 
et al. (2018). Given the previously reported low amount of genetic 
differentiation among subpopulations (Sittenthaler et al., 2018), we 
further used the R package memgene 1.0.1 (Galpern et al., 2014) to 
explore spatial genetic patterns in detail. memgene was specifically 
designed to detect and visualize weak or cryptic structure within a 
genetic pattern by using Moran's eigenvector maps (MEMs; Galpern 
et al., 2014), thus being a suitable approach to detect genetic struc-
ture in our study system. We used the function mgQuick to assess 
population structure, with the response variable being the propor-
tions of shared alleles DPS (calculated with memgene) among indi-
viduals. Subpopulations in our study area were assigned to clusters 
based on the combined interpretation of Structure and DAPC results 
by Sittenthaler et al. (2018), our memgene analysis and significant 
indices of genetic fixation and differentiation.

Furthermore, we estimated recent migration rates to analyze 
potential asymmetric migration using BayesAss 3.0.4 (Wilson & 
Rannala, 2003). Migration rates were calculated between clusters 
based on the analyses of population genetic structure (Table 2). We 

TA B L E  1 Characterization of the subpopulations within the metapopulation system of black grouse in Styria

Subpopulation Abbreviation PE N
cluster 
assignment HO HE FIS

Aussee AUS 1200 7 Inneralpine 0.65 0.66 0.02

Liezen North LIN 450 5 Inneralpine 0.69 0.63 −0.09

Hoschschwab South HSS 925 13 Inneralpine 0.76 0.71 −0.07

Hochschwab West HSW 925 13 Inneralpine 0.68 0.70 0.02

Tauern TAU 6.850 56 Inneralpine 0.66 0.69 0.04

East Styria/Wechsel OSW 400 41 Eastern 0.60 0.64 0.07

Turrach TUR 850 4 Inneralpine 0.75 0.69 −0.08

Zirbitzkogel ZIK 500 18 Zirbitzkogel 0.54 0.62 0.12

Gleinalm/Stubalm GLS 700 23 Southern 0.62 0.68 0.09

Koralm KOR 150 15 Southern 0.61 0.62 0.03

Note: Overall FIS: −0.04; Overall FIT: 0.04; Overall FST: 0.08.
Cluster assignment based on Sittenthaler et al. (2018), results from memgene and indices of fixation and differentiation. Population size estimates are 
rough expert-based estimates to characterize the subpopulations.
Abbreviations: FIS, inbreeding coefficient; HE, expected heterozygosity; HO, observed heterozygosity; N, number of individual genotypes; PE, 
population size estimate (Sittenthaler et al., 2018).

To

From

Inneralpine Eastern Southern Zirbitzkogel

Inneralpine 0.700 (±0.040) 0.046 (±0.100) 0.251 (±0.112) 0.006 (±0.012)

Eastern 0.021 (±0.040) 0.812 (±0.248) 0.154 (±0.258) 0.013 (±0.025)

Southern 0.030 (±0.044) 0.019 (±0.037) 0.941 (±0.057) 0.010 (±0.020)

Zirbitzkogel 0.018 (±0.034) 0.056 (±0.133) 0.239 (±0.122) 0.687 (±0.040)

Note: Significant values based on the credible intervals are in bold emphasis.

TA B L E  2 Migration rates as estimated 
by BayesAss 3.0.4 with 95% credible 
intervals among the genetic clusters of 
black grouse as in Table 1
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conducted 10 independent repeats of 50 ∗ 106 iterations (including 
5 ∗ 106 iterations burn-in) with a sampling frequency of 2000, each 
initiated with a different random seed for each dataset. In order to 
keep the acceptance rates for proposed changes between 40% and 
60%, delta values were adjusted to Δm = 0.1, Δa = 0.3, and Δf = 0.7. 
Convergence of chains was confirmed using Tracer 1.7.1 (Rambaut 
et al., 2018) and by checking for concordance between repeats. We 
used the Bayesian deviance as calculated by Meirmans (2014) in R 
3.6.0 (R Core Team, 2019) to search for the best fitting model (the 
one with the lowest Bayesian deviance was selected) (Faubet et al., 
2007). Credible intervals (CIs 95%) of migration rates were calcu-
lated as standard deviation multiplied by 1.96 as described in the 
program's manual. Migration rates that included zero within their 
95% CI were considered not significant.

2.3  |  Ecological niche modeling and 
resistance surface

In order to parameterize a model representing the resistance of 
the landscape to movement and dispersal for black grouse, we 
used a correlative ecological niche model (ENM). The process of 
parameterization of resistance models is broadly discussed (Mateo-
Sánchez et al., 2015; Milanesi, Holderegger, Caniglia, et al., 2017; 
Roffler et al., 2016; Wang et al., 2008), and several approaches 

have been suggested. Black grouse are mainly ground-dwelling 
and react sensitively to habitat structures. Movement and disper-
sal are most probably directly linked to habitat factors, as suitable 
habitats provide food resources and protection (against predators 
and adverse weather conditions). Therefore, we assume that the re-
sistance of a landscape to movement and dispersal is best reflected 
by the distribution of suitable habitat areas (Milanesi, Holderegger, 
Caniglia, et al., 2017). Furthermore, ENMs have already been used 
successfully to parameterize resistance surfaces for the closely re-
lated Western capercaillie (Tetrao urogallus) (Milanesi et al., 2017). 
Accordingly, we selected 15 topographic, climatic, and land cover 
variables that might affect dispersal and movement (Table 3).

