Arthroplasty Today 11 (2021) 103-112

Contents lists available at ScienceDirect

Arthroplasty Today

Original research

Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review

Cesar D. Lopez, BS^{*}, Anastasia Gazgalis, BS, Venkat Boddapati, MD, Roshan P. Shah, MD, H. John Cooper, MD, Jeffrey A. Geller, MD

New York-Presbyterian/Columbia University Irving Medical Center, New York, NY

ARTICLE INFO

Article history: Received 23 November 2020 Received in revised form 17 July 2021 Accepted 26 July 2021 Available online xxx

Keywords: Machine learning Artificial intelligence Deep learning Artificial neural networks Orthopedic surgery Hip and knee arthroplasty

ABSTRACT

Background: Artificial intelligence (AI) and machine learning (ML) modeling in hip and knee arthroplasty (total joint arthroplasty [TJA]) is becoming more commonplace. This systematic review aims to quantify the accuracy of current AI- and ML-based application for cognitive support and decision-making in TJA. *Methods:* A comprehensive search of publications was conducted through the EMBASE, Medline, and PubMed databases using relevant keywords to maximize the sensitivity of the search. No limits were placed on level of evidence or timing of the study. Findings were reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Analysis of variance testing with post-hoc Tukey test was applied to compare the area under the curve (AUC) of the models. *Results:* After application of inclusion and exclusion criteria, 49 studies were included in this review. The application of AI/ML-based models and average AUC is as follows: cost prediction-0.77, LOS and discharges-0.78, readmissions and reoperations-0.66, preoperative patient selection/planning-0.79, adverse events and other postoperative complications-0.84, postoperative pain-0.83, postoperative patient-reported outcomes measures and functional outcome-0.81. Significant variability in model AUC across the different decision support applications was found (P < .001) with the AUC for readmission and reoperation models being significantly lower than that of the other decision support categories.

Conclusions: AI/ML-based applications in TJA continue to expand and have the potential to optimize patient selection and accurately predict postoperative outcomes, complications, and associated costs. On average, the AI/ML models performed best in predicting postoperative complications, pain, and patient-reported outcomes and were less accurate in predicting hospital readmissions and reoperations.

© 2021 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Introduction and background

Health care has been able to harness artificial intelligence (AI) in an effort to create predictive tools that support clinicians in more complicated decision-making processes. Specifically, a subset of AI known as machine learning (ML) has been used in multiple medical specialties including oncology, neurology, neurosurgery, cardiology, and orthopedic surgery [1-5]. In lower extremity surgery, specifically, ML has been applied in risk assessment and diagnosis, cost analysis, and reimbursement tools [6].

In the simplest form, ML produces useful models from algorithmic analysis of acquired data. One particular strength of ML is

E-mail address: cdl2143@columbia.edu

that some models are trained on large amounts of information, or "big data". This optimizes the use of these models in decisionmaking as the more data the underlying model is trained on, the more accurate its predictions become [7]. Several ML models are used including decision trees, support vector machine, regression analysis, and Bayesian networks [4,5]. In addition, a subset of ML called "deep learning" has been developed, which includes artificial neural network (ANN) models. The advantage of these models is that they do not require the preprocessing of data by humans, but rather can analyze the raw inputs and identify which features are most important for the analysis [8].

ARTHROPLASTY TODAY

AAHKS

Models can be created in several ways; however, supervised learning is the most common one [8,9]. In supervised learning, data sets are labeled so that the model can be built on a "training set" of inputs (variables of interests) with defined outputs (outcomes of interest). Complex patterns and relationships are identified between these inputs and outputs, and the model can then use these

^{*} Corresponding author. 622 W. 168th St. PH-11, New York, NY 10032, USA. Tel.: (630) 399-4122.

https://doi.org/10.1016/j.artd.2021.07.012

^{2352-3441/© 2021} The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

associations to predict outcomes of interest from novel inputs [10,11]. Once a model is created, it can be tested on a novel data set or a validation data set.

Recently, there has been a substantial increase in the literature describing the use of these models, including the field of hip and knee arthroplasty. As such, it is critical to build a strong understanding of the accuracy and application of these current models to guide their applicability toward further development in the future. The purpose of this review is to assess the accuracy of current applications of AI/ML in hip and knee arthroplasty, namely in (1) administrative/clinical decision support applications (cost, discharge/length of stay (LOS), patient selection and planning, readmission and reoperation risk) and (2) postoperative prediction/management applications (adverse event/ other postoperative complication, cardiovascular complication, postoperative pain, postoperative mortality, patient-reported outcomes [PRO], and sustained opioid use).

Material and methods

Search strategy

A comprehensive search of publications, through May 2020, was conducted using the EMBASE, Medline, and PubMed databases in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search strategy included the following keywords or MeSH-terms: "machine learning", "artificial intelligence", "deep learning", "neural network", "artificial neural networks", "support vector machine", "Bayesian", "boosting", "ensemble learning", "prediction model", "decision tree", "random forest", "total hip arthroplasty", "total knee arthroplasty", "total joint arthroplasty", "THA", "TKA", "TJA", "hip replacement", "knee replacement", and "joint replacement". Boolean operators (OR, AND) were used to maximize the sensitivity of the search. Screening of reference lists of retrieved articles also yielded additional studies.

Eligibility criteria

Inclusion criteria comprised original clinical studies, including studies which evaluate AI/ML-based applications in clinical decision-making in hip and knee arthroplasty. Exclusion criteria comprised studies that did not evaluate AI/ML applications in hip and knee arthroplasty, medical imaging analysis studies without explicit reference or application to hip and knee arthroplasty, studies with nonhuman subjects, non-English-language studies, inaccessible articles, conference abstracts, reviews, and editorials. No limits were placed on level of evidence or timing of the study because the majority of the reviewed studies were published within the last 10 years.

Study selection

Article titles and abstracts were screened initially by 2 reviewers, and full-text articles were subsequently screened based on the selection criteria. The studies were rated by their level of evidence, based on the Oxford Center for Evidence-based Medicine Levels of Evidence [12]. Two authors reviewed each individual article that was included. Discrepancies in inclusion studies were discussed and resolved by consensus.

Data extraction and categorization

A database was generated from all included studies which consisted of the journal of publication, publication year, country of origin, study design, level of evidence, study duration, blinding of the study, number of involved institutions, AI/ML methods and clinical applications, surgical domain, data sources, input variables and output variables, sample size, average patient age, percent female patients, and any additional pertinent findings from the study. The reviewed articles were sorted into different, nonmutually exclusive categories based on the AI/ML clinical application. AI/ML clinical applications were divided into 2 major groups: (1) administrative and clinical decision support and (2) postoperative prediction and management of complications and outcomes. The former group contained the following prediction and optimization subcategories: preoperative planning and cost prediction, hospital discharge and LOS, readmissions, and reoperations. The latter group included postoperative cardiovascular complications, other complications, mortality, and functional and clinical outcomes.

Data analysis

Descriptive statistics were used to summarize important findings and results from the selected articles and to describe trends in AI/ML techniques, clinical applications, and relevant findings associated with its use. Summary data were presented using simple averages, frequencies, and proportions. This study did not evaluate R2 values. AI/ML model performance within the reviewed studies were summarized using various metrics, including the area under the curve (AUC) of receiver operating characteristic curves, accuracy (%), sensitivity (%), and specificity (%). AUC values range from 0.50 to 1 and measure a prediction models' discriminative ability, with a higher AUC value signifying better predictive ability and overall accuracy of the model correctly placing a patient into an outcome category. A model with an AUC of 1.0 is a perfect discriminator, 0.90 to 0.99 is considered excellent, 0.80 to 0.89 is good, 0.70 to 0.79 is fair, and 0.51 to 0.69 is considered poor [13]. Reported model performance metrics for each AI/ML algorithm type and for each clinical application category were aggregated across the reviewed studies. One-way analysis of variance (ANOVA) with post hoc Tukey tests were performed, with statistical significance set at P < .05. All statistical analyses were performed using Stata (version 16.1; Stata Corporation, College Station, Texas).

