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Objective. This study is aimed at investigating whether exenatide (Exe) delays the progression of nonalcoholic fatty liver disease
(NAFLD) in C57BL/6 mice by targeting the NLRP3 inflammasome through the autophagy/mitophagy pathway. Methods. Thirty
male C57BL/6 mice were randomly divided into three groups: control group (n = 10), model group (n = 10), and Exe (exenatide)
group (n = 10). Mouse models of NAFLD and diabetes were established using a high-fat diet and streptozocin. Results. The
levels of fasting blood glucose (FBG), total cholesterol (TC), and triglyceride (TG) in the serum were significantly reduced after
Exe treatment. The body weight, liver weight/body weight, and number of lipid droplets in the liver significantly decreased in
Exe-treated mice. Treatment with Exe markedly reduced the levels of liver lipids, malondialdehyde (MDA), and alanine
aminotransferase (ALT) in serum and livers. The number of autophagosomes increased significantly in the Exe group. The
expression of LC3A/B-II/I, Beclin-1, Parkin, and BNIP3L increased significantly, whereas NLRP3 and IL-1β proteins were
suppressed after Exe treatment. Conclusion. We successfully established a mouse model of NAFLD and diabetes. Exe may
reduce oxidative stress injury and inhibit the NLRP3 inflammasome by enhancing the autophagy/mitophagy pathway in liver,
which has a protective effect on the liver in NAFLD and diabetes in C57BL/6 mice.

1. Introduction

Increasing evidence has indicated a complex interplay
between type 2 diabetes mellitus (T2DM) and nonalcoholic
fatty liver disease (NAFLD) [1]. NAFLD incorporates a spec-
trum of pathologies that range from simple steatosis to non-
alcoholic steatohepatitis (NASH) to fibrosis and cirrhosis,
with an increased risk of hepatocellular carcinoma. Epidemi-
ologic data suggest that diabetes is present in 33% to 50% of
all patients with NAFLD and in up to 60–80% of T2DM
patients with NAFLD [2]. In addition, both conditions are
associated with a high risk of developing cardiovascular dis-
ease [2]. In these patients, excessive lipid metabolites accu-
mulate in hepatocytes, which disrupts the balance between
the oxidative and antioxidative capacities of these hepato-
cytes [3, 4]. Lipotoxicity may provoke hepatocyte injury by
inducing mitochondrial dysfunction and endoplasmic reticu-
lum stress [5]. Day and James [6] presented a classic “two-

hit” hypothesis to describe the pathogenesis of NAFLD
whereby insulin resistance (IR) contributes to steatosis (first
hit), which sensitizes the liver to oxidative stress (second
hit), resulting in inflammation, fibrosis, and necrosis. The
latest theory is the “multivariate parallel collision theory,”
which states that NAFLD is a process that involves the
accumulation of hepatotoxic damage [7]. In line with the
hepatocyte-derived hits, inflammatory signals from the oxi-
dative stress can further exacerbate hepatic inflammation.

The NLRP3 inflammasome is a multiprotein complex
that recognizes various pathogen-associated molecular pat-
terns (PAMPs) and damage-associated molecular patterns
(DAMPs). The key components of a functional NLRP3
inflammasome include nucleotide-binding oligomerization
domain- (NOD-) like receptor P3 (NLRP3), the adaptor
protein apoptosis-associated speck-like protein containing
a caspase recruitment domain (ASC), and serine protease
caspase-1 (Casp1)[8]. Upon detecting endogenous or
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exogenous danger signals, NLRP3 recruits ASC and procas-
pase-1, resulting in caspase-1 activation, which further
cleaves prointerleukin- (IL-) 1β and pro-IL-18 to yield their
active forms and leads to chronic inflammation in metabolic
diseases. The world-renowned research group of Jürg
Tschopp found that mitochondrial reactive oxygen source
(ROS) is a key signal in regulating the activation of the
NLRP3 inflammasome and that autophagy/mitophagy may
regulate the quality of mitochondria by removing damaged
ones to prevent ROS-induced NLRP3 inflammasome activa-
tion in THP1 cells [9]. A previous study has demonstrated
that the depletion of the autophagic protein microtubule-
associated protein-1 light chain 3 (LC3) B and Beclin-1
enhances both caspase-1 activation and the secretion of
interleukin-1β and interleukin-18 [10]. Thus, autophagy
negatively regulates the activation of the NLRP3 inflamma-
some by preserving mitochondrial integrity. NLRP3 is a key
factor in the development of NAFLD to NASH [11]. There-
fore, the inhibition of NLRP3 is set to become a new point
to target delaying the progression of NAFLD.