The topographic variables (altitude, slope, exposure, and rugged-
ness, Sappington et al., 2007) were calculated based on the digital 
elevation model. The climatic variables were taken from the official 
geodata catalog of climate of the province of Styria (GIS-Steiermark, 
2018). The land cover dataset was based on an extensive land 
cover classification (Wrbka et al., 2002). It comprises 42 landscape 
types, which were grouped into the eight categories relevant for 
black grouse (Table 4): summits and glaciers; subalpine grasslands 
(including pastures and meadows); continuous forests; lowland for-
est patches; submountainous grasslands; lowland grasslands and 
pastures; lowland arable land; and human settlements and indus-
trial areas. We included two variables representing the distance to 
the land cover type positively (subalpine grasslands) or negatively 

TA B L E  3 Environmental input data used for the ecological niche modeling of black grouse in Styria with MaxEnt 3.4.1 (Phillips et al., 
2006; Phillips & Dudík, 2008)

Environmental variable
Final model 
contribution (%) Source

Distance to subalpine grasslands 55.7 Derived from the land use classification

Altitude 37.8 Derived from a digital elevation model (DEM) by LiDAR 
data (Land Kärnten, 2015)

Land use classification 4.3 Classified into eight categories based on Wrbka et al. 
(2002)

Distance to human settlements and industrial areas 1.6 Derived from the land use classification

Ruggedness, vector ruggedness measure (VRM) 0.7 Derived from the DEM following Sappington et al. 
(2007), neighborhood size: 11

Aspect — Derived from the DEM

Slope — Derived from the DEM

Buffered single tree individuals above 1200 m.a.s.l. — Derived from LiDAR data (GIS-Steiermark, 2018), 
includes vegetation between 6 and 15 m height 
outside of areas classified as forest

Distance to single tree individuals — Derived from the single tree individuals

Climatic variables (duration of vegetation period, 
precipitation per season, days of frost, and days of snow 
cover)

— Klimaatlas Steiermark/climate data (GIS-Steiermark, 
2018)

Tree composition — Waldatlas Steiermark/forest data (GIS-Steiermark, 
2018)

Tree height — Waldatlas Steiermark/forest data (GIS-Steiermark, 
2018)

Note: Final model contribution gives the relative contribution of the variable to the final model. Most important variable based on jackknife tests was 
altitude.
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(human settlements and industrial areas) affecting black grouse dis-
tribution. Hence, we accounted for potential push or pull effects of 
these areas. As the inclusion of local habitat structures is crucial for 
ENMs to parameterize resistance surfaces (Milanesi, Holderegger, 
Bollmann, et al., 2017), we included variables representing tree 
height, tree composition, and the existence of single tree individu-
als. Tree height and composition directly link to black grouse habitat 
preferences and were based on the official geodata catalog of for-
estry of the province of Styria (GIS-Steiermark, 2018). Single trees in 
open subalpine areas might also positively affect habitat suitability 
by offering resting sites and food resources. We therefore gener-
ated a dataset representing single trees in subalpine areas by ex-
tracting vegetation between 6 and 15 m height outside of the land 
cover categories “continuous forest” and “lowland forest patches” 
from light detection and ranging (LiDAR) data (GIS-Steiermark, 
2018). Additionally, we calculated distance to single trees to assess 
potential pull effects. Based on Pearson's correlation coefficient, 
we excluded highly correlated variables (coefficients ≥ |0.7|). For all 
data, we used a resolution of 100 m grain size. Preparation steps 
and further spatial analyses were done in ArcGIS 10.5 (ESRI, 2016). 
The study area was buffered 20 km around the political boundary of 
Styria, allowing the analyses to explore areas of biological relevance 
beyond administrative borders.

The ENM was calculated using maximum entropy modeling im-
plemented in MaxEnt 3.4.1 (Phillips et al., 2006; Phillips & Dudík, 
2008). The underlying principle of maximum entropy uses machine 
learning concepts to minimize the difference between two proba-
bility density functions of environmental variables, one based on 
our presence locations and the other one based on the entire study 
area (background locations) (Elith et al., 2011). We calibrated mod-
els with varying sets of environmental variables and regularization 

parameters and combinations of features (Merow et al., 2013; 
Phillips et al., 2017). We followed a stepwise top-down procedure 
of model selection, evaluating model fit and adequacy by their av-
erage area under the receiver operating characteristics curve (AUC) 
value through cross-validation and together with regional experts as 
recommended by Morales et al. (2017). The final model parameters 
were set to 20 replications of 5,000 iterations, and the regularization 
parameter was set to 1.5. To account for a potential sampling bias, 
we included background manipulation via a Gaussian kernel density 
of sampling locations calculated with SDMtoolbox 2.2 (Brown, 2014; 
Brown et al., 2017) as bias file. The final ENM was inverted into a re-
sistance surface using SDMtoolbox 2.2. Additionally, we created an 
alternative resistance surface based on an inverted ENM of altitude 
only (altitude_inv), as altitude was the most explanatory variable be-
side land cover classification in the ENM.

