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Background: Artificial intelligence (AI) and machine learning (ML) modeling in hip and knee arthroplasty
(total joint arthroplasty [TJA]) is becoming more commonplace. This systematic review aims to quantify
the accuracy of current AI- and ML-based application for cognitive support and decision-making in TJA.
Methods: A comprehensive search of publications was conducted through the EMBASE, Medline, and
PubMed databases using relevant keywords to maximize the sensitivity of the search. No limits were
placed on level of evidence or timing of the study. Findings were reported according to the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Analysis of variance
testing with post-hoc Tukey test was applied to compare the area under the curve (AUC) of the models.
Results: After application of inclusion and exclusion criteria, 49 studies were included in this review. The
application of AI/ML-based models and average AUC is as follows: cost prediction-0.77, LOS and
discharges-0.78, readmissions and reoperations-0.66, preoperative patient selection/planning-0.79,
adverse events and other postoperative complications-0.84, postoperative pain-0.83, postoperative
patient-reported outcomes measures and functional outcome-0.81. Significant variability in model AUC
across the different decision support applications was found (P < .001) with the AUC for readmission and
reoperation models being significantly lower than that of the other decision support categories.
Conclusions: AI/ML-based applications in TJA continue to expand and have the potential to optimize
patient selection and accurately predict postoperative outcomes, complications, and associated costs. On
average, the AI/ML models performed best in predicting postoperative complications, pain, and patient-
reported outcomes and were less accurate in predicting hospital readmissions and reoperations.
© 2021 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee
Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction and background

Health care has been able to harness artificial intelligence (AI) in
an effort to create predictive tools that support clinicians in more
complicated decision-making processes. Specifically, a subset of AI
known asmachine learning (ML) has been used inmultiple medical
specialties including oncology, neurology, neurosurgery, cardiol-
ogy, and orthopedic surgery [1-5]. In lower extremity surgery,
specifically, ML has been applied in risk assessment and diagnosis,
cost analysis, and reimbursement tools [6].

In the simplest form, ML produces useful models from algo-
rithmic analysis of acquired data. One particular strength of ML is
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that some models are trained on large amounts of information, or
“big data”. This optimizes the use of these models in decision-
making as the more data the underlying model is trained on, the
more accurate its predictions become [7]. Several ML models are
used including decision trees, support vector machine, regression
analysis, and Bayesian networks [4,5]. In addition, a subset of ML
called “deep learning” has been developed, which includes artificial
neural network (ANN) models. The advantage of these models is
that they do not require the preprocessing of data by humans, but
rather can analyze the raw inputs and identify which features are
most important for the analysis [8].

Models can be created in several ways; however, supervised
learning is the most common one [8,9]. In supervised learning, data
sets are labeled so that the model can be built on a “training set” of
inputs (variables of interests) with defined outputs (outcomes of
interest). Complex patterns and relationships are identified be-
tween these inputs and outputs, and the model can then use these
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associations to predict outcomes of interest from novel inputs
[10,11]. Once a model is created, it can be tested on a novel data set
or a validation data set.

Recently, there has been a substantial increase in the literature
describing the use of these models, including the field of hip and
knee arthroplasty. As such, it is critical to build a strong under-
standing of the accuracy and application of these current models to
guide their applicability toward further development in the future.
The purpose of this review is to assess the accuracy of current ap-
plications of AI/ML in hip and knee arthroplasty, namely in (1)
administrative/clinical decision support applications (cost,
discharge/length of stay (LOS), patient selection and planning,
readmission and reoperation risk) and (2) postoperative prediction/
management applications (adverse event/ other postoperative
complication, cardiovascular complication, postoperative pain,
postoperative mortality, patient-reported outcomes [PRO], and
sustained opioid use).