Results

Search results and study selection

Predefined search terms resulted in 307 articles, of which 48 duplicate articles were removed. The remaining 259 articles were screened by title and abstract according to inclusion and exclusion criteria. Ultimately, there were 58 articles included for full review, of which 49 met full inclusion and exclusion criteria (Fig. 1). Level of evidence of the reviewed studies ranged from II to IV, and over 61% of studies had level of evidence III, 29% of studies had level of evidence II, and 10% had level of evidence IV. The average number of patients included in model testing was 30,624 (standard deviation [SD] 69,069). Although there were no limitations on publication dates in the selection process, the vast majority of studies (42 studies, or 87.5%) were published during the last 3 years (2018 -2020) (Fig. 2) There was variability in the metrics used by authors to report or evaluate AI/ML model performance. AUC was the most frequently reported performance metric, appearing in 39 out of the 49 total reviewed studies (79.6%). In comparison, accuracy was reported less frequently (10 studies, 20.4%), as were sensitivity and specificity (9 studies, or 18.4%).

Figure 1. PRISMA diagram showing systematic review search strategy.

Administrative and clinical decision support applications

A total of 31 reviewed studies (63.3%) evaluated the use of AI/ML applications in optimizing preoperative patient selection or projecting surgical costs, through prediction of hospital LOS, discharges, readmissions, and other cost-contributing factors (Tables 1 and 2). Sixteen studies (32.7%) evaluated AI/ML applications to accurately predict patient reoperations, operating time, hospital LOS, discharges, readmissions, or surgical and inpatient costs [14-29]. In addition, 16 studies (32.7%) used patients' preoperative risk factors and other patient-specific variables to optimize the patient selection and surgical planning process through the use of AI/ML-based predictions of surgical outcomes and postoperative complications [30-44]. The majority of the decision support studies evaluated AI/ML model performance using receiver operating characteristic/AUC, accuracy, sensitivity, and specificity. Two studies did not test model performance, but instead used cluster analysis to classify patients based on preoperative risk factors and other variables to predict their association with inpatient costs and functional outcomes [20,45].

Al/ML applications of cost prediction were used in 23 models across 11 studies, which reported an average AUC of 0.77 (SD 0.08)

(Table 3). Predictive models of LOS and discharges were used in 6 studies, with an average AUC of 0.78 (SD 0.05) across 11 models. Six studies each evaluated different AI/ML-based predictive models of readmissions and reoperations, with an average AUC of 0.66 (SD 0.04) across 15 models. Applications of preoperative patient selection/planning were used in 62 models across 16 studies, reporting an average AUC of 0.79 (SD 0.11). ANOVA testing found statistically significant variability in model AUC across the different decision support applications (P < .001), and Tukey post-hoc testing confirmed that AI/ML predictive models of readmissions and reoperations reported significantly lower AUC than each of the other administrative and clinical decision support categories (Table 3).

ANOVA testing found statistically significant variability in model accuracy and specificity (P < .001 and P = .026, respectively), and Tukey post hoc testing confirmed statistically significant intergroup differences in those metrics, shown in Table 3. Preoperative planning and patient selection models reported significantly higher average accuracy (95.4%) than each of the other decision support categories, including cost prediction (86.5%; P = .006), discharge/LOS (85.2%; P < .001), and readmissions/reoperations (80.1%; P < .001). Discharge/LOS prediction models had the lowest specificity (72.1%) which was significantly lower than specificity reported for

Figure 2. Trends in the annual number of AI/ML publications in hip and knee surgery (2013-2020*). *Through May 2020.

preoperative planning and patient selection models (94.6%; P < .001) and readmissions/reoperations models (98.3%; P < .001). Conversely, there were no significant differences in model sensitivity between the applications (P = .866).

Prediction and management of postoperative outcomes and complications

A total of 25 reviewed studies (51.0%) (Table 4) used various AI/ ML models to predict outcomes, complications, and adverse events, including postoperative risk of cardiac complications, pulmonary complications, renal complications, venous thromboembolism, blood transfusion, periprosthetic and surgical site infections, vomiting, sustained opioid use, and mortality (ranging from 30 to 90 days) (Table 2). Postoperative prediction categories were sorted into 5 groups based on application: adverse events and other complications, cardiovascular complications, postoperative pain, postoperative mortality, PROs and other functional outcomes, and sustained opioid use (Table 2).

Model performance significantly varied across postoperative management applications, which was confirmed by ANOVA testing for average AUC and sensitivity values (P = .002 and P = .042, respectively) (Table 5). Models predicting adverse events and other postoperative complications averaged 0.84 (SD 0.10, 14 models), models predicting postoperative cardiovascular complications averaged an AUC of 0.77 (SD 0.08, 8 models), postoperative pain models averaged an AUC of 0.83 (SD 0.05, 10 models), postoperative mortality models averaged an AUC of 0.81 (SD 0.07, 3 models), and postoperative PRO and functional outcome models averaged an AUC of 0.81 (SD 0.08, 56 models). Tukey post hoc testing found statistically significant differences between postoperative sustained opioid use models (average AUC of 0.71) and models predicting adverse events/other complications (AUC 0.84; P = .002), postoperative pain (AUC 0.83; P = .003), and PROs/functional outcomes (AUC 0.81; P = .011) (Table 5). Average sensitivity was also found to be significantly different between adverse event/other complication models (97.7%) and postoperative pain (78.8%; P < .001) and PROs/functional outcome models (76.9%; P < .001) (Table 5). There was no significant variation in reported accuracy or specificity values (P = .279 and P = .167, respectively) (Table 5).

Comparison of AI/ML algorithms

Various AI/ML algorithms were used in the reviewed studies, including ANNs, decision trees (including random forest), logistic regressions, gradient boosting/ensemble learning, and Bayesian networks (Tables 2 and 6). The most commonly applied AI/ML algorithms in the reviewed studies were logistic regression (24 studies, 60.0%) and neural networks (23 studies, 46.9%). Decision trees were used in 16 studies (32.7%), boosting/ensemble learning models were used in 11 studies (22.4%), support vector machines were used in 7 studies (14.3%), Bayesian networks were used in 5 studies (10.2%), and cluster analysis was only included in 2 studies (4.1%).

Across all ML types, ANNs and Bayesian networks each had the highest average AUC (0.81; SD 0.11 across 56 models and SD 0.07 across 8 models, respectively) Boosting/ensemble learning models had average AUC of 0.79 (SD 0.07, 19 models), followed by decision tree models (AUC 0.78, SD 0.10, 41 models), regression models (AUC 0.77, SD 0.07, 62 models), and support vector machines (AUC 0.77, SD 0.11, 26 models) (Table 6). When comparing AI/ML model performance across various algorithm types, one-way ANOVA testing did not find statistically significant variation, except for specificity (P = .019). No significant intergroup differences were found for any performance metrics on Tukey post-hoc testing (Table 6).

Training data sets

For several studies, data sets used for training were extracted from large national and multicenter databases (Tables 1 and 4). The most commonly used were the Medicare databases (5 studies). Other administrative and private insurance databases were also

Table 1

Reviewed studied of preoperative patient selection and planning in hip and knee arthroplasty.