Exenatide (Exe, Byetta), the first glucagon-like peptide-1
(GLP-1) receptor agonist (GLP-1RA), has multiple biological
effects, including improvements in glycemic control, lipid
metabolism, and IR as well as preservation of β cell function
[12]. Recent studies have shown that Exe also has extrapan-
creatic effects, such as weight loss and liver protection
[13, 14]. Further research reveals that dipeptidyl peptidase-
4 (DPP-4) inhibition by saxagliptin prevents inflammation
and renal injury by targeting against the NLRP3/ASC
inflammasome and that liraglutide pretreatment attenuates
lipopolysaccharide-induced acute lung injury by inhibiting
the NLRP3 inflammasome pathway in mice [15, 16]. How-
ever, the specific mechanism is not clear. GLP-1 has been
proven to be effective in improving hepatocyte steatosis by
inducing liver autophagy [17, 18]. Therefore, we hypothe-
sized that Exe is involved in the improvement of NAFLD
by targeting the NLRP3 inflammasome through the
autophagy/mitophagy pathway. In this study, we selected
the autophagy/mitophagy-related protein, NLRP3, and its
downstream molecule IL-1β, to explore the liver-protective
effect of Exe on HFD-induced NAFLD and diabetes in
C57BL/6 mice.

2. Materials and Methods

2.1. Reagents. Exenatide (Amylin Pharmaceuticals Inc./Eli
Lilly & Co.) and monoclonal anti-LC3A/B, anti-Beclin-1,

anti-Parkin, anti-BCL2/adenovirus E1B 19 kDa protein-
interacting protein 3-like (BNIP3L), anti-NLRP3, and anti-
IL-1β antibodies were purchased from Cell Signaling
Technology (USA). The anti-GADPH antibody was pur-
chased from Abcam.

2.2. Animals. Thirty male 6- to 8-week-old C57BL/6 mice
(18–20 g) were purchased from Vital River (Beijing, China).
They were housed under a 12 h light/dark cycle with 50%
humidity in a temperature-controlled setting. The mice were
divided into a regular chow diet group (control group, n = 10)
and a high-fat diet (the composition was as follows: 10% lard,
2.5% cholesterol, 1% bile salts, 20% sucrose, and 66.5% regu-
lar chow diet) group (HFD group, n = 20). The HFD group
was used to induce fatty liver and diabetes. The mice in the
HFD group were raised for 10 weeks and then provided with
an intraperitoneal injection of 1% streptozotocin (STZ)
solution (30mg/kg). After 72 hours, a blood glucose meter
was used to detect the FBG for two days continuously, and
a random blood glucose> 16.7mmol/L was used to indicate a
successful diabetes model. At week 11, HFD mice were
divided randomly into the NAFLD and diabetes model group
(model group, n = 10) and the Exe treatment group (Exe
group, n = 10).

The mice in the control and model groups were given an
intraperitoneal injection of saline, and the Exe group was
treated with an intraperitoneal injection of Exe (10μg/kg,
bid) for four weeks. At the end of the experiment, 7 mice
remained in the control and Exe groups, and 8 remained in
the model group. The mice were then deeply anaesthetized
with an intraperitoneal injection of 2% pentobarbital
(60mg/kg), and it was ensured that no response occurred
after cornea stimulation. Blood samples were collected from
the eyeballs. Livers were weighed immediately after sacrifice
and frozen at −80°C for subsequent analysis. The study con-
formed to the principles of the Declaration of Helsinki, and
all animal procedures were conducted in accordance with
the National Institutes of Health’s Guide for the Care and
Use of Laboratory Animals (NIH Publications number
8023, revised 1978).