2.4  |  Measures of IBR

We applied two distinctly different approaches to extract distances 
and resistance values of the resistance surface that might explain 
IBR: (1) LCP lengths were extracted according to the cost distance 
approach (Adriaensen et al., 2003), and (2) effective resistances 
were calculated according to the circuit theory approach (McRae 
et al., 2008). Whereas the cost distance approach assumes an indi-
vidual's full a priori knowledge of the landscape when calculating 
the LCP, circuit theory assumes random movement and there-
fore yields higher connectivity where higher redundancy in travel 
routes exist (McClure et al., 2016). LCPs and effective resistances 
between subpopulations (areas defined as suitable habitat within 
a conservative 5 km buffer around individual presence points; 
Figure 1) were generated using the geographical information sys-
tem routine within LinkageMapper 1.1 (McRae & Kavanagh, 2011) 
and PinchPoint Mapper (McRae, 2012) (making use of Circuitscape 
4.0; McRae et al., 2013).

2.5  |  Identifying spatial genetic pattern

At the individual level, we used the function mgLandscape within 
memgene to address whether IBD or IBR might explain the spatial 
genetic pattern. This function computes LCPs from provided resist-
ance surfaces to extract MEM eigenvectors and subsequently per-
forms a regression framework. We used DPS as response variable and 
the following landscape distances as predictors (Table 5): Euclidean 
distances resembling IBD (Euc. dist.), our resistance surface based 
on the ENM resembling IBR (res. surface), and the resistance surface 
based on altitude alone (altitude_inv). By including altitude as a pre-
dictor, we assessed whether IBR effects are driven by the complex 
ENM (including topography, climate, and land cover) or by altitude 
alone (irrespective of anthropogenic influence).

At the subpopulation level, we contrasted IBD versus IBR using 
the regression framework within the function mgLandscape_list 

TA B L E  4 Summary of land use classification by Wrbka et al. 
(2002) into eight categories relevant for black grouse in Styria used 
in the present study

Land use category used in 
the present study

Land 
cover (%)

Identifier of Wrbka 
et al. (2002)

Summits and glaciers 3.2 101

Subalpine grasslands and 
pastures

7 102, 103

Continuous forests 22.8 201

Lowland forest patches 35.3 202, 203, 204, 205

Submountainous grasslands 
and pastures

8.6 301, 302, 303

Lowland grasslands and 
pastures

11.3 304, 305, 307, 312, 
313

Lowland arable land 9.9 401, 402, 404, 405, 
406, 407, 411, 
604

Human settlements and 
industrial areas

1.9 701, 702, 703, 704, 
705, 706

Note: Land cover displays the proportion of study area covered by the 
respective category.
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by Polato et al. (2017). Although following the same approach as 
mgLandscape within memgene, this adapted function allowed us 
to test the aforementioned indices of pairwise genetic fixation and 
differentiation as response variables against pairwise geographic 
distances as predictors. The pairwise Euclidean distances (IBD), LCP 
lengths (IBR), and effective resistances (IBR) were used as predic-
tors. Additionally, we calculated maximum likelihood population 
effects (MLPE) models (Clarke et al., 2002) implemented in the R 
package ResistanceGA (Peterman, 2018). MLPE models account for 
nonindependence of pairwise distance data due to population ef-
fects and have been identified as best-suited regression-based ap-
proaches for model selection (Shirk et al., 2017, 2018). We used the 
same response and explanatory variables as for the mgLandscape_
list approach. Due to strong correlations between the explanatory 
variables and the small sample size within each model, each variable 
was tested separately resulting in 20 models (five response variables 
and three explanatory variables plus a null model assuming that the 
response variable is constant for the explanatory variable). We then 
applied deltas and weights of the Akaike Information Criterion cor-
rected for small sample sizes (AICc; Anderson & Burnham, 2002) and 
R2 to compare the candidate models and select the best model (Row 
et al., 2017).

3  |  RESULTS

3.1  |  Spatial genetic structure

Overall, a low amount of genetic differentiation among subpopu-
lations was detected. Although the PCA could not resolve a clear 
cluster assignment (Figure 2), the spatial genetic structure de-
tected by the mgQuick approach of memgene (Figure 3) indicated 
the presence of clusters. The first memgene variable explaining the 
highest amount of spatial genetic variation found the subpopula-
tion OSW to be distinct. The second variable suggested a cluster 
of the northern subpopulations, and subpopulation ZIK seemed to 
be connected to the southeastern ones. The third variable showed 
mixed results for the northern subpopulations, and ZIK seemed to 
be distinct from the southeastern subpopulations. Significant indi-
ces of genetic fixation and differentiation (Table 6 and Table A1) 

provided further evidence for genetically discrete clusters; both 
OSW and ZIK were differentiated. Taken together, our data and 
the Structure and DAPC results by Sittenthaler et al. (2018) imply 
that the ten subpopulations can be differentiated into four clusters 
(Table 1). The subpopulations AUS, LIN, HSS, HSW, TAU, and TUR 
are situated in the Central Alps and together formed the Inneralpine 
cluster. The southern subpopulations GLS and KOR formed a clus-
ter called Southern. The easternmost subpopulation OSW was the 
most differentiated and formed its own cluster Eastern. The sub-
population ZIK showed ambiguous results and was therefore as-
signed its own cluster Zirbitzkogel.