Author, year	Pathology /Surgery	ML algorithms	Prediction outputs	Patients in testing set (n)	Avg. age	%Female	Data source
Alam et al., 2019 [14] Aram et al., 2018 [15]	THA TKA	ANN, regression ANN, decision tree	Costs Readmissions/	10,000 6137	 70.2	57.1	Multicenter National Joint Registry
Bonakdari et al., 2020 [16]	TKA, THA	ANN	Readmissions/ reoperation	5251	60.3	66.3	UK National Institute for Health and Care
Borjali et al., 2020 [30]	THA	ANN	Preop patient selection/	25	61.3	47	Single institution
Cafri et al., 2019 [31]	ТКА	Decision tree, regression	Preop patient selection/ Planning	74,520	65.5	57.4	Kaiser Permanente Total Joint Replacement Registry (KPTIRR)
Fontana et al., 2019 [32]	TJA	Regression, SVM, decision tree	Preop patient selection/ planning	3430	63	_	Patient database
Gabriel et al., 2019 [17]	THA	Regression, decision tree	Discharge/LOS	240	_	50.5	Single institution
Hirvasniemi et al., 2019 [33]	THA	Regression	Preop patient selection/ planning	197	55.7	83.8	CHECK cohort
Hyer et al., 2019 [18]	TJA	Regression, decision tree	Preop patient selection/ planning	262,290	73	55.8	Medicare
Hyer et al., 2020 [19]	All	Decision tree	Costs, readmissions/ reoperation	262,290	73	55.8	Medicare
Hyer et al., 2020 [20] Jafarzadeh et al., 2020 [44]	THA, TKA TKA	Cluster analysis ANN, regression	Costs Preop patient selection/ planning	19,522 2357	— 61.6	— 62	Medicare Multicenter Osteoarthritis (MOST) Study
Jodeiri et al., 2020 [34]	THA	ANN	Preop patient selection/	95	_	_	Single institution
Jones et al., 2019 [21]	THA, TKA	Regression, boosting	Readmissions/ reoperation	_	_	-	Medicare
Kang et al., 2020 [35]	THA	ANN	Preop patient selection/ planning	1202	_	-	Multicenter
Karnuta et al., 2019 [22]	Hip fracture	Bayesian	Costs, discharge/LOS	98,562	_	73.5	New York Statewide Planning and Research Cooperative System database
Karnuta et al., 2019 [46]	TJA	ANN	Costs	73,901	_	_	New York State inpatient administrative database
Lee et al., 2017 [26]	TJA	Regression	Readmissions/ reoperation	26	_	_	Analysis of patient records to provide risk prediction for readmissions.
Lee et al., 2019 [27] Navarro et al., 2018 [28]	TJA TKA	Boosting, regression Bayesian	Costs Costs, discharge/LOS	131 35,362	_	_	Single institution Administrative database
Pareek et al., 2019 [37]	Knee fracture	ANN, decision tree, regression, boosting,	Preop patient selection/ planning	62	64.6	68	Single institution
Ramkumar et al., 2019	TKA	ANN	Costs, discharge/LOS	175,042	73.5	64	National inpatient
[23] Ramkumar et al., 2019	THA	Bayesian	Costs, discharge/LOS	30,584	_	_	Patient database
[24] Ramkumar et al., 2019 [25]	THA	ANN	Costs, discharge/LOS	78,335	75.3	63.6	National inpatient
[25] Sherafati et al., 2020	THA	ANN	Preop patient selection/	78	63.1	47	Single institution
[38] Tiulpin et al., 2019 [39]	ТКА	ANN, regression, boosting	Preop patient selection/ planning	3918	61.16/ 62.50	57.2/ 61.2	Osteoarthritis Initiative (OAI) and MOST data
Tolpadi et al., 2020 [40]	TKA, THA	ANN	Preop patient selection/	719	61	58	OAI database
Twiggs et al., 2019 [41]	ТКА	Bayesian	Preop patient selection/	150	65.7	53	Single institution
Van et al., 2019 [29]	THA	ANN	Costs, preop patient	100	_	_	Single institution
Yi et al., 2019 [42]	ТКА	ANN	Preop patient selection/	154	-	_	Single institution
Yoo et al., 2013 [43]	TKA	SVM	Preop patient selection/ planning	_	0	0	Single institution

ANN, artificial neural network; LOS, length of stay; ML, machine learning; SVM, support vector machine; THA, total hip arthroplasty; TJA, total joint arthroplasty; TKA, total knee arthroplasty.

Table 2

Administrative/clinical decision support applications	Applied ML algorithms	Prediction outputs
Costs	ANN, Bayesian, boosting, decision tree, regression, cluster analysis	Hospital charges, procedural costs, cost-effective interventions, payment, postoperative resource utilization
Discharge/LOS	ANN, Bayesian, decision tree, regression	Discharge disposition, LOS
Preop patient selection/planning	ANN, Bayesian, boosting, decision tree, regression, SVM	Preop OA progression/prognosis, preop THA/TKA indication, patient surgical complexity score, patient selection, identification of implant, preop. HOOS JR, preoperative SF-36 MCS, preoperative SF-36 PCS
Readmissions/reoperation	ANN, boosting, decision tree, regression	30-d readmission, 90-d readmission, unplanned readmission, revision
Postoperative prediction/management applications		
Adverse event/other complication	ANN, boosting, decision tree, regression, SVM	90-d postoperative complications, any complication, periprosthetic joint infection, postoperative complications, postoperative vomiting, pulmonary complication, renal complication, surgical site infection
Cardiovascular complication	Decision tree, regression	Cardiac complication, risk of allogenic blood transfusion (ALBT) in primary lower limb, VTE
Postoperative pain	ANN, boosting, decision tree, regression, SVM	Improvement in SF-36 pain score, VAS score, severe pain
Postoperative mortality	Decision tree, regression	30-d mortality, 90-d mortality, death
PROMs/Outcomes	ANN, boosting, decision tree, regression, SVM, cluster analysis	Hip OA at 8 y postoperatively, HOOS JR, Hip OA at 10 y postoperatively, KOOS JR, patient satisfaction, postoperative Q-score, postoperative functional outcomes, clinically meaningful improvement for the patient-reported health state, postoperative walking limitation, SF-36 MCS, SF-36 PCS, unfavorable outcomes
Sustained opioid use	ANN, boosting, decision tree, regression, SVM	90-d postoperative outcome-opioid use, postoperative sustained opioid use

AI/ML, artificial intelligence/machine learning; ANN, artificial neural network; HOOS, Hip disability and Osteoarthritis Outcome Score; JR, joint replacement; KOOS, Knee disability and Osteoarthritis Outcome Score; LOS, length of stay; OA, osteoarthritis; PROMs, patient-reported outcome measures; SF-36 MCS, Short Form 36 mental component summary; SF-36 PCS, Short Form 36 pain catastrophizing score; SVM, support vector machine; VAS, visual analog scale; VTE, venous thromboembolism.

used, including the Kaiser Permanente Total Joint Replacement Registry, the American College of Surgeons National Surgical Quality Improvement Program, National Inpatient Sample, and New York Statewide Planning and Research Cooperative System databases. Finally, some studies used training data sets comprising patients from multicenter or single-center cohorts.

Discussion

To our knowledge this systematic review is the first of its kind, evaluating the accuracy and reliability of AI/ML applications in hip and knee arthroplasties across 49 studies. The included studies investigated the role of AI/ML in clinical decision-making and surgical planning by optimizing patient selection and predicting cost and complication risks. AI/ML models performed best, average AUC > 0.8, when predicting postoperative adverse events and mortality,

as well as postoperative pain and PROs. Deep learning/ANN models resulted in the highest average AUC and accuracy of all the model types and were presented in 47% of the studies.

There are multiple benefits of AI/ML-based predictive modeling in hip and knee arthroplasties. First, AI/ML-based model capable of predicting the need for surgery remains an important tool for surgeons, given increased cost-consciousness with health-care expenditures. Hip and knee arthroplasty typically involve an older and highly comorbid patient population, and these tools can be especially helpful in identifying patient-specific needs and risks within this population. Examples of how these models can enable providers to create and optimize personalized treatment plans include accurate identification of an implant from a previous surgery for revision procedures and classifying total knee arthroplasty (TKA) surgical candidates based on patient-specific risk factors [29-31,33-35,37-42,44,62]. Hyer et al. demonstrated an AI/ML model

Table 3

Statistical comparisons of reported model performance metrics, by administrative/clinical decision support application.

Administrative/clinical decision support applications	Performance metrics: mean (SD, n)					
	AUC	Accuracy	Sensitivity	Specificity		
1. Costs	0.77 (0.08, 23)	86.5 (4.7, 4)	_	_		
2. Discharge/LOS	0.78 (0.05, 11)	85.2 (3.2, 2)	64.5 (-, 1)	72.1 (-, 1)		
3. Preoperative patient selection/planning	0.79 (0.11, 62)	95.4 (5.4, 10)	70.1 (32.7, 9)	94.6 (7.1, 9)		
4. Readmissions/reoperation	0.66 (0.04, 15)	80.1 (3.1, 3)	81.8 (2.4, 2)	98.3 (0.2, 2)		
ANOVA	<i>P</i> < .001	<i>P</i> < .001	P = .866	P = .026		
Tukey Post Hoc Tests (stat. significant results)	4 vs 1 (P = .003)	3 vs 1 (P = .006)	—	2 vs 3 (P < .001)		
	4 vs 2 (P = .005)	3 vs 2 (<i>P</i> < .001)	—	2 vs 4 (P < .001)		
	4 vs 3 (P < .001)	3 vs 4 (P < .001)	_	_		

ANOVA, analysis of variance; AUC, area under curve; LOS, length of stay; SD, standard deviation.