Material and methods

Search strategy

A comprehensive search of publications, throughMay 2020, was
conducted using the EMBASE, Medline, and PubMed databases in
accordance with Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. The search strategy
included the following keywords or MeSH-terms: “machine
learning”, “artificial intelligence”, “deep learning”, “neural
network”, “artificial neural networks”, “support vector machine”,
“Bayesian”, “boosting”, “ensemble learning”, “prediction model”,
“decision tree”, “random forest”, “total hip arthroplasty”, “total
knee arthroplasty”, “total joint arthroplasty”, “THA”, “TKA”, “TJA”,
“hip replacement”, “knee replacement”, and “joint replacement”.
Boolean operators (OR, AND) were used tomaximize the sensitivity
of the search. Screening of reference lists of retrieved articles also
yielded additional studies.

Eligibility criteria

Inclusion criteria comprised original clinical studies, including
studies which evaluate AI/ML-based applications in clinical
decision-making in hip and knee arthroplasty. Exclusion criteria
comprised studies that did not evaluate AI/ML applications in hip
and knee arthroplasty, medical imaging analysis studies without
explicit reference or application to hip and knee arthroplasty,
studies with nonhuman subjects, non-English-language studies,
inaccessible articles, conference abstracts, reviews, and editorials.
No limits were placed on level of evidence or timing of the study
because the majority of the reviewed studies were published
within the last 10 years.

Study selection

Article titles and abstracts were screened initially by 2 re-
viewers, and full-text articles were subsequently screened based on
the selection criteria. The studies were rated by their level of evi-
dence, based on the Oxford Center for Evidence-based Medicine
Levels of Evidence [12]. Two authors reviewed each individual
article that was included. Discrepancies in inclusion studies were
discussed and resolved by consensus.

Data extraction and categorization

A database was generated from all included studies which
consisted of the journal of publication, publication year, country of
origin, study design, level of evidence, study duration, blinding of
the study, number of involved institutions, AI/ML methods and
clinical applications, surgical domain, data sources, input variables
and output variables, sample size, average patient age, percent fe-
male patients, and any additional pertinent findings from the study.
The reviewed articles were sorted into different, nonmutually
exclusive categories based on the AI/ML clinical application. AI/ML
clinical applications were divided into 2 major groups: (1) admin-
istrative and clinical decision support and (2) postoperative pre-
diction and management of complications and outcomes. The
former group contained the following prediction and optimization
subcategories: preoperative planning and cost prediction, hospital
discharge and LOS, readmissions, and reoperations. The latter
group included postoperative cardiovascular complications, other
complications, mortality, and functional and clinical outcomes.
Data analysis

Descriptive statistics were used to summarize important find-
ings and results from the selected articles and to describe trends in
AI/ML techniques, clinical applications, and relevant findings
associated with its use. Summary data were presented using
simple averages, frequencies, and proportions. This study did not
evaluate R2 values. AI/ML model performance within the reviewed
studies were summarized using various metrics, including the area
under the curve (AUC) of receiver operating characteristic curves,
accuracy (%), sensitivity (%), and specificity (%). AUC values range
from 0.50 to 1 and measure a prediction models’ discriminative
ability, with a higher AUC value signifying better predictive ability
and overall accuracy of the model correctly placing a patient into
an outcome category. A model with an AUC of 1.0 is a perfect
discriminator, 0.90 to 0.99 is considered excellent, 0.80 to 0.89 is
good, 0.70 to 0.79 is fair, and 0.51 to 0.69 is considered poor [13].
Reported model performance metrics for each AI/ML algorithm
type and for each clinical application category were aggregated
across the reviewed studies. One-way analysis of variance
(ANOVA) with post hoc Tukey tests were performed, with statis-
tical significance set at P < .05. All statistical analyses were per-
formed using Stata (version 16.1; Stata Corporation, College
Station, Texas).
Results