The proportion of genetic variation found by memgene that can 
be attributed to spatial patterns (R2

adj
, Galpern et al., 2014) was 

0.07, indicating weak overall genetic structure. This is in line with 
the indices of fixation and differentiation showing overall low fix-
ation and differentiation (range of values for FST: 0.001–0.103; GST

: 0.001–0.053; G′

ST
: 0.007–0.207, G′′

ST
: 0.008–0.306; DJost: 0.001–

0.124). Results of the first and second memgene variables (explain-
ing 28% and 19% of the spatial genetic variation, respectively) 
resolved the four genetic clusters, with ambiguous assignments 
for ZIK. In estimation of migration rates, BayesAss chains con-
verged well, and log-likelihood and Bayesian deviance were com-
parable between repeats. The estimates indicate unidirectional 
migration patterns between the clusters (Table 2). Individuals ap-
peared to be migrating from Southern into the Zirbitzkogel and 
Inneralpine clusters. Migration rates from Southern to Eastern 
were not significant. Therefore, no immigration into Southern and 
Eastern was found.

3.2  |  Ecological niche modeling and 
resistance surfaces

All climatic variables were excluded due to their high correlation 
with altitude prior to the parameterization of the ENM. The final 
ENM (Figure 1) comprised the following five environmental variables 
reflecting relevant topographical and land cover criteria for black 
grouse (model contributions in parentheses): distance to subalpine 
grasslands (55.7%); altitude (37.8%); land use classification (4.3%); 

TA B L E  5 Comparison of the proportion of spatial genetic variation (R2
adj
) among black grouse individuals in Styria explained by Moran's 

eigenvector maps derived from different models

Model [abc] P[abc] [a] P[a] [c] P[c] [b] [d]

Euc. dist. 0.080 0.001 0.052 0.001 0.005 0.060 0.023 0.920

res. surface 0.074 0.001 0.047 0.001 0.003 0.126 0.024 0.926

altitude_inv 0.055 0.001 0.028 0.001 −0.001 0.631 0.029 0.945

Note: The table describes the proportion of variation in pairwise genetic distances that can be attributed to the different spatial predictors [abc] 
and to the particular pattern in the landscape resistance surface [a], the coordinates of the individuals in the landscape resistance surface [c], or to 
confounded pattern of the landscape resistance surface and coordinates [b]. Additionally, residuals not explained by spatial predictors are reported 
[d]. P[abc], P[a], and P[c] represent the p values of each calculated proportion. Tested models are Euclidean distances (Euc. dist.), pairwise least-cost-
path (LCP) lengths between individuals across the resistance surface based on the ENM (res. surface), and pairwise LCPs between individuals across a 
resistance surface based on altitude only (altitude_inv).
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distance to human settlements and industrial areas (1.6%); and ter-
rain ruggedness (0.7%) (Table 3). The model corresponded well to 
regional expert assessment and showed an averaged test AUC of 

0.954, which indicated strong model fit and high predictive perfor-
mance. The single most important variable in terms of information 
not covered by other variables was altitude.

F I G U R E  2 Principal component analysis with four retained PCs of the 195 Styrian black grouse genotypes. PC1 (x axis; 3.9% explained 
variance) versus PC2 (y axis; 3.6% explained variance) (top) and PC1 (x axis, 3.9%) versus PC3 (y axis, 3.5%) (bottom). Different colors indicate 
the assignment of subpopulations to four clusters

F I G U R E  3 Spatial genetic structure of the 195 Styrian black grouse samples as found by memgene 1.0.1 (Galpern et al., 2014). Circles 
of similar size and color indicate individuals with similar scores (large black and large white circles describe opposite extremes). The first 
memgene variable explains 28% of the spatial genetic variation and the second and third variable 19% and 15%, respectively. Colored 
polygons indicate the assignment of subpopulations to the four clusters. Axes in UTM WGS84
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3.3  |  Identifying spatial genetic pattern

Within the mgLandscape approach on the individual level, MEM 
eigenvectors derived from Euclidean distances ([abc], Table 5) be-
tween individuals explained a slightly higher proportion of spatial 
genetic variation (R2

adj,[abc]
 = 0.08) than MEM eigenvectors derived 

from the resistance surface based on the ENM and the resistance 
surface based on altitude alone (R2

adj,[abc]
  = 0.074 and 0.055, re-

spectively). The fraction of genetic distance that is explained by 
the model [a] is notably higher than the fraction explained by co-
ordinates [c], indicating good model fit (Table 5). Although 
Euclidean distances (testing for the effect of IBD) are therefore 