Table 4

Reviewed studies of postoperative outcome prediction in hip and knee arthroplasty.

Alam et al., 2019 [14] Bini et al., 2019 [15]THA Cluster analysis Regression, SVM, Regression, SVM, PRos/outcomesPROs/outcomes 2744Multicenter Patient database decision tree Patient databaseGalivanche et al., 2019 [32]THA BossingRegression, SVM, RegressionAdverse event/other PROs/outcomesACS-SOQP database (STA)Galist et al., 2020 [48]THA BossingRegressionAdverse event/other Complication complication complication postoperative mortality postoperative painAdverse event/other solutionHurang et al., 2018 [51]THA THA RegressionRegressionCardiovascular complication complication complication complication complication complication	Author, year	Pathology /Surgery	ML algorithms	Prediction outputs	Patients in testing set (n)	Avg. age	%Female	Data source
Bini et al., 2019 [45]TJAClaster analysisPROs/outcomes6368Single institutionGalvanche et al., 2019THARegression, SVM, decision treeAdverse event/after34.982ACS-MSQIP database[47]THARegressionAdverse event/after0.9453.97.3CHECK cohortGalies et al., 2019 [49]TJAANN, regressionAdverse event/after0.9653.3Single institutionGalies et al., 2019 [50]TJARegressionAdverse event/after0.9653.3Single institutionHarris et al., 2019 [50]TJARegressionCardioxacular37.9755.759.4ACS-NSQIP database[33]THARegressionCardioxacular37.976266Multicenter[33]THARegressionPostoperative painAdverse[34]Huag et al., 2018 [52]TKADecision tree, regressionPostoperative pain, adverse event/after1.046.160AdverseHuber et al., 2019 [18]THA, TKARegressionAdverse event/after1.049.160MediareHyer et al., 2019 [18]THA, TKARegressionAdverse event/after1.049.160Mediare[36]THABootting, carcinoRofo/joutcomes224.5807Single institution[37]THARegressionAdverse event/after	Alam et al., 2019 [14]	THA	ANN, regression	PROs/outcomes	10,000	_	_	Multicenter
Fontane et al. 2019 [32]TARegression. SVM. decision tree decision tree dec	Bini et al., 2019 [45]	TJA	Cluster analysis	PROs/outcomes	_	63	68	Single institution
Calibanche et al., 2019THABoostingAdverse event/other complication34,982ACS-NSQIP database complicationGiells et al., 2020 [48]THARegressionPROs/outcomes104455.987.3CHECK cohortGong et al., 2019 [49]THARegressionPROs/outcomes104455.987.3CHECK cohortGong et al., 2019 [50]THARegressionAdverse event/other complication, complication, complication, complication, complication, complication, complication, complication, complication, pastoperative mortality perstoperative mortality perstoperative mortality regression55.783.8CHECK cohortHuang et al., 2018 [51]THARegressionCardiovascular complication, perstoperative painAdversity event/otherHuber et al., 2019 [53]THABoosting decision tree regressionProstoperative pain PROs/outcomesMedicareHyer et al., 2019 [18]THA,RegressionPerstoperative mortality PROs/outcomes31.905Single institutionJacobs et al., 2016 [54]TKADecision tree Adverse event/other524.580073Single institutionJacobs et al., 2016 [54]TKADecision tree, SVM, regression, boosting, decision tree, SVM, regression, boosting, decision tree, SVM, regression, boosting, decision tree, Adverse event/other520.8Single institutionKataker et al., 2019 [61]TKADecision tree, SVM,<	Fontana et al., 2019 [32]	TJA	Regression, SVM, decision tree	PROs/outcomes	2744	63	—	Patient database
Ciclis rd., 2020 [48]THA IQARegressionPRO/outcomes104455.987.3CHECK cohortCong et al., 2014 [49]TJAANN, regressionAdverse event/other complication68.053.3Single institutionHarris et al., 2019 [50]TJARegressionAdverse event/other complication, 	Galivanche et al., 2019 [47]	THA	Boosting	Adverse event/other complication	34,982	_	_	ACS-NSQIP database
Cong et al., 2014 [49]TJAANN, regressionAdverse event/other complication, cardiovascular complication, cardiovascular complication, cardiovascular 	Gielis et al., 2020 [48]	THA	Regression	PROs/outcomes	1044	55.9	87.3	CHECK cohort
Harris et al., 2019 [50]TJARegressionAdverse vent/other complication, cardiovascular complication, postoperative mortality PROS/outcomes-65.759.4ACS-NSQIP databaseHirrasniemi et al., 2018 [51]THARegressionPROS/outcomes19755.7083.80CHECK cohort[33]THABecision tree, regressionCardiovascular complication37976266.0MulticenterHuber et al., 2018 [52]TKABocsting, ANN, regressionPostoperative pain, Postoperative pain,31.905MedicareHyer et al., 2019 [18]THARegressionPostoperative pain, regression1.049,160MedicareHyer et al., 2019 [54]TKABocsting, Tere, regressionPostoperative pain, regression325SudicareJacobs et al., 2016 [54]TKADecision tree, SUM, ANN, regression, boosting, regression, boosting, regression, SUM, ANN, regression, boosting, regressio	Gong et al., 2014 [49]	TJA	ANN, regression	Adverse event/other complication	_	69.6	53.3	Single institution
Hirvasniemi et al., 2019THARegressionPROS/outcomes19755.783.8CHECK cohort[13]Huang et al., 2018 [51]THA, TKADecision tree, regressionCardiovascular complication37976266MulticenterHuang et al., 2018 [52]TKADecision tree, regressionPostoperative painAdministrative of 	Harris et al., 2019 [50]	TJA	Regression	Adverse event/other complication, cardiovascular complication,	_	65.7	59.4	ACS-NSQIP database
Hirvasnemi et al., 2019THARegressionPROS/outcomes19755.783.8CHECK cohort[33]Huang et al., 2018 [51]THA, TKADecision tree, regressioncomplication37976266MulticenterHuang et al., 2018 [52]TKADecision treePostoperative pain, regression31.905Administrative databaseHuber et al., 2019 [53]THABoosting, ANN, regressionPostoperative pain, regression31.90559.7NHS PRO dataHyer et al., 2019 [18]THA, TKARegressionAdverse event/other south, regression1.049,160MedicareHyer et al., 2020 [19]AllDecision treeComplication complication7355.8MedicareJacobs et al., 2016 [54]TKADecision treeStataled opioid use2635938.7Multicenter[56]TKADecision tree, SVM, ANN, regression, boosting, decision tree, 				postoperative mortality				
Huang et al., 2018 [51]THA, TKADecision tree, regressionCardiovascular complication37976266MulticenterHuang et al., 2018 [52]TKADecision treePostoperative painAdministrative databaseHuber et al., 2019 [53]THABoosting, ANN, regressionPostoperative pain, Adverse event/other1,049,160MedicareHyer et al., 2019 [18]THA, TKARegressionAdverse event/other1,049,160MedicareHyer et al., 2020 [19]AllDecision treeAdverse event/other524,5807355.8MedicareJacobs et al., 2016 [54]TKADecision treeSpecific mortalitySingle institutionKarhade et al., 2019TKADecision tree, SVM, ANN, regression, boostingSustained opioid use25086760.3Single institutionKluge et al., 2018 [57]TKAANN, decision tree, SVM, regression, boostingPROS/outcomes-6466.666667Single institutionKurze et al., 2020 [58]THAANN, decision tree, SVM, regression, boostingPROS/outcomes11365.256.3Single institutionOnsem et al., 2016 [59]TKARAN, RegressionPROS/outcomes11365.452.3MulticenterPavizi et al., 2018 [60]THA, TKARegressionPROS/outcomes11365.256Single institutionPavizi et al., 2019 [29]TKA	Hirvasniemi et al., 2019 [33]	THA	Regression	PROs/outcomes	197	55.7	83.8	CHECK cohort
Huang et al., 2018 [52]TKADecision treePostoperative pain, PROs/outcomesAdministrative databaseHuber et al., 2019 [53]THABoosting, ANN, regressionPostoperative pain, 	Huang et al., 2018 [51]	THA, TKA	Decision tree, regression	Cardiovascular complication	3797	62	66	Multicenter
Huber et al., 2019 [53]THABoosting, ANN, regressionPostoperative pain, PROS/outcomes31,90559.7NHS PRO dataHyer et al., 2019 [18]THA, TKARegressionAdverse event/other complication1.049,160MedicareHyer et al., 2020 [19]AllDecision treeAdverse event/other complication, postoperative mortality524,5807355.8MedicareJacobs et al., 2016 [54]TKADecision tree sovit, regression, 	Huang et al., 2018 [52]	ТКА	Decision tree	Postoperative pain	_	_	_	Administrative database
Hyer et al., 2019 [18]THA, TKARegressionAdverse event/other complication, postoperative mortality postoperative mortality 	Huber et al., 2019 [53]	THA	Boosting, ANN, regression	Postoperative pain, PROs/outcomes	31,905	_	59.7	NHS PRO data
Hyer et al., 2020 [19]AllDecision treeAdverse event/other complication, postoperative mortality524,5807355.8MedicareJacobs et al., 2016 [54]TKADecision tree, SUM, ANN, regression, boostingPROs/outcomes325Single institutionKathade et al., 2020TKAANN, regression, boostingSustained opioid use2635938.7MulticenterKluge et al., 2018 [57]TKAANN, regression, boostingSustained opioid use25086760.3Single institutionKunze et al., 2020 [58]THAANN, decision tree, 	Hyer et al., 2019 [18]	THA, TKA	Regression	Adverse event/other	1,049,160	_	_	Medicare