Search results and study selection

Predefined search terms resulted in 307 articles, of which 48
duplicate articles were removed. The remaining 259 articles were
screened by title and abstract according to inclusion and exclusion
criteria. Ultimately, there were 58 articles included for full review,
of which 49met full inclusion and exclusion criteria (Fig.1). Level of
evidence of the reviewed studies ranged from II to IV, and over 61%
of studies had level of evidence III, 29% of studies had level of ev-
idence II, and 10% had level of evidence IV. The average number of
patients included in model testing was 30,624 (standard deviation
[SD] 69,069). Although there were no limitations on publication
dates in the selection process, the vast majority of studies (42
studies, or 87.5%) were published during the last 3 years (2018 -
2020) (Fig. 2) Therewas variability in themetrics used by authors to
report or evaluate AI/ML model performance. AUC was the most
frequently reported performance metric, appearing in 39 out of the
49 total reviewed studies (79.6%). In comparison, accuracy was
reported less frequently (10 studies, 20.4%), as were sensitivity and
specificity (9 studies, or 18.4%).



Figure 1. PRISMA diagram showing systematic review search strategy.
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Administrative and clinical decision support applications

A total of 31 reviewed studies (63.3%) evaluated the use of AI/ML
applications in optimizing preoperative patient selection or pro-
jecting surgical costs, through prediction of hospital LOS, dis-
charges, readmissions, and other cost-contributing factors (Tables 1
and 2). Sixteen studies (32.7%) evaluated AI/ML applications to
accurately predict patient reoperations, operating time, hospital
LOS, discharges, readmissions, or surgical and inpatient costs [14-
29]. In addition, 16 studies (32.7%) used patients’ preoperative
risk factors and other patient-specific variables to optimize the
patient selection and surgical planning process through the use of
AI/ML-based predictions of surgical outcomes and postoperative
complications [30-44]. The majority of the decision support studies
evaluated AI/ML model performance using receiver operating
characteristic/AUC, accuracy, sensitivity, and specificity. Two
studies did not test model performance, but instead used cluster
analysis to classify patients based on preoperative risk factors and
other variables to predict their association with inpatient costs and
functional outcomes [20,45].

AI/ML applications of cost prediction were used in 23 models
across 11 studies, which reported an average AUC of 0.77 (SD 0.08)
(Table 3). Predictive models of LOS and discharges were used in 6
studies, with an average AUC of 0.78 (SD 0.05) across 11 models. Six
studies each evaluated different AI/ML-based predictive models of
readmissions and reoperations, with an average AUC of 0.66 (SD
0.04) across 15 models. Applications of preoperative patient selec-
tion/planning were used in 62 models across 16 studies, reporting
an average AUC of 0.79 (SD 0.11). ANOVA testing found statistically
significant variability in model AUC across the different decision
support applications (P < .001), and Tukey post-hoc testing
confirmed that AI/ML predictive models of readmissions and reop-
erations reported significantly lower AUC than each of the other
administrative and clinical decision support categories (Table 3).

ANOVA testing found statistically significant variability in model
accuracy and specificity (P < .001 and P ¼ .026, respectively), and
Tukey post hoc testing confirmed statistically significant intergroup
differences in those metrics, shown in Table 3. Preoperative plan-
ning and patient selection models reported significantly higher
average accuracy (95.4%) than each of the other decision support
categories, including cost prediction (86.5%; P ¼ .006), discharge/
LOS (85.2%; P < .001), and readmissions/reoperations (80.1%; P <
.001). Discharge/LOS prediction models had the lowest specificity
(72.1%) which was significantly lower than specificity reported for



Figure 2. Trends in the annual number of AI/ML publications in hip and knee surgery (2013-2020*). *Through May 2020.
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preoperative planning and patient selection models (94.6%; P <
.001) and readmissions/reoperations models (98.3%; P < .001).
Conversely, there were no significant differences in model sensi-
tivity between the applications (P ¼ .866).
Prediction and management of postoperative outcomes and
complications

A total of 25 reviewed studies (51.0%) (Table 4) used various AI/
MLmodels to predict outcomes, complications, and adverse events,
including postoperative risk of cardiac complications, pulmonary
complications, renal complications, venous thromboembolism,
blood transfusion, periprosthetic and surgical site infections,
vomiting, sustained opioid use, and mortality (ranging from 30 to
90 days) (Table 2). Postoperative prediction categories were sorted
into 5 groups based on application: adverse events and other
complications, cardiovascular complications, postoperative pain,
postoperative mortality, PROs and other functional outcomes, and
sustained opioid use (Table 2).