TA B L E  6 Pairwise FST (Weir & Cockerham, 1984) and G′′

ST
 (Meirmans & Hedrick, 2011) comparisons among black grouse subpopulations in 

Styria

Subpopulation ID AUS LIN HSS HSW TAU OSW TUR ZIK GLS KOR

AUS — 0.044 0.044 0.073 0.008 0.119 0.040 0.121 0.034 0.091

LIN 0.017 — 0.070 0.116 0.026 0.081 0.156 0.132 0.120 0.221

HSS 0.016 0.026 — 0.047 0.040 0.121 0.198 0.223 0.040 0.162

HSW 0.022 0.037 0.015 — 0.069 0.124 0.136 0.144 0.039 0.171

TAU 0.001 0.005 0.012 0.021 — 0.093 0.079 0.116 0.037 0.100

OSW 0.039 0.026 0.040 0.041 0.030 — 0.306 0.141 0.085 0.203

TUR 0.015 0.063 0.064 0.041 0.023 0.103 — 0.273 0.190 0.242

ZIK 0.040 0.045 0.076 0.048 0.038 0.050 0.094 — 0.123 0.177

GLS 0.007 0.035 0.012 0.010 0.011 0.028 0.056 0.040 — 0.036

KOR 0.032 0.083 0.056 0.058 0.032 0.073 0.087 0.065 0.010 —

Note: FST values below the diagonal and G′′

ST
 above. Significant values based on 95% bias corrected confidence intervals in bold.

Response variable
Explanatory 
variable ΔAICc w R2

FST (Weir & Cockerham, 1984) LCP length 0.00 0.60 0.17/0.66

Euclidean dist. 0.97 0.37 0.16/0.65

Effective resist. 6.09 0.03 0.10/0.58

Null model 8.84 0.01 0.00/0.57

GST
 (Nei & Chesser, 1983) LCP length 0.00 0.61 0.19/0.66

Euclidean dist. 1.01 0.37 0.16/0.65

Effective resist. 6.49 0.02 0.10/0.56

Null model 9.54 0.01 0.00/0.55

G′

ST
 (Hedrick, 2005) LCP length 0.00 0.59 0.20/0.64

Euclidean dist. 0.88 0.38 0.19/0.63

Effective resist. 6.65 0.02 0.10/0.53

Null model 9.57 0.00 0.00/0.52

G′′

ST
 (Meirmans & Hedrick, 2011) LCP length 0.00 0.59 0.20/0.64

Euclidean dist. 0.87 0.38 0.19/0.64

Effective resist. 6.66 0.02 0.10/0.54

Null model 9.66 0.00 0.00/0.53

DJost
 (Jost, 2008) LCP length 0.00 0.28 0.07/0.38

Euclidean dist. 0.17 0.26 0.06/0.37

Null model 0.39 0.23 0.00/0.34

Effective resist. 0.44 0.23 0.06/0.33

Note: Response variables were fixation and differentiation indices of genetic distances; explanatory 
variables were a null model, Euclidean distances (Euclidean dist.), least-cost-path (LCP) lengths 
based on the ecological niche model (ENM) (LCP length), and effective resistances (Effective 
resist.).

TA B L E  7 Maximum likelihood 
population-effects models for the black 
grouse subpopulations in Styria, ranked by 
weights (w) of the delta of the corrected 
Akaike Information Criterion for small 
sample sizes (ΔAICc) and R2 (marginal/
conditional)
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preferred over the resistance surface based on the ENM (testing 
for the effect of IBR), the small difference in the proportions of 
spatial genetic variation explained by the spatial predictors [abc] 
suggests that IBD and IBR effects cannot be easily distinguished. 
Among subpopulations, the mgLandscape_list approach was not 
able to detect significant Moran's eigenvectors, as the spatial sig-
nal within the pairwise genetic distance matrices was presumably 
too weak. All MLPE models, however, showed positive signs of 
relationships between the predictors and dependent variables. 
The predictors were significant (α  =  0.05) for all models except 
the ones built with DJost as dependent variable. The models using 
LCP length as predictor were preferred for all indices of fixation or 
differentiation (Table 7).

4  |  DISCUSSION

We applied several consecutive analyses to disentangle the drivers 
of spatial genetic variation within an Alpine black grouse metapopu-
lation system at the easternmost edge of the species' distribution. 
Although low levels of population differentiation and only a slight 
difference among models testing for IBD or IBR were found, our 
results provide valuable insights into the spatial genetic pattern of 
this small-scale metapopulation system with a high conservation 
concern.

4.1  |  Migration rates and population structure

The migration rates estimated by BayesAss indicated emigrat-
ing individuals from the two clusters, Eastern and Southern. 
However, BayesAss estimates should be viewed with caution as 
the maximum proportion of immigrated individuals within a clus-
ter is assumed to not exceed one third of its size (Faubet et al., 
2007). Although the overall genetic differentiation is low within 
our study system, black grouse are sedentary birds with interme-
diate juvenile dispersal (Caizergues & Ellison, 2002; Marjakangas 
& Kiviniemi, 2005; Warren & Baines, 2002), presumably not vio-
lating this assumption. Additionally, BayesAss decreases in ac-
curacy when sample sizes are differing among subpopulations 
(Meirmans, 2014). Although this is the case in our study (as is for 
the most studies on rare and elusive species), BayesAss estimates 
correspond well to our other results. Especially the subpopulation 
OSW (Eastern cluster) appears to be of high concern. Separated 
by a major valley (the Mur-Mürz-Furche), it is the most differenti-
ated subpopulation within the metapopulation, and no immigra-
tion from other subpopulations was found. Losing connection to 
the metapopulation system, subpopulation OSW might end up in 
reproductive isolation. Given ongoing range contraction through 
the loss and degradation of habitat (Gehrig-Fasel et al., 2007; 
Groier, 2010; Tasser et al., 2007; Theurillat & Guisan, 2001) and 
increasing disturbance within the remaining habitats (Arlettaz 
et al., 2007; Coppes et al., 2017; Immitzer et al., 2014; Ingold, 