Jacobs et al., 2016 [54] TKA Decision tree RNS/Outcomes 225 – – – Single institution Sustained opioid use 263 59 38.7 Multicenter [55] THA Boosting, decision tree, SVM, ANN, decision tree, SVM, regression, boosting Kluge et al., 2018 [57] TKA Decision tree, SVM, regression, boosting, regression, SVM, regression, SVM Kunze et al., 2018 [59] TKA Regression, SVM, regression, SVM, regression, SVM Runze et al., 2018 [59] TKA Regression, SVM, regression, SVM Kunze et al., 2018 [59] TKA Regression, SVM, regression, SVM Kunze et al., 2018 [59] TKA Regression, SVM, regression, SVM, regression, SVM Kunze et al., 2018 [59] TKA Regression, SVM, regression, SVM, regression, SVM, regression, SVM Kunze et al., 2018 [59] TKA Regression, SVM, regression, Boosting Consem et al., 2018 [59] TKA Regression, SVM, re	Hyer et al., 2020 [19]	All	Decision tree	Adverse event/other complication,	524,580	73	55.8	Medicare
Jacobs et al., 2019 [34]TKADecision tree problem free, sym, ANN, decision tree, boostingSustained opioid use253Single institution[55]Kathade et al., 2019TKAANN, decision tree, sym, and tree, ANN, decision tree, boosting, regression, boostingSustained opioid use25086760.3Single institution[56]TKAANN, decision tree, boosting, regression, boostingPROs/outcomes6466.666667Single institutionKunze et al., 2018 [57]TKADecision tree, boostingPROs/outcomes1836257.3Single institutionOnsem et al., 2016 [59]TKARegression, boostingPROs/outcomes11365.256Single institutionPua et al., 2019 [61]TKADecision tree, regression, boostingPROs/outcomes120867.875Single institutionSchwartz et al., 1997THAANN, regressionPostoperative pain2216357THR outcomes database at Center for Clinical Effectiveness of the Henry Ford Health SystemVan et al., 2019 [29]THAANNAdverse event/other complication100Single institutionYoa et al., 2016 [63]TJARegression, SVMAdverse event/other complication100Single institutionYoa et al., 2016 [63]TJAKASVMPostoperative pain,00Single institution	lacobs at al 2016 [54]	TIZA	Decision tree	PROcleutcomes	225			Single institution
Katakam et al., 2020TKAANN, decision tree, boostingSustained opioid use25086760.3Single institutionKluge et al., 2018 [57]TKAANN, decision tree, boosting, regression, boosting, regression, SVMPROs/outcomes-6466.666667Single institutionKunze et al., 2020 [58]THAANN, decision tree, SVM, regression, boostingPROs/outcomes1836257.3Single institutionOnsem et al., 2016 [59]TKARegressionPROs/outcomes11365.256Single institutionOnsem et al., 2019 [61]TKARegressionPROs/outcomes11365.256Single institutionPua et al., 2019 [61]TKADecision tree, regression, boostingPROs/outcomes120867.875Single institutionSchwartz et al., 1997THAANN, regressionPostoperative pain2216357THR outcomes database at Center for Clinical Effectiveness of the Henry Ford Health SystemVan et al., 2019 [29]THAANNAdverse event/other complication100Single institutionWu et al., 2016 [63]TJARegression, SVMAdverse event/other complication100Single institutionYoo et al., 2013 [43]TKASVMPostoperative pain,-00Single institution	Karhade et al., 2010 [54]	THA	Boosting, decision tree,	Sustained opioid use	263	 59	38.7	Multicenter
Kluge et al., 2018 [57]TKADecision tree, ANN, boosting, regression, SVMPROs/outcomes-6466.666667Single institutionKunze et al., 2020 [58]THAANN, decision tree, SVM, regression, boostingPROs/outcomes1836257.3Single institutionOnsem et al., 2016 [59]TKARegression Regression, boostingPROs/outcomes11365.256Single institutionParvizi et al., 2018 [60]THA, TKADecision tree, regression, boostingPROs/outcomes120867.875Single institutionPua et al., 2019 [61]TKADecision tree, regression, boostingPROs/outcomes120867.875Single institutionSchwartz et al., 1997THAANN, regressionPostoperative pain2216357THR outcomes database at Center for Clinical Effectiveness of the Henry Ford Health SystemVan et al., 2019 [29]THAANNAdverse event/other complication100Single institutionWu et al., 2016 [63]TJARegression, SVMAdverse event/other complication100Single institutionYoo et al., 2013 [43]TKASVMPostoperative pain,-00Single institution	[55] Katakam et al., 2020 [56]	ТКА	ANN, decision tree, SVM, regression, boosting	Sustained opioid use	2508	67	60.3	Single institution
Kunze et al., 2020 [58]THAANN, decision tree, SVM, regression, boostingPROs/outcomes1836257.3Single institutionOnsem et al., 2016 [59]TKARegressionPROs/outcomes11365.256Single institutionParvizi et al., 2018 [60]THA, TKADecision treeAdverse event/other complication42265.452.3MulticenterPua et al., 2019 [61]TKADecision tree, regression, boostingPROs/outcomes120867.875Single institutionSchwartz et al., 1997 [62]THAANN, regressionPostoperative pain2216357THR outcomes database at Centre for Clinical Effectiveness of the Henry Ford Health SystemVan et al., 2019 [29]THAANNAdverse event/other complication100Single institutionWu et al., 2016 [63]TJARegression, SVMAdverse event/other complication-69.653.3Single institutionYoo et al., 2013 [43]TKASVMPostoperative pain,-00Single institution	Kluge et al., 2018 [57]	ТКА	Decision tree, ANN, boosting, regression, SVM	PROs/outcomes	_	64	66.666667	Single institution
Onsem et al., 2016 [59] Parvizi et al., 2018 [60]TKA THA, TKARegression Decision treePROs/outcomes11365.256Single institutionPua et al., 2019 [61]TKADecision tree, regression, boostingPROs/outcomes120867.875Single institutionSchwartz et al., 1997 [62]THAANN, regressionPostoperative pain2216357THR outcomes database at Center for Clinical Effectiveness of the Henry Ford Health SystemVan et al., 2019 [29]THAANN Regression, SVMAdverse event/other complication100Single institutionWu et al., 2016 [63]TJARegression, SVMAdverse event/other complication-69.653.3Single institutionYoo et al., 2013 [43]TKASVMPostoperative pain,-00Single institution	Kunze et al., 2020 [58]	THA	ANN, decision tree, SVM, regression, boosting	PROs/outcomes	183	62	57.3	Single institution
Parvizi et al., 2018 [60]THA, TKADecision treeAdverse event/other complication42265.452.3MulticenterPua et al., 2019 [61]TKADecision tree, regression, boostingPROs/outcomes120867.875Single institutionSchwartz et al., 1997 [62]THAANN, regressionPostoperative pain2216357THR outcomes database at Center for Clinical Effectiveness of the Henry Ford Health SystemVan et al., 2019 [29]THAANNAdverse event/other complication100Single institutionWu et al., 2016 [63]TJARegression, SVMAdverse event/other complication-69.653.3Single institutionYoo et al., 2013 [43]TKASVMPostoperative pain,-00Single institution	Onsem et al., 2016 [59]	ТКА	Regression	PROs/outcomes	113	65.2	56	Single institution
Pua et al., 2019 [61]TKADecision tree, regression, boosting regression, boostingPROs/outcomes120867.875Single institutionSchwartz et al., 1997 [62]THAANN, regressionPostoperative pain Postoperative pain2216357THR outcomes database at Center for Clinical Effectiveness of the Henry Ford Health SystemVan et al., 2019 [29]THAANN Regression, SVMAdverse event/other complication100Single institutionWu et al., 2016 [63]TJARegression, SVMAdverse event/other complication-69.653.3Single institutionYoo et al., 2013 [43]TKASVMPostoperative pain,-00Single institution	Parvizi et al., 2018 [60]	THA, TKA	Decision tree	Adverse event/other complication	422	65.4	52.3	Multicenter
Schwartz et al., 1997 [62]THAANN, regressionPostoperative pain2216357THR outcomes database at Center for Clinical Effectiveness of the Henry Ford Health SystemVan et al., 2019 [29]THAANNAdverse event/other complication100Wu et al., 2016 [63]TJARegression, SVMAdverse event/other complication-69.653.3Single institutionYoo et al., 2013 [43]TKASVMPostoperative pain,-00Single institution	Pua et al., 2019 [61]	ТКА	Decision tree,	PROs/outcomes	1208	67.8	75	Single institution
Van et al., 2019 [29] THA ANN Adverse event/other complication 100 - - System Wu et al., 2016 [63] TJA Regression, SVM Adverse event/other complication - 69.6 53.3 Single institution Yoo et al., 2013 [43] TKA SVM Postoperative pain, - 0 0 Single institution	Schwartz et al., 1997 [62]	THA	ANN, regression	Postoperative pain	221	63	57	THR outcomes database at Center for Clinical Effectiveness of the Henry Ford Health
Wu et al., 2016 [63] TJA Regression, SVM Adverse event/other complication - 69.6 53.3 Single institution Yoo et al., 2013 [43] TKA SVM Postoperative pain, - 0 0 Single institution	Van et al., 2019 [29]	THA	ANN	Adverse event/other	100	_	_	System Single institution
complicationYoo et al., 2013 [43]TKASVMPostoperative pain,—00Single institution	Wu et al., 2016 [63]	TJA	Regression, SVM	complication Adverse event/other	_	69.6	53.3	Single institution
PROs/outcomes	Yoo et al., 2013 [43]	ТКА	SVM	complication Postoperative pain, PROs/outcomes	_	0	0	Single institution