Model performance significantly varied across postoperative
management applications, which was confirmed by ANOVA testing
for average AUC and sensitivity values (P ¼ .002 and P ¼ .042,
respectively) (Table 5). Models predicting adverse events and other
postoperative complications averaged 0.84 (SD 0.10, 14 models),
models predicting postoperative cardiovascular complications
averaged an AUC of 0.77 (SD 0.08, 8 models), postoperative pain
models averaged an AUC of 0.83 (SD 0.05,10models), postoperative
mortality models averaged an AUC of 0.81 (SD 0.07, 3 models), and
postoperative PRO and functional outcome models averaged an
AUC of 0.81 (SD 0.08, 56 models). Tukey post hoc testing found
statistically significant differences between postoperative sus-
tained opioid use models (average AUC of 0.71) and models pre-
dicting adverse events/other complications (AUC 0.84; P ¼ .002),
postoperative pain (AUC 0.83; P ¼ .003), and PROs/functional out-
comes (AUC 0.81; P ¼ .011) (Table 5). Average sensitivity was also
found to be significantly different between adverse event/other
complication models (97.7%) and postoperative pain (78.8%; P <
.001) and PROs/functional outcome models (76.9%; P < .001)
(Table 5). There was no significant variation in reported accuracy or
specificity values (P ¼ .279 and P ¼ .167, respectively) (Table 5).
Comparison of AI/ML algorithms

Various AI/ML algorithms were used in the reviewed studies,
including ANNs, decision trees (including random forest), logistic
regressions, gradient boosting/ensemble learning, and Bayesian
networks (Tables 2 and 6). The most commonly applied AI/ML al-
gorithms in the reviewed studies were logistic regression (24
studies, 60.0%) and neural networks (23 studies, 46.9%). Decision
trees were used in 16 studies (32.7%), boosting/ensemble learning
models were used in 11 studies (22.4%), support vector machines
were used in 7 studies (14.3%), Bayesian networks were used in 5
studies (10.2%), and cluster analysis was only included in 2 studies
(4.1%).

Across all ML types, ANNs and Bayesian networks each had the
highest average AUC (0.81; SD 0.11 across 56 models and SD 0.07
across 8 models, respectively) Boosting/ensemble learning models
had average AUC of 0.79 (SD 0.07, 19 models), followed by decision
treemodels (AUC 0.78, SD 0.10, 41models), regressionmodels (AUC
0.77, SD 0.07, 62 models), and support vector machines (AUC 0.77,
SD 0.11, 26 models) (Table 6). When comparing AI/ML model per-
formance across various algorithm types, one-way ANOVA testing
did not find statistically significant variation, except for specificity
(P ¼ .019). No significant intergroup differences were found for any
performance metrics on Tukey post-hoc testing (Table 6).
Training data sets

For several studies, data sets used for training were extracted
from large national and multicenter databases (Tables 1 and 4). The
most commonly used were the Medicare databases (5 studies).
Other administrative and private insurance databases were also



Table 1
Reviewed studied of preoperative patient selection and planning in hip and knee arthroplasty.

Author, year Pathology
/Surgery

ML algorithms Prediction outputs Patients in
testing set (n)

Avg. age %Female Data source

Alam et al., 2019 [14] THA ANN, regression Costs 10,000 d d Multicenter
Aram et al., 2018 [15] TKA ANN, decision tree Readmissions/

reoperation
6137 70.2 57.1 National Joint Registry

(UK)
Bonakdari et al., 2020

[16]
TKA, THA ANN Readmissions/

reoperation
5251 60.3 66.3 UK National Institute

for Health and Care
Excellence (NICE)