2.3. Biochemical Assays. Serum was collected by centrifuga-
tion of blood samples at 4000g for 15min at 4°C. The blood
glucose concentration was measured using the glucose oxi-
dase method. The serum total cholesterol (TC), triglyceride
(TG), and alanine transferase (ALT) levels were measured
with kits (Nanjing Jiancheng, Jiangsu, China) according to
the manufacturer’s instructions.

2.4. Histopathology and Transmission Electron Microscopy.
Liver specimen slices were processed according to a standard
hematoxylin and eosin (H&E) staining technique, after
which these tissues were observed for pathological changes
under an optical microscope. Liver tissues were fixed in
2.5% glutaraldehyde. After being embedded, sectioned, and
double-stained with uranyl acetate and lead citrate, images
were captured with a transmission electron microscope
(TEM) (JEOL, Tokyo, Japan).

Table 1: Effects of Exe on FBG and serum lipid profiles after four
weeks of treatment.

Control Model Exe

FBG (mmol/L) 8.92± 1.87 15.62± 3.66∗∗∗ 9.28± 1.74###

TC (mmol/L) 9.12± 3.93 11.58± 4.07 5.25± 3.36##

TG (mmol/L) 3.73± 1.63 4.97± 1.26 1.66± 0.62###&

Data are expressed asmean ± SD (n = 7-8). ∗∗∗p < 0 001,model versus control
group; ##p < 0 01 and ###p < 0 001, Exe versus model group; &p < 0 01,
Exe versus control group. Exe: exenatide; FBG: fasting blood glucose; TC:
total cholesterol; TG: triglyceride.
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2.5. Immunohistochemistry. Fixed liver tissue samples
were embedded in paraffin and sectioned before the
immunostaining assays using antibodies against NLRP3.
Immunohistochemical staining was detected using a
streptavidin-peroxidase complex.

2.6. Determination of Hepatic Lipid Metabolism and
Oxidative Stress Injury Indicators. The liver homogenate
was extracted, and the supernatant was measured. The
liver tissue levels of TC, TG, and the liver injury indicator
ALT were measured with kits (Nanjing Jiancheng, Jiangsu,

China) according to the manufacturer’s instructions. The
serum and liver tissue levels of the lipid oxidative stress
injury indicator malondialdehyde (MDA) were detected
by an MDA assay kit using the thiobarbituric acid (TBA)
method (Nanjing Jiancheng, Jiangsu, China), according to
the manufacturer’s instructions.

2.7. Western Blot Analysis. Liver proteins were harvested
using RIPA buffer containing 1% protease inhibitor (PMSF,
Beyotime, Shanghai, China). The phosphatase inhibitor
(10%) was added when phosphorylated proteins were to be
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Figure 1: Effect of Exe on reducing body and liver weight and relieving hepatic lipid accumulation after four weeks of treatment: (a) body
weight; (b) ratio of liver weight to body weight; (c) liver size; (d) representative photographs (400x) of H&E-stained liver sections. Liver
TC (e) and TG (f) levels were determined. Data are expressed as mean ± SD (n= 7-8). ∗∗p < 0 01, model versus control group; ##p < 0 01
and ###p < 0 001, Exe versus model group. Exe: exenatide; TC: total cholesterol; TG: triglyceride.
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detected. Protein samples were size-separated on 8%–12%
sodium dodecyl sulfate-polyacrylamide gels and then trans-
ferred onto polyvinylidene difluoride (PVDF) membranes
(ISEQ00010 0.22mm, Millipore, USA). Membranes were
blocked with 5% nonfat milk for one hour and then incu-
bated with primary antibodies against LC3A/B, Beclin-1,
Parkin, BNIP3L, NLRP3, and IL-1β overnight at 4°C. After
washing, the membrane was incubated with the secondary
antibody for one hour. Chemiluminescent signals were
developed with an ECL kit and detected with the ChemiDoc
XRS gel documentation system (Bio-Rad, Hercules, CA). The
protein bands were analyzed using Image Lab, and GADPH
was used as an internal control.

2.8. Statistical Analysis. All values are expressed as mean ±
SD. The statistical analysis was conducted with the SPSS
17.0 software. The comparison of multiple groups was
performed using one-way analysis of variance (ANOVA).
p < 0 05 was considered statistically significant.