ACS-NSQIP, American College of Surgeons National Surgical Quality Improvement Program; ANN, artificial neural network; CHECK, Cohort Hip and Cohort Knee; ML, machine learning; NHS, National Health Service; PRO, patient-reported outcome; SVM, support vector machine; THA, total hip arthroplasty; THR, total hip reconstruction; TJA, total joint arthroplasty; TKA, total knee arthroplasty.

which classified TKA and total hip arthroplasty patients based on surgical complexity scores [19].

Al/ML models may aid in predicting postoperative complications and creating personalized postoperative management protocols to avoid or manage those obstacles and maximize outcomes. Several of the reviewed studies used Al/ML models to accurately predict the risk of a range of postoperative complications and adverse events [19,29,47,50,51,60]. TKA and total hip arthroplasty revisions and reoperations are also modeled with Al/ML algorithms in some studies, [15,16,21,64] as well as hospital readmissions [20,21,26,27]. In the postoperative period, AI/ML tools offer surgeons the ability to predict patients' outcomes after surgery, including functional outcomes and PRO scores [14,32,33,43,45,48,53,54,57–59,61]. Postoperative pain has also been shown to be predicted with AI/ML, [43,53,56,55] including identification of patients at high risk for prolonged postoperative opioid prescriptions. These tools may better inform analgesic and pain management protocols, especially for opioid prescriptions. They may also enable surgeons to better

Table	5
-------	---

Statistical com	parison of re	ported model	performance metrics	, by	posto	perative	predictions	/manas	gement ag	plications.
			· · · · · · · · · · · · · · ·							

Postoperative prediction/management applications	Performance metrics: mean (SD, n)						
	AUC	Accuracy	Sensitivity	Specificity			
1. Adverse event/other complication	0.84 (0.1, 14)	_	97.7 (-, 1)	99.5 (-, 1)			
2. Cardiovascular complication	0.77 (0.08, 8)	_	_	—			
3. Postoperative pain	0.83 (0.05, 10)	78.8 (2.2, 7)	78.7 (7.5, 7)	78.8 (4.9, 7)			
4. Postoperative mortality	0.81 (0.07, 3)	_	—	_			
5. PROs/outcomes	0.81 (0.08, 56)	75.1 (8.4, 12)	76.9 (7.1, 13)	64.9 (24, 13)			
6. Sustained opioid use	0.71 (0.09, 10)	_	—	_			
ANOVA	P = .002	P = .279	P = .042	P = .167			
Tukey Post Hoc Tests (stat. significant results)	6 vs 1 ($P = .002$)	-	1 vs 3 (P < .001)	-			
	6 vs 3 (P = .003)	-	1 vs 5 (<i>P</i> < .001)	-			
	6 vs 5 (P = .011)	-	-	-			

ANOVA, analysis of variance; AUC, area under curve; PRO, patient-reported outcome; SD, standard deviation.

tailor treatment for their patients and perhaps offer nonoperative management, especially if there is a high predicted risk of revision surgery or potentially serious postoperative complications.

A powerful predictive tool that aids in clinical decision-making by being able to integrate a large amount of information and identify complex patterns, ML is still vulnerable to the biases faced in other forms of clinical research [65-68]. Among these biases are those related to nonrandom missing data, limited sample size and underestimation to avoid overfitting by the models, and misclassification of disease or discrepancies in measurement between providers [65,67]. These result in specific biases as there can be a limited number of inputs based on researchers' belief of which variables are important or the ability to collect all possible variables, thus limiting the accuracy and generalizability of the model. Models created on single-institution data sets may not be generalizable because of variation in measurement or reporting of the variables or outputs [65]. Some national data sets that are often used to create these models do not provide granular data which can lead to errors. Other databases can be subject to several biases including selection bias and misclassification of diagnosis as some of these sets have been created for purposes other than research, such as billing [67,68]. Sample size and the population from which the training set is sourced from are also important when considering generalizability; these models may be better at making predictions for those individuals with high access to care as they are built of their data [67]. In both smaller single and large multicenter databases, there is often a lack of information related to social determinants of health which may contribute to disparities seen within our current system [65,68]. Controversy surrounding the use of gender and race information in AI/ML models raises ethical concerns regarding potential introduction of bias into prediction models which are designed to optimize outcomes based on historically inequitable health-care data [66,69,70]. These challenges must be taken into account when implementing the use of AI/ML in clinical settings, especially given the well-studied systemic racial and socioeconomic disparities that exist in US health care [70].