Borjali et al., 2020 [30] THA ANN Preop patient selection/
planning

25 61.3 47 Single institution

Cafri et al., 2019 [31] TKA Decision tree,
regression

Preop patient selection/
Planning

74,520 65.5 57.4 Kaiser Permanente
Total Joint Replacement
Registry (KPTJRR)

Fontana et al., 2019 [32] TJA Regression, SVM,
decision tree

Preop patient selection/
planning

3430 63 d Patient database

Gabriel et al., 2019 [17] THA Regression, decision
tree

Discharge/LOS 240 d 50.5 Single institution

Hirvasniemi et al., 2019
[33]

THA Regression Preop patient selection/
planning

197 55.7 83.8 CHECK cohort

Hyer et al., 2019 [18] TJA Regression, decision
tree

Preop patient selection/
planning

262,290 73 55.8 Medicare

Hyer et al., 2020 [19] All Decision tree Costs, readmissions/
reoperation

262,290 73 55.8 Medicare

Hyer et al., 2020 [20] THA, TKA Cluster analysis Costs 19,522 d d Medicare
Jafarzadeh et al., 2020

[44]
TKA ANN, regression Preop patient selection/

planning
2357 61.6 62 Multicenter

Osteoarthritis (MOST)
Study

Jodeiri et al., 2020 [34] THA ANN Preop patient selection/
planning

95 d d Single institution

Jones et al., 2019 [21] THA, TKA Regression, boosting Readmissions/
reoperation

d d d Medicare

Kang et al., 2020 [35] THA ANN Preop patient selection/
planning

1202 d d Multicenter

Karnuta et al., 2019 [22] Hip fracture Bayesian Costs, discharge/LOS 98,562 d 73.5 New York Statewide
Planning and Research
Cooperative System
database

Karnuta et al., 2019 [46] TJA ANN Costs 73,901 d d New York State
inpatient
administrative
database

Lee et al., 2017 [26] TJA Regression Readmissions/
reoperation

26 d d Analysis of patient
records to provide risk
prediction for
readmissions.

Lee et al., 2019 [27] TJA Boosting, regression Costs 131 d d Single institution
Navarro et al., 2018 [28] TKA Bayesian Costs, discharge/LOS 35,362 d d Administrative

database
Pareek et al., 2019 [37] Knee fracture ANN, decision tree,

regression, boosting,
Bayesian

Preop patient selection/
planning

62 64.6 68 Single institution

Ramkumar et al., 2019
[23]

TKA ANN Costs, discharge/LOS 175,042 73.5 64 National inpatient
sample

Ramkumar et al., 2019
[24]

THA Bayesian Costs, discharge/LOS 30,584 d d Patient database

Ramkumar et al., 2019
[25]

THA ANN Costs, discharge/LOS 78,335 75.3 63.6 National inpatient
sample

Sherafati et al., 2020
[38]

THA ANN Preop patient selection/
planning

78 63.1 47 Single institution

Tiulpin et al., 2019 [39] TKA ANN, regression,
boosting

Preop patient selection/
planning

3918 61.16/
62.50

57.2/
61.2

Osteoarthritis Initiative
(OAI) and MOST data
sets

Tolpadi et al., 2020 [40] TKA, THA ANN Preop patient selection/
planning

719 61 58 OAI database

Twiggs et al., 2019 [41] TKA Bayesian Preop patient selection/
planning

150 65.7 53 Single institution

Van et al., 2019 [29] THA ANN Costs, preop patient
selection/planning

100 d d Single institution

Yi et al., 2019 [42] TKA ANN Preop patient selection/
planning

154 d d Single institution

Yoo et al., 2013 [43] TKA SVM Preop patient selection/
planning

d 0 0 Single institution

ANN, artificial neural network; LOS, length of stay; ML, machine learning; SVM, support vector machine; THA, total hip arthroplasty; TJA, total joint arthroplasty; TKA, total
knee arthroplasty.
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Table 2
Characteristics of AI/ML applications, including applied ML algorithms and prediction outputs.