3. Results

3.1. Exe Improves FBG and Serum Lipid Profiles.We success-
fully established a mouse model of NAFLD and diabetes by
feeding HFD and by injecting STZ. As shown in Table 1,
the FBG level in the model group was higher than that in
the control group (p < 0 001), and Exe-treated mice showed
a significantly decreased FBG after four weeks compared
with the model group (p < 0 001). To investigate the relation-
ship between Exe and the serum lipid profiles, the levels of

the serum lipid profiles, including TC and TG, were exam-
ined. We found that the administration of Exe significantly
decreased the serum TC and TG levels compared with the
model group (p < 0 01 and p < 0 001, resp.) (Table 1).

3.2. Exe Decreases BodyWeight and LiverWeight and Relieves
Hepatic Lipid Accumulation. Chronic treatment with Exe in
model mice significantly reduced the body weight (p < 0 01,
Figure 1(a)). We also determined the liver weights in all mice.
As shown in Figure 1(b), the ratio of liver weight to body
weight was significantly reduced after Exe treatment com-
pared with that of the model group (p < 0 01). The liver size
in the model group was larger than that in the control group,
and it tended to be smaller after Exe treatment (Figure 1(c)).
H&E staining showed that the number of lipid droplets in
the livers increased significantly in the model group com-
pared to the control group and decreased in the Exe group
(Figure 1(d)). We then tested the TC and TG contents in
the livers; they were significantly increased in the model
group and dramatically decreased in the Exe group (both
p < 0 001, Figures 1(e) and 1(f)).

3.3. Exe Attenuates Oxidative Stress and Liver Injury
Indicators. The serum and liver lipid levels of the oxidative
stress injury indicator, MDA, were tested. MDA increased
greatly in the model group compared with the control group
(both p < 0 01) and dramatically decreased in the Exe
group (p < 0 05 and p < 0 001, resp.) (Figures 2(a) and
2(b)). Serum levels of the liver injury indicator, ALT, were
significantly increased in the model group compared to
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Figure 2: Exe attenuates oxidative stress and liver injury after four weeks of treatment: (a) serumMDA levels; (b) liver MDA levels; (c) serum
ALT levels; (d) liver ALT levels. Data are expressed as mean ± SD (n= 7-8). ∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001, model versus control
group; #p < 0 01, ##p < 0 01, ###p < 0 001, and &p < 0 05, Exe versus model group. Exe: exenatide; MDA: malondialdehyde; ALT: alanine
aminotransferase.
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the control group (p < 0 001) and decreased sharply after
Exe treatment (p < 0 01, Figure 2(c)). ALT levels in liver
tissues were similar to those in serum (Figure 2(d)), indicat-
ing that treatment with Exe could inhibit liver lipid oxidative
stress injury.

3.4. Exe Induces Liver Autophagy/Mitophagy and Inhibits the
NLRP3 Inflammasome. We then examined the autophagic
changes in all groups. TEM imaging showed that Exe
treatment increased the number of autophagosomes (red
arrow) and lipid droplets (yellow arrow) in model mice
(Figure 3(a)). Western blot was used to determine the
expression of autophagy/mitophagy-associated proteins.
As shown in Figures 3(b)–3(e), the ratio of LC3A/B-II
and LC3A/B-I and the expression of Beclin-1, Parkin,
and BNIP3L were more pronounced in the Exe group.
To detect the relationship between autophagy/mitophagy
and inflammasomes, the NLRP3 inflammasome and its
downstream molecule IL-1β were also examined. As shown
in Figures 4(a) and 4(b), the expression of NLRP3 and IL-
1β was strongly increased in the model group and distinctly
attenuated in the Exe group. Histologic analyses of the tissues

further confirmed that Exe downregulates the expression of
NLRP3 in the livers (Figure 4(c)). In addition, it was observed
that the expression of NLRP3 increased significantly in the
model group (Figure 4(c)), where it mainly appeared in the
cytoplasm. These results indicated that treatment with
Exe may inhibit the NLRP3 inflammasome by inducing
autophagy/mitophagy.