2005), the subpopulations' long-term survival is therefore threat-
ened (Frankham et al., 2010). Our results might be an early warn-
ing signal (Kunz et al., 2021), as extinction events of isolated black 
grouse populations have been observed in various cases over the 
past decades (Höglund, 2009; Höglund et al., 2007 and references 
therein).

Individuals from the Southern cluster seem to be migrating 
into the Zirbitzkogel and Inneralpine cluster. The subpopulations 
within the Southern cluster are situated at the administrative bor-
der, and it is very likely that they are connected to black grouse 
populations in Carinthia. Especially the subpopulation KOR might 
therefore act as an important stepping stone. Surprisingly, no mi-
gration was found between the Zirbitzkogel and the Inneralpine 
cluster. Considering the landscape's permeability, we therefore 
assume individuals emigrating from the Southern cluster to ei-
ther settle within Zirbitzkogel or continue dispersing into the 
Inneralpine cluster. Its role as potential stepping stone for black 
grouse populations in Carinthia still remains unresolved, and more 
samples are needed, spanning a wide geographic region. As we 
only found unidirectional migration, unknown effects might be 
leading individuals to emigrate and, at the same time, prevent 
immigration.

4.2  |  Drivers of black grouse spatial 
genetic variation

We found clear positive significant relationships of genetic differ-
entiation and geographic distances (LCP length and effective resist-
ances) for all our models. On an individual level, analyses resulted 
in models based on IBD being marginally more explanatory than 
models based on IBR. The proportion of shared alleles was better 
explained by the model including the pairwise Euclidean distances 
among individuals than by the model including the pairwise LCPs 
across the resistance surface. Pairwise genetic data are known to 
be noisy, and therefore, inferences are often challenging (Peterman 
& Pope, 2020). Among individuals, the landscape's resistance argu-
ably did not exert a meaningful effect. The similar performance of 
the tested models of IBD and IBR might rather indicate a cumulative 
effect on gene flow, which seems reasonable for a species with re-
stricted dispersal capabilities. Both models were superior to a model 
based solely on altitude.

On a subpopulation level, the memgene analysis was not able to 
reproduce the patterns found among individuals, which might derive 
from the fact that memgene is working best when genetic distances 
are more pronounced among individuals than among subpopulations 
(P. Galpern, pers. comm.). The MLPE models showed the LCP lengths 
to be the best explaining predictors. Taken together, our results sug-
gest the spatial genetic pattern in the studied black grouse meta-
population system to be driven by IBD among individuals and by 
IBR effects among subpopulations. Our results did not show distinct 
differences among models, as shown by the small delta AICc and the 
proportion of explained variance. Additional factors not represented 



12 of 17  |     KUNZ et al.

within our chosen approach might be affecting genetic differenti-
ation beyond geographic distances. We purposely excluded highly 
variable short-term environmental factors. Anthropogenic factors 
and disturbances (e.g., frequencies of hikers and dogs and forestry) 
might as well exert effects on the spatial genetic variation of black 
grouse (Arlettaz et al., 2007; Coppes et al., 2017; Immitzer et al., 
2014; Ingold, 2005). Studies quantifying these effects for black 
grouse are still lacking as data of these factors are sparse and mostly 
not available for larger regions.

Although our results could be taken as indication for the pres-
ence of barriers between subpopulations, we assume the observed 
patterns to be a consequence of unidirectional dispersal and 
short-distance dispersal of black grouse. Unidirectional dispersal 
is common for metapopulation systems experiencing source–sink 
dynamics (Kawecki, 2004). We found patterns of unidirectional 
dispersal for several pairs, with especially the outermost subpop-
ulations not receiving alleles from the larger, more central sub-
populations. Although dispersal in black grouse is female-based 
(Lebigre et al., 2010), no clear evidence has been found for female-
based dispersal affecting black grouse spatial genetic variation 
(Corrales & Höglund, 2012). Female-based dispersal rather seems 
to counteract differentiation effects (Lebigre et al., 2008, 2010). 
Instead, short-distance dispersal in general is assumed to lead to 
a global IBD pattern (overall subpopulations), with potential IBR 
effects being present at local scales only (Blair et al., 2012). We 
therefore assume our observed pattern of spatial genetic variation 
to be a result of short-distance dispersal. Detection of effects of 
recent barriers, however, might be difficult, as for short-distance 
dispersing species, such effects need several generations to man-
ifest (Landguth et al., 2010). Within our study area, habitat seg-
regation as an ongoing process might be too recent yet to lead to 
distinct genetic differences. Additionally, a network of remaining 
patches of suitable habitats between subpopulations serving as 
stepping stones might have prevented subpopulations from dis-
tinct differentiation in the past. In the light of increasing habitat 
loss and fragmentation, it becomes vital to reassess population 
structure and connectivity on a regular basis, in order to under-
stand a species' response to landscape features and detect poten-
tial barriers for gene flow.