Administrative/clinical decision support applications Applied ML algorithms Prediction outputs

Costs ANN, Bayesian, boosting, decision tree, regression,
cluster analysis

Hospital charges, procedural costs, cost-effective
interventions, payment, postoperative resource
utilization

Discharge/LOS ANN, Bayesian, decision tree, regression Discharge disposition, LOS
Preop patient selection/planning ANN, Bayesian, boosting, decision tree, regression, SVM Preop OA progression/prognosis, preop THA/TKA

indication, patient surgical complexity score, patient
selection, identification of implant, preop. HOOS JR,
preoperative SF-36 MCS, preoperative SF-36 PCS

Readmissions/reoperation ANN, boosting, decision tree, regression 30-d readmission, 90-d readmission, unplanned
readmission, revision

Postoperative prediction/management applications

Adverse event/other complication ANN, boosting, decision tree, regression, SVM 90-d postoperative complications, any complication,
periprosthetic joint infection, postoperative
complications, postoperative vomiting, pulmonary
complication, renal complication, surgical site infection

Cardiovascular complication Decision tree, regression Cardiac complication, risk of allogenic blood transfusion
(ALBT) in primary lower limb, VTE

Postoperative pain ANN, boosting, decision tree, regression, SVM Improvement in SF-36 pain score, VAS score, severe
pain

Postoperative mortality Decision tree, regression 30-d mortality, 90-d mortality, death
PROMs/Outcomes ANN, boosting, decision tree, regression, SVM, cluster

analysis
Hip OA at 8 y postoperatively, HOOS JR, Hip OA at 10 y
postoperatively, KOOS JR, patient satisfaction,
postoperative Q-score, postoperative functional
outcomes, clinically meaningful improvement for the
patient-reported health state, postoperative walking
limitation, SF-36 MCS, SF-36 PCS, unfavorable outcomes

Sustained opioid use ANN, boosting, decision tree, regression, SVM 90-d postoperative outcome-opioid use, postoperative
sustained opioid use

AI/ML, artificial intelligence/machine learning; ANN, artificial neural network; HOOS, Hip disability and Osteoarthritis Outcome Score; JR, joint replacement; KOOS, Knee
disability and Osteoarthritis Outcome Score; LOS, length of stay; OA, osteoarthritis; PROMs, patient-reported outcomemeasures; SF-36MCS, Short Form 36mental component
summary; SF-36 PCS, Short Form 36 pain catastrophizing score; SVM, support vector machine; VAS, visual analog scale; VTE, venous thromboembolism.
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used, including the Kaiser Permanente Total Joint Replacement
Registry, the American College of Surgeons National Surgical
Quality Improvement Program, National Inpatient Sample, and
New York Statewide Planning and Research Cooperative System
databases. Finally, some studies used training data sets comprising
patients from multicenter or single-center cohorts.

Discussion

To our knowledge this systematic review is the first of its kind,
evaluating the accuracy and reliability of AI/ML applications in hip
and knee arthroplasties across 49 studies. The included studies
investigated the role of AI/ML in clinical decision-making and sur-
gical planning by optimizing patient selection and predicting cost
and complication risks. AI/ML models performed best, average AUC
> 0.8, when predicting postoperative adverse events and mortality,
Table 3
Statistical comparisons of reported model performance metrics, by administrative/clinic

Administrative/clinical decision support applications Performance metrics

AUC

1. Costs 0.77 (0.08, 23)
2. Discharge/LOS 0.78 (0.05, 11)
3. Preoperative patient selection/planning 0.79 (0.11, 62)
4. Readmissions/reoperation 0.66 (0.04, 15)
ANOVA P < .001
Tukey Post Hoc Tests (stat. significant results) 4 vs 1 (P ¼ .003)

4 vs 2 (P ¼ .005)
4 vs 3 (P < .001)

ANOVA, analysis of variance; AUC, area under curve; LOS, length of stay; SD, standard d
as well as postoperative pain and PROs. Deep learning/ANNmodels
resulted in the highest average AUC and accuracy of all the model
types and were presented in 47% of the studies.