The application of AI/ML to clinical decision-making in hip and knee arthroplasties may result in optimized outcomes by aiding in accurate patient selection and surgical planning during the perioperative period. Several studies in our review demonstrated the use of AI/ML models to predict hospital LOS and readmissions and associated inpatient costs after total joint arthroplasty [14,22-25,27-29,46]. Other studies have demonstrated AI/ML potential to reduce unnecessary expenditures and create risk-adjusted reimbursement models [24,27,28,46]. AI/ML may even enable insurers to more accurately account for individual patient risk and case complexity, especially for bundled payment models. However, the shift away from fee-for-service models and toward models which reward cost-efficiency and incentivize treating a low-acuity patient population may indirectly exclude certain patients from accessing care, especially when based on ethnic or socioeconomic background and associated comorbidities and risk factors [71,72]. AI/ML is a powerful tool that can be broadly adopted in health care and, more specifically, within the field of hip and knee arthroplasty, to optimize patient outcomes, but the data sets upon which these models are trained on must be carefully constructed not only to be of a sufficient size but also to adequately represent the complexities of our patient population. This study has several potential limitations, as we did not use criteria to evaluate the quality of the various data sets used in the reviewed studies, and additional studies using more standardized data sets would be required before making conclusions about clinical efficacy.

Table (6
---------	---

Statistical comparisons of reported model performance metrics, by AI/ML algorithm.

AI/ML algorithm	Performance metrics:	metrics: Mean (SD, n)					
	AUC Accuracy		Sensitivity	Specificity			
ANN	0.81 (0.11, 56)	87.6 (11.7, 14)	70.69 (24.18, 15)	88.4 (12.9, 15)			
Bayesian	0.81 (0.07, 8)	84.1 (2.6, 4)	_	_			
Boosting	0.79 (0.07, 19)	77.3 (7.1, 7)	77.8 (5.36, 5)	72.8 (11.7, 5)			
Decision tree	0.78 (0.1, 41)	89 (, 1)	86.35 (16.05, 2)	99.8 (0.4, 2)			
Regression	0.77 (0.07, 62)	79 (8.7, 7)	75.75 (11.28, 6)	70.4 (14.6, 6)			
SVM	0.77 (0.11, 26)	83.2 (10, 5)	86.1 (7.34, 5)	80.5 (16.1, 5)			
ANOVA	P = .252	P = .228	P = .497	<i>P</i> = .019			
Tukey Post Hoc Tests (stat. significant results)	_	—	_	_			

AI/ML, artificial intelligence/machine learning; ANN, artificial neural network; ANOVA, analysis of variance; AUC, area under curve; SD, standard deviation; SVM, support vector machine.

Conclusions

The body of literature on AI/ML-based applications in hip and knee arthroplasties is growing rapidly. Currently, these models are doing well in predicting some postoperative complications but are still limited in predicting postoperative opioid use and need for readmission or reoperation. The accuracy of these predictive tools has the potential to increase with technological advancements and larger data sets, but these models also require external validation. Future work in AI/ML-based applications should aim at creating accurate commercially ready tools that can be integrated into existing systems and to fulfill their role as an aid to physicians and patients in clinical decision-making.

Conflicts of interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: R.P.S. is a paid consultant for KCI USA, Inc and LinkBio Corporation. H.J.C. is a paid consultant for KCI USA, Inc and Zimmer Biomet. J.A.G. is a paid consultant for Smith & Nephew Inc.

References

- Wong D, Yip S. Machine learning classifies cancer. Nature 2018;555(7697): 446.
- [2] Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol 2018;71(23):2668.
- [3] Saber H, Somai M, Rajah GB, Scalzo F, Liebeskind DS. Predictive analytics and machine learning in stroke and neurovascular medicine. Neurol Res 2019;41(8):681.
- [4] Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart 2018;104(14): 1156.
- [5] Cabitza F, Locoro A, Banfi G. Machine learning in orthopedics: a literature review. Front Bioeng Biotechnol 2018;6:75.
- [6] Haeberle HS, Helm JM, Navarro SM, et al. Artificial intelligence and machine learning in lower extremity arthroplasty: a review. J Arthroplasty 2019;34(10):2201.
- [7] Bini SA. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? J Arthroplasty 2018;33(8):2358.
- [8] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436.
- [9] Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019;380(14):1347.
- [10] Deo RC. Machine learning in medicine. Circulation 2015;132(20):1920.
- [11] Obermeyer Z, Emanuel EJ. Predicting the future big data, machine learning, and clinical medicine. N Engl J Med 2016;375(13):1216.
- [12] Medicine CfE-B. OCEBM levels of evidence. In: Oxford Centre for evidencebased medicine levels of evidence. Oxford, UK: University of Oxford; 2020.
- [13] Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143(1):29.
- [14] Alam MF, Briggs A. Artificial neural network metamodel for sensitivity analysis in a total hip replacement health economic model. Expert Rev Pharmacoecon Outcomes Res 2019;1.
- [15] Aram P, Trela-Larsen L, Sayers A, et al. Estimating an individual's probability of revision surgery after knee replacement: a comparison of modeling approaches using a national data set. Am J Epidemiol 2018;187(10):2252.
- [16] Bonakdari H, Pelletier JP, Martel-Pelletier J. A reliable time-series method for predicting arthritic disease outcomes: New step from regression toward a nonlinear artificial intelligence method. Comput Methods Programs Biomed 2020;189:105315.
- [17] Gabriel RA, Sharma BS, Doan CN, Jiang X, Schmidt UH, Vaida F. A predictive model for determining patients not requiring prolonged hospital length of stay after elective primary total hip arthroplasty. Anesth Analg 2019;129(1):43.
- [18] Hyer JM, Ejaz A, Tsilimigras DI, Paredes AZ, Mehta R, Pawlik TM. Novel machine learning approach to identify preoperative risk factors associated with super-utilization of Medicare expenditure following surgery. JAMA Surg 2019;154(11):1014.
- [19] Hyer JM, White S, Cloyd J, et al. Can we improve prediction of adverse surgical outcomes? Development of a surgical complexity score using a novel machine learning technique. J Am Coll Surg 2020;230(1):43.
- [20] Hyer JM, Paredes AZ, White S, Ejaz A, Pawlik TM. Assessment of utilization efficiency using machine learning techniques: a study of heterogeneity in preoperative healthcare utilization among super-utilizers. Am J Surg 2020.
- [21] Jones CD, Falvey J, Hess E, et al. Predicting hospital readmissions from home healthcare in Medicare beneficiaries. J Am Geriatr Soc 2019;67(12):2505.