4. Discussion

T2DM and NAFLD have become worldwide health
concerns. Hepatic fat accumulation and mitochondrial dys-
function are important common links in the pathogenesis
of T2DM and NAFLD [19]. T2DM accelerates the progres-
sion of NAFLD to NASH. The NLRP3 inflammasome is con-
sidered a key factor for the development of NASH induced by
hyperlipidemia. Thus, regulating the NLRP3 inflammasome
may provide a potential mechanism for NAFLD treatment.
ROS from mitochondria is the key signal for activating the
NLRP3 inflammasome [9]. A previous study showed that
autophagic flux attenuates the activation of the NLRP3
inflammasome pathway in macrophages [20]. Therefore,
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Figure 3: Exe enhances liver autophagy/mitophagy and inhibits the NLRP3 inflammasome. (a) Representative TEM images (20000x) from
TEM showing characteristic autophagosomes (red arrow) and lipid droplets (yellow arrow) in livers. (b, c, d, e) Effects of Exe on LC3A/B,
Beclin-1, Parkin, and BNIP3L in the livers as detected by Western blot. GAPDH served as the loading control. Representative Western
blot images from each group were shown. Data are expressed as mean ± SD (n= 5-6). ∗p < 0 05, ∗∗p < 0 01, model versus control
group; #p < 0 01, ##p < 0 01, and ###p < 0 01, Exe versus model group; &p < 0 05, Exe versus control group. Exe: exenatide; TEM:
transmission electron microscope; GADPH: glyceraldehyde 3-phosphate dehydrogenase.
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the promotion of autophagy may theoretically inhibit the
damage caused by the NLRP3 inflammasome. In the present
study, we first demonstrated that Exe inhibited oxidative
stress injury response and then showed that the activation
of the NLRP3 inflammasome, which was mediated by the
autophagy/mitophagy pathway, delayed the progression of
HFD-induced NAFLD.

In these experiments, we successfully established a mouse
model of NAFLD and diabetes using HFD and streptozocin
[21, 22]. In our study, we found that body weight was signif-
icantly decreased in Exe-treated mice. Previous studies have
confirmed that there are many mechanisms for Exe-induced
weight loss, including increased central satiety, retarded gas-
tric emptying, improved insulin sensitivity of peripheral tis-
sues, and the induction of the browning in white adipose

tissue and thermogenesis in brown adipose tissue. These
effects are the basis for the weight loss of Exe. However, Exe
is also good for systemic metabolism, because the levels of
FBG, TC, and TG in serum decreased significantly after Exe
treatment. The reason for these results may be the effect of
Exe on promoting insulin secretion, inhibiting glucagon
secretion, and improving islet beta cell proliferation, regener-
ation, and differentiation [23]. All of these may ultimately
improve IR in peripheral tissues. Of course, the effect of Exe
on weight loss and the improvement of systemic metabolism
may be among the reasons for the improvement in fatty liver.

The liver itself is a predominant machine for keeping
weight under control and lipid metabolism balance by a com-
plicated set of biochemical pathways, being both a fat-
burning organ and a fat-pumping organ. In this study, we

Control

NLRP3

GADPH

110 kD

36 kD
N

LR
P3

/G
A

D
PH

0.0

0.5

1.0

1.5

2.0

Model Exe

⁎⁎

##

(a)

IL-1�훽

GADPH

17 kD

36 kD

Control

IL
-1
�훽

/G
A

D
PH

0.0

0.5

1.0

1.5

2.0

Model Exe

⁎⁎

##

(b)

Control

Exe

Model

Control

M
ea

n 
op

tic
al

 d
en

sit
y

0.0

0.1

0.2

0.3

0.4

Model Exe

⁎⁎

###

(c)