There are multiple benefits of AI/ML-based predictive modeling
in hip and knee arthroplasties. First, AI/ML-based model capable of
predicting the need for surgery remains an important tool for
surgeons, given increased cost-consciousness with health-care
expenditures. Hip and knee arthroplasty typically involve an
older and highly comorbid patient population, and these tools can
be especially helpful in identifying patient-specific needs and risks
within this population. Examples of how these models can enable
providers to create and optimize personalized treatment plans
include accurate identification of an implant from a previous sur-
gery for revision procedures and classifying total knee arthroplasty
(TKA) surgical candidates based on patient-specific risk factors [29-
31,33-35,37-42,44,62]. Hyer et al. demonstrated an AI/ML model
al decision support application.

: mean (SD, n)

Accuracy Sensitivity Specificity

86.5 (4.7, 4) d d

85.2 (3.2, 2) 64.5 (d, 1) 72.1 (d, 1)
95.4 (5.4, 10) 70.1 (32.7, 9) 94.6 (7.1, 9)
80.1 (3.1, 3) 81.8 (2.4, 2) 98.3 (0.2, 2)
P < .001 P ¼ .866 P ¼ .026
3 vs 1 (P ¼ .006) d 2 vs 3 (P < .001)
3 vs 2 (P < .001) d 2 vs 4 (P < .001)
3 vs 4 (P < .001) d d

eviation.



Table 4
Reviewed studies of postoperative outcome prediction in hip and knee arthroplasty.

Author, year Pathology
/Surgery

ML algorithms Prediction outputs Patients in
testing set (n)

Avg. age %Female Data source

Alam et al., 2019 [14] THA ANN, regression PROs/outcomes 10,000 d d Multicenter
Bini et al., 2019 [45] TJA Cluster analysis PROs/outcomes d 63 68 Single institution
Fontana et al., 2019 [32] TJA Regression, SVM,

decision tree
PROs/outcomes 2744 63 d Patient database

Galivanche et al., 2019
[47]

THA Boosting Adverse event/other
complication

34,982 d d ACS-NSQIP database

Gielis et al., 2020 [48] THA Regression PROs/outcomes 1044 55.9 87.3 CHECK cohort
Gong et al., 2014 [49] TJA ANN, regression Adverse event/other

complication
d 69.6 53.3 Single institution

Harris et al., 2019 [50] TJA Regression Adverse event/other
complication,
cardiovascular
complication,
postoperative mortality

d 65.7 59.4 ACS-NSQIP database

Hirvasniemi et al., 2019
[33]

THA Regression PROs/outcomes 197 55.7 83.8 CHECK cohort

Huang et al., 2018 [51] THA, TKA Decision tree,
regression

Cardiovascular
complication

3797 62 66 Multicenter

Huang et al., 2018 [52] TKA Decision tree Postoperative pain d d d Administrative
database

Huber et al., 2019 [53] THA Boosting, ANN,
regression

Postoperative pain,
PROs/outcomes

31,905 d 59.7 NHS PRO data

Hyer et al., 2019 [18] THA, TKA Regression Adverse event/other
complication

1,049,160 d d Medicare

Hyer et al., 2020 [19] All Decision tree Adverse event/other
complication,
postoperative mortality

524,580 73 55.8 Medicare

Jacobs et al., 2016 [54] TKA Decision tree PROs/outcomes 325 d d Single institution
Karhade et al., 2019

[55]
THA Boosting, decision tree,

SVM, ANN, regression
Sustained opioid use 263 59 38.7 Multicenter

Katakam et al., 2020
[56]