- [22] Karnuta JM, Navarro SM, Haeberle HS, et al. Predicting inpatient payments prior to lower extremity arthroplasty using deep learning: which model architecture is best? | Arthroplasty 2019;34(10):2235.
- [23] Ramkumar PN, Navarro SM, Haeberle HS, et al. Development and validation of a machine learning algorithm after primary total hip arthroplasty: applications to length of stay and payment models. J Arthroplasty 2019;34(4):632.
- [24] Ramkumar PN, Karnuta JM, Navarro SM, et al. Preoperative prediction of value metrics and a patient-specific payment model for primary total hip arthroplasty: development and validation of a deep learning model. J Arthroplasty 2019;34(10):2228.
- [25] Ramkumar PN, Karnuta JM, Navarro SM, et al. Deep learning preoperatively predicts value metrics for primary total knee arthroplasty: development and validation of an artificial neural network model. J Arthroplasty 2019;34(10):2220.
- [26] Lee HK, Jin R, Feng Y, Bain PA, Goffinet J, Baker C, Li J. Modeling and analysis of postoperative intervention process for total joint replacement patients using simulations. IEEE J Biomed Health Inform 2017;568.
- [27] Lee HK, Jin R, Feng Y, et al. An analytical framework for TJR readmission prediction and cost-effective intervention. IEEE J Biomed Health Inform 2019;23(4):1760.
- [28] Navarro SM, Wang EY, Haeberle HS, et al. Machine learning and primary total knee arthroplasty: patient forecasting for a patient-specific payment model. J Arthroplasty 2018;33(12):3617.
- [29] Van de Meulebroucke C, Beckers J, Corten K. What can we expect following anterior total hip arthroplasty on a regular operating table? A validation study of an artificial intelligence algorithm to monitor adverse events in a highvolume, nonacademic setting. J Arthroplasty 2019;34(10):2260.
- [30] Borjali A, Chen AF, Muratoglu OK, Morid MA, Varadarajan KM. Detecting total hip replacement prosthesis design on plain radiographs using deep convolutional neural network. J Orthop Res 2020.
- [31] Cafri G, Graves SE, Sedrakyan A, et al. Postmarket surveillance of arthroplasty device components using machine learning methods. Pharmacoepidemiol Drug Saf 2019;28(11):1440.
- [32] Fontana MA, Lyman S, Sarker GK, Padgett DE, MacLean CH. Can machine learning algorithms predict which patients will achieve minimally clinically important differences from total joint arthroplasty? Clin Orthop Relat Res 2019;477(6):1267.
- [33] Hirvasniemi J, Gielis WP, Arbabi S, et al. Bone texture analysis for prediction of incident radiographic hip osteoarthritis using machine learning: data from the Cohort Hip and Cohort Knee (CHECK) study. Osteoarthritis Cartilage 2019;27(6):906.
- [34] Jodeiri A, Zoroofi RA, Hiasa Y, et al. Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework. Comput Methods Programs Biomed 2020;184:105282.
- [35] Kang YJ, Yoo JI, Cha YH, Park CH, Kim JT. Machine learning-based identification of hip arthroplasty designs. J Orthop Translat 2020;21(13).
- [36] Hyer JM, Ejaz A, Tsilimigras DI, Paredes AZ, Mehta R, Pawlik TM. Novel machine learning approach to identify preoperative risk factors associated with super-utilization of Medicare expenditure following surgery. JAMA Surg 2019.
- [37] Pareek A, Parkes CW, Bernard CD, Abdel MP, Saris DBF, Krych AJ. The SIFK score: a validated predictive model for arthroplasty progression after subchondral insufficiency fractures of the knee. Knee Surg Sports Traumatol Arthrosc 2019.
- [38] Sherafati M, Bauer TW, Potter HG, Koff MF, Koch KM. Multivariate use of MRI biomarkers to classify histologically confirmed necrosis in symptomatic total hip arthroplasty. J Orthop Res 2020.
- [39] Tiulpin A, Klein S, Bierma-Zeinstra SMA, et al. Multimodal machine learningbased knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep 2019;9(1):20038.
- [40] Tolpadi AA, Lee JJ, Pedoia V, Majumdar S. Deep learning predicts total knee replacement from magnetic resonance images. Sci Rep 2020;10(1):6371.
- [41] Twiggs JG, Wakelin EA, Fritsch BA, et al. Clinical and statistical validation of a probabilistic prediction tool of total knee arthroplasty outcome. J Arthroplasty 2019;34(11):2624.
- [42] Yi PH, Wei J, Kim TK, et al. Automated detection & classification of knee arthroplasty using deep learning. Knee 2020;27(2):535.
- [43] Yoo TK, Kim SK, Choi SB, Kim DY, Kim DW. Interpretation of movement during stair ascent for predicting severity and prognosis of knee osteoarthritis in elderly women using support vector machine. Conf Proc IEEE Eng Med Biol Soc 2013;192:2013.
- [44] Jafarzadeh S, Felson DT, Nevitt MC, et al. Use of clinical and imaging features of osteoarthritis to predict knee replacement in persons with and without radiographic osteoarthritis: the most study. Osteoarthritis Cartilage 2020;28:S308.
- [45] Bini SA, Shah RF, Bendich I, Patterson JT, Hwang KM, Zaid MB. Machine learning algorithms can use wearable sensor data to accurately predict sixweek patient-reported outcome scores following joint replacement in a prospective trial. J Arthroplasty 2019;34(10):2242.
- [46] Karnuta JM, Navarro SM, Haeberle HS, Billow DG, Krebs VE, Ramkumar PN. Bundled care for hip fractures: a machine-learning approach to an untenable patient-specific payment model. J Orthop Trauma 2019;33(7):324.
- [47] Galivanche AR, Huang JK, Mu KW, Varthi AG, Grauer JN. Ensemble machine learning algorithms for prediction of complications after elective total hip arthroplasty. J Am Coll Surg 2019;229(4):S194.
- [48] Gielis WP, Weinans H, Welsing PMJ, et al. An automated workflow based on hip shape improves personalized risk prediction for hip osteoarthritis in the CHECK study. Osteoarthritis Cartilage 2020;28(1):62.

- [49] Gong CS, Yu L, Ting CK, et al. Predicting postoperative vomiting for orthopedic patients receiving patient-controlled epidural analgesia with the application of an artificial neural network. Biomed Res Int 2014;2014:786418.
- [50] Harris AHS, Kuo AC, Weng Y, Trickey AW, Bowe T, Giori NJ. Can machine learning methods produce accurate and easy-to-use prediction models of 30day complications and mortality after knee or hip arthroplasty? Clin Orthop Relat Res 2019;477(2):452.
- [51] Huang Z, Huang C, Xie J, et al. Analysis of a large data set to identify predictors of blood transfusion in primary total hip and knee arthroplasty. Transfusion 2018;58(8):1855.
- [52] Huang Z, Huang C, Xie J, et al. Pre-operative predictors of post-operative pain relief: pain score modeling following total knee arthroplasty. Transfusion 2018;22.
- [53] Huber M, Kurz C, Leidl R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med Inform Decis Mak 2019;19(1):3.
- [54] Jacobs CA, Christensen CP, Karthikeyan T. Using machine learning to identify factors associated with satisfaction after TKA for different patient populations. J Orthop Res 2016;34.
- [55] Karhade AV, Schwab JH, Bedair HS. Development of machine learning algorithms for prediction of sustained postoperative opioid prescriptions after total hip arthroplasty. J Arthroplasty 2019;34(10):2272.
- [56] Katakam A, Karhade AV, Schwab JH, Chen AF, Bedair HS. Development and validation of machine learning algorithms for postoperative opioid prescriptions after TKA. J Orthop 2020;22:95.
- [57] Kluge F, Hannink J, Pasluosta C, et al. Pre-operative sensor-based gait parameters predict functional outcome after total knee arthroplasty. Gait Posture 2018;66:194.
- [58] Kunze KN, Karhade AV, Sadauskas AJ, Schwab JH, Levine BR. Development of machine learning algorithms to predict clinically meaningful improvement for the patient-reported health state after total hip arthroplasty. J Arthroplasty 2020.
- [59] Van Onsem S, Van Der Straeten C, Arnout N, Deprez P, Van Damme G, Victor J. A New prediction model for patient satisfaction after total knee arthroplasty. J Arthroplasty 2016;31(12):2660.

- [60] Parvizi J, Tan TL, Goswami K, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 2018;33(5):1309.
- [61] Pua YH, Kang H, Thumboo J, et al. Machine learning methods are comparable to logistic regression techniques in predicting severe walking limitation following total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2019.
- [62] Schwartz MH, Ward RE, Macwilliam C, Verner JJ. Using neural networks to identify patients unlikely to achieve a reduction in bodily pain after total hip replacement surgery. Med Care 1997;35(10):1020.
- [63] Wu HY, Gong CA, Lin SP, Chang KY, Tsou MY, Ting CK. Predicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LR. Sci Rep 2016;6:27041.
- [64] Zhang T, Liu P, Zhang Y, et al. Combining information from multiple bone turnover markers as diagnostic indices for osteoporosis using support vector machines. Biomarkers 2019;24(2):120.
- [65] Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med 2018;178(11):1544.
- [66] Char DS, Shah NH, Magnus D. Implementing machine learning in health careaddressing ethical challenges. N Engl J Med 2018;378(11):981.
- [67] Wiens J, Saria S, Sendak M, et al. Do no harm: a roadmap for responsible machine learning for health care. Nat Med 2019;25(9):1337.
- [68] Chen JH, Asch SM. Machine learning and prediction in medicine beyond the peak of inflated expectations. N Engl J Med 2017;376(26):2507.
- [69] Gibney E. The battle for ethical Al at the world's biggest machine-learning conference. Nature 2020;577(7792):609.
- [70] Feagin J, Bennefield Z. Systemic racism and U.S. health care. Soc Sci Med 2014;103(7).
- [71] Sullivan R, Jarvis LD, O'Gara T, Langfitt M, Emory C. Bundled payments in total joint arthroplasty and spine surgery. Curr Rev Musculoskelet Med 2017;10(2):218.
- [72] Dummit LA, Kahvecioglu D, Marrufo G, et al. Association between hospital participation in a Medicare bundled payment initiative and payments and quality outcomes for lower extremity joint replacement episodes. JAMA 2016;316(12):1267.