Figure 4: Effect of Exe on the NLRP3 inflammasome and IL-1β after four weeks of treatment. Effect of Exe on the expression of (a) NLRP3
and (b) IL-1β in the livers, as determined by Western blot. (c) The expression of NLRP3 in liver tissues, as shown by immunohistochemical
staining of liver tissues. The positive staining for NLRP3 expression appears as brown-yellow granules. Representative Western blot and
immunohistochemical images from each group were shown. Data are expressed as mean ± SD (n= 5-6). ∗∗p < 0 01, model versus control
group; ##p < 0 01 and ###p < 0 01, Exe versus model group. Exe: exenatide; GADPH: glyceraldehyde 3-phosphate dehydrogenase.
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observed a remarkable reduction of liver weight after Exe
treatment both before and after weight adjustment. The liver
size and the ratio of liver weight to body weight both
decreased dramatically after Exe treatment. Furthermore,
the number of lipid droplets in the liver exhibited a sharp rise
in the model group of mice and decreased markedly after Exe
intervention. The liver TC and TG contents were also dra-
matically decreased after four weeks of Exe treatment.
These results show that Exe might have a potential benefit
to the liver, as confirmed by our previous clinical study
[14]. Gupta et al. confirmed that the GLP-1R is present
in human hepatocytes, thus suggesting a direct effect of
GLP-1 on the reduction of hepatic steatosis [24]. In vitro
studies further showed that GLP-1 could improve the
insulin sensitivity and regulate lipid metabolism-related
genes in hepatocytes by acting via the GLP-1R in hepato-
cytes [25, 26]. Further, GLP-1 can clear excessive lipid
accumulation in the liver by enhancing hepatic autophagy
and increasing the expression of fatty acid transporter pro-
tein [27, 28]. However, the limitation of this study is that liver
lipid metabolism-related enzymes, products, and trans-
porters and other related indicators were not examined, all
of which require further validation.

Importantly, liver histopathology showed obvious
hepatic steatosis and few cells infiltrating into the liver
lobules. We measured MDA, an end product of lipid per-
oxidation, to evaluate the oxidative stress. In the present
study, the MDA content was significantly increased in
the model mice. We also tested the liver injury marker,
ALT, to assess the extent of liver damage. The ALT levels
were dramatically increased in the model group. The
microstructural changes of hepatocytes were confirmed
by TEM, which showed that the mitochondria were obvi-
ously swollen and damaged. In NAFLD and diabetes, the
absence of mitochondrial autophagic clearance and redun-
dant mitochondrial ROS lead to aggravated oxidative
stress injury and the induction of inflammation, which
may be the cause of hepatocyte damage in the liver. In
contrast, the above indicators were obviously improved
after four weeks of Exe treatment.

The activation of the NLRP3 inflammasome plays a cru-
cial role in the inflammatory progression of NAFLD [9, 29].

Therefore, we evaluated the expression of the inflammation
indexes NLRP3 inflammasome and IL-1β at the protein level
to determine the effect of Exe on inflammation. The
increased levels of NLRP3 and IL-1β in the model mice were
obviously alleviated by Exe. Further histologic analyses also
confirmed that Exe downregulated the expression of NLRP3
in the model mice. Moreover, we found that autophagy/
mitophagy was suppressed in the livers of HFD-induced
NAFLD and diabetic mice. The results indicated that the
levels of LC3 and Beclin-1, which are key proteins required
for autophagosome formation, and of Parkin and BNIP3L,
which are important proteins in the mitophagy pathway,
were significantly decreased in the model mice. Nevertheless,
the expression of LC3A/B-II/I, Beclin-1, Parkin, and BNIP3L
and the number of autophagosomes in the Exe group were
notably increased. Studies have suggested that enhancing
autophagy/mitophagy will remove the damaged mitochon-
dria and thereby prevent the ROS-induced inflammatory
response [9]. Therefore, our results primarily validated our
hypothesis that Exe could inhibit the NLRP3 inflammasome
by enhancing autophagy/mitophagy and depressing oxida-
tive stress, which will further delay hepatic inflammation
progression (Figure 5).

There exists evidence to support our theory that GLP-
1 or DPP-4 inhibitors can suppress the NLRP3 inflamma-
some, but the specific mechanisms have yet to be elucidated
[15, 30, 31]. Of course, our present study only preliminarily
verifies the potential hepatoprotective effect of Exe at the ani-
mal level, and the mechanism needs to be explored at the cel-
lular level. In addition, whether Exe has a direct effect on the
NLRP3 inflammasome needs to be investigated.

In conclusion, the present study demonstrated that Exe
could eliminate the excessive damaged mitochondria,
thereby reducing oxidative stress injury and then inhibiting
NLRP3 inflammasome activation via the mitophagy path-
way. Ultimately, Exe exerted an early protective effect on
the liver in NAFLD and diabetes mice, considering the delay
in NAFLD progression. Our results provide new insights and
more theoretical support for the clinical application of Exe to
achieve effective interventions and liver benefits.
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