A key component within landscape genetic analyses is the 
parameterization of the resistance surface. In the past decades, 
expert-based resistance surfaces were widely applied to extract 
measures of geographic distances (Epps et al., 2007; Shirk et al., 
2010). More recently, correlative ENMs have increasingly been 
used due to their continuous and objective nature (Milanesi, 
Holderegger, Caniglia, et al., 2017; Wang et al., 2008). Although 
ENMs succeed in identifying habitats of species, they were, how-
ever, suspected to inaccurately predict landscape elements that 
are essential during movement or dispersal (Keller et al., 2013). 
As an alternative, resistance surfaces produced through optimi-
zation approaches were suggested (Mateo-Sánchez et al., 2015). 
There is, however, no single optimal approach applicable for all 
circumstances. Instead, the parameterization of resistance models 

depends on various factors, including the study objectives and 
the species' biology (Spear et al., 2010). As black grouse is mainly 
ground-dwelling and dispersal is generally low, movement and 
dispersal behavior are assumed to be driven by habitat struc-
tures, especially the availability of food resources and protection 
(against predators and adverse weather conditions). Accordingly, 
the resistance of a landscape can be assumed to be reflected by 
the spatial distribution of suitable areas that offer such resources 
at finer scales (Milanesi, Holderegger, Caniglia, et al., 2017). We 
consider black grouse to exhibit back-and-forth movements driven 
by the landscape's suitability (Baguette & Van Dyck, 2007; Van 
Dyck & Baguette, 2005). We therefore based our resistance model 
on a validated correlative ENM by using a vast amount of presence 
data and potential variables, accounting for spatial autocorrelation 
and multicollinearity and applying stepwise top-down selection of 
variables and parameters. This allowed us to model a composite 
resistance surface prior to extracting distance measures instead 
of using single environmental variables, as recently recommended 
(Peterman & Pope, 2020).

Interestingly, effective resistances as circuit theory-based mea-
surements for IBR were outperformed in all analyses by the cost 
distance-based models (LCP lengths) between subpopulations. 
Dispersal in black grouse most likely happens at an individual's 
prereproductive stage (Caizergues & Ellison, 2002; Corrales & 
Höglund, 2012) and is not traditionally passed on over generations. 
Therefore, one might expect circuit theory-based approaches to 
be more suited, as these approaches presume that individuals have 
no prior knowledge of the landscape apart from their immediate 
surroundings and incorporate redundancy in pathways between 
source and destination. Yet, LCP length showed higher explana-
tory power. We assume this to be due to dispersal between pairs 
of subpopulations being geographically restricted (by high moun-
tain ridges and valleys densely populated by humans) and therefore 
often only allowing for one dispersal route, which seemed to be 
represented by the LCPs.

4.3  |  Consequences for conservation

Black grouse were historically widespread in Europe, ranging from 
Alpine areas to lowland habitats, yet human landscape alteration 
within the last centuries in Central Europe resulted in the species 
to retract to the subalpine tree-line ecotones (Sachser et al., 2017). 
Our ENM clearly shows current habitats to be restricted to those 
areas. The landscape is highly fragmented, with unsuitable areas to 
some extend exceeding dispersal distances (approximately 8  km; 
Caizergues & Ellison, 2002; Marjakangas & Kiviniemi, 2005; Warren 
& Baines, 2002; Willebrand, 1988). Such areas are predominately 
major valleys of several kilometers widths, characterized by low alti-
tude and high density of anthropogenic settlements and infrastruc-
ture or high mountain ridges. Connectivity of subpopulations seems 
to follow a metapopulation network (Sittenthaler et al., 2018), with 
corridors alongside the LCPs.
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The easternmost occurrences of black grouse in our study area 
also represent the easternmost Alpine distribution of the species 
(BirdLife International, 2016) and losses of connectivity in this re-
gion might not be compensated, as shown by past extinction events 
(Wöss & Zeiler, 2003). Despite large valleys representing barriers to 
connectivity, other barriers like power lines might impede successful 
dispersal by causing collision mortality (Baines & Andrew, 2003 and 
references therein). Thus, two major conservation targets should be 
particularly addressed for this high priority conservation zone: (1) 
prevention of a further increase of distances between patches of 
high habitat suitability paired with establishment of potential step-
ping stones; this includes all management actions, which aim at an 
improvement or maintenance of high-quality habitat patches for the 
target species (e.g., alpine pasturing, no further development for 
recreational issues, and reduction of human disturbances; Immitzer 
et al., 2014; Sachser et al., 2017; Schweiger et al., 2012). (2) Removal 
of any additional barrier effects, for example, deriving from power 
lines. Our results indicate that habitat management and species 
conservation actions need to be based on landscape ecological anal-
yses, which have in turn to be translated into landscape planning 
processes.

5  |  CONCLUSION

For the Alpine black grouse metapopulation system, preservation 
of gene flow appears as a primary conservation target (Caizergues 
et al., 2003; Höglund, 2009). Extinction events of several occur-
rences in the past decades (Wöss & Zeiler, 2003) and recent genetic 
differentiation (Sittenthaler et al., 2018) highlight the need for im-
proved connectivity between subpopulations (Höglund et al., 2007). 
Within in-situ conservation and landscape planning, Euclidean dis-
tances between habitats of subpopulations are often considered and 
compared with average and maximum dispersal distances of the tar-
geted species (Segelbacher & Storch, 2002; van Strien et al., 2015), 
thereby accounting for IBD. This approach is uncoupled from any 
underlying landscape characteristics. We showed that IBR effects 
between local subpopulations should be considered. Therefore, our 
ENM provides a valuable addition to landscape planning processes. 
Overall, Alpine black grouse in the Austrian province of Styria, situ-
ated at the eastern border of the species' Alpine distribution, exist 
within a metapopulation system with currently moderate levels of 
differentiation. However, the easternmost subpopulation OSW, 
separated from the Inneralpine occurrences by a major valley, shows 
first signs of isolation and should be monitored with special atten-
tion to prevent its extinction in the upcoming years.
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APPENDIX A

TA B L E  A 1 Pairwise indices of genetic fixation and 
differentiation among black grouse subpopulations in Styria, 
rounded to three digits

FST GST
G′

ST
G′′

ST
DJost

AUS vs. LIN 0.017 0.008 0.037 0.044 0.002

AUS vs. HSS 0.016 0.007 0.037 0.044 0.000

AUS vs. HSW 0.022 0.012 0.062 0.073 0.010

AUS vs. TAU 0.001 0.001 0.007 0.008 0.000

AUS vs. OSW 0.039 0.021 0.100 0.119 0.028

AUS vs. TUR 0.015 0.006 0.034 0.040 0.000

AUS vs. ZIK 0.040 0.022 0.102 0.121 0.004

AUS vs. GLS 0.007 0.006 0.029 0.034 0.002

AUS vs. KOR 0.032 0.017 0.076 0.091 0.009

LIN vs. HSS 0.026 0.012 0.059 0.070 0.008

LIN vs. HSW 0.037 0.020 0.098 0.116 0.026

LIN vs. TAU 0.005 0.004 0.022 0.026 0.002

LIN vs. OSW 0.026 0.015 0.067 0.081 0.008

LIN vs. TUR 0.063 0.026 0.133 0.156 0.010

LIN vs. ZIK 0.045 0.025 0.110 0.132 0.007

LIN vs. GLS 0.035 0.021 0.102 0.120 0.045

LIN vs. KOR 0.083 0.043 0.188 0.221 0.054

HSS vs. HSW 0.015 0.007 0.040 0.047 0.007

HSS vs. TAU 0.012 0.006 0.034 0.040 0.006

HSS vs. OSW 0.040 0.020 0.103 0.121 0.042

HSS vs. TUR 0.064 0.030 0.174 0.198 0.037

HSS vs. ZIK 0.076 0.039 0.193 0.223 0.046

HSS vs. GLS 0.012 0.006 0.034 0.040 0.006

FST GST
G′

ST
G′′

ST
DJost

HSS vs. KOR 0.056 0.028 0.139 0.162 0.027

HSW vs. TAU 0.021 0.011 0.059 0.069 0.028

HSW vs. OSW 0.041 0.021 0.106 0.124 0.047

HSW vs. TUR 0.041 0.021 0.118 0.136 0.033

HSW vs. ZIK 0.048 0.025 0.122 0.144 0.009

HSW vs. GLS 0.010 0.006 0.033 0.039 0.004

HSW vs. KOR 0.058 0.030 0.146 0.171 0.059

TAU vs. OSW 0.030 0.016 0.079 0.093 0.047

TAU vs. TUR 0.023 0.012 0.068 0.079 0.005

TAU vs. ZIK 0.038 0.021 0.098 0.116 0.022

TAU vs. GLS 0.011 0.006 0.032 0.037 0.010

TAU vs. KOR 0.032 0.018 0.084 0.100 0.011

OSW vs. TUR 0.103 0.053 0.270 0.306 0.094

OSW vs. ZIK 0.050 0.027 0.118 0.141 0.055

OSW vs. GLS 0.028 0.015 0.072 0.085 0.036

OSW vs. KOR 0.073 0.039 0.172 0.203 0.080

TUR vs. ZIK 0.094 0.049 0.237 0.273 0.124

TUR vs. GLS 0.056 0.030 0.166 0.190 0.035

TUR vs. KOR 0.087 0.043 0.210 0.242 0.062

ZIK vs. GLS 0.040 0.022 0.104 0.123 0.014

ZIK vs. KOR 0.065 0.035 0.149 0.177 0.034

GLS vs. KOR 0.010 0.006 0.030 0.036 0.002

Note: Significant values via 95% bias-corrected confidence intervals 
indicated in bold.

TA B L E  A 1 (Continued)