TKA ANN, decision tree,
SVM, regression,
boosting

Sustained opioid use 2508 67 60.3 Single institution

Kluge et al., 2018 [57] TKA Decision tree, ANN,
boosting, regression,
SVM

PROs/outcomes d 64 66.666667 Single institution

Kunze et al., 2020 [58] THA ANN, decision tree,
SVM, regression,
boosting

PROs/outcomes 183 62 57.3 Single institution

Onsem et al., 2016 [59] TKA Regression PROs/outcomes 113 65.2 56 Single institution
Parvizi et al., 2018 [60] THA, TKA Decision tree Adverse event/other

complication
422 65.4 52.3 Multicenter

Pua et al., 2019 [61] TKA Decision tree,
regression, boosting

PROs/outcomes 1208 67.8 75 Single institution

Schwartz et al., 1997
[62]

THA ANN, regression Postoperative pain 221 63 57 THR outcomes database
at Center for Clinical
Effectiveness of the
Henry Ford Health
System

Van et al., 2019 [29] THA ANN Adverse event/other
complication

100 d d Single institution

Wu et al., 2016 [63] TJA Regression, SVM Adverse event/other
complication

d 69.6 53.3 Single institution

Yoo et al., 2013 [43] TKA SVM Postoperative pain,
PROs/outcomes

d 0 0 Single institution

ACS-NSQIP, American College of Surgeons National Surgical Quality Improvement Program; ANN, artificial neural network; CHECK, Cohort Hip and Cohort Knee; ML, machine
learning; NHS, National Health Service; PRO, patient-reported outcome; SVM, support vector machine; THA, total hip arthroplasty; THR, total hip reconstruction; TJA, total
joint arthroplasty; TKA, total knee arthroplasty.
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which classified TKA and total hip arthroplasty patients based on
surgical complexity scores [19].

AI/MLmodelsmay aid in predicting postoperative complications
and creating personalized postoperative management protocols to
avoid ormanage those obstacles andmaximize outcomes. Several of
the reviewed studies used AI/ML models to accurately predict the
risk of a range of postoperative complications and adverse events
[19,29,47,50,51,60]. TKA and total hip arthroplasty revisions and
reoperations are also modeled with AI/ML algorithms in some
studies, [15,16,21,64] as well as hospital readmissions [20,21,26,27].
In the postoperative period, AI/ML tools offer surgeons the ability to
predict patients’ outcomes after surgery, including functional out-
comes and PRO scores [14,32,33,43,45,48,53,54,57e59,61]. Post-
operative pain has also been shown to be predicted with AI/ML,
[43,53,56,55] including identification of patients at high risk for
prolonged postoperative opioid prescriptions. These tools may
better inform analgesic and pain management protocols, especially
for opioid prescriptions. They may also enable surgeons to better



Table 5
Statistical comparison of reported model performance metrics, by postoperative predictions/management applications.

Postoperative prediction/management applications Performance metrics: mean (SD, n)

AUC Accuracy Sensitivity Specificity

1. Adverse event/other complication 0.84 (0.1, 14) d 97.7 (d, 1) 99.5 (d, 1)
2. Cardiovascular complication 0.77 (0.08, 8) d d d

3. Postoperative pain 0.83 (0.05, 10) 78.8 (2.2, 7) 78.7 (7.5, 7) 78.8 (4.9, 7)
4. Postoperative mortality 0.81 (0.07, 3) d d d

5. PROs/outcomes 0.81 (0.08, 56) 75.1 (8.4, 12) 76.9 (7.1, 13) 64.9 (24, 13)
6. Sustained opioid use 0.71 (0.09, 10) d d d

ANOVA P ¼ .002 P ¼ .279 P ¼ .042 P ¼ .167
Tukey Post Hoc Tests (stat. significant results) 6 vs 1 (P ¼ .002) - 1 vs 3 (P < .001) -

6 vs 3 (P ¼ .003) - 1 vs 5 (P < .001) -
6 vs 5 (P ¼ .011) - - -

ANOVA, analysis of variance; AUC, area under curve; PRO, patient-reported outcome; SD, standard deviation.

C.D. Lopez et al. / Arthroplasty Today 11 (2021) 103e112110
tailor treatment for their patients and perhaps offer nonoperative
management, especially if there is a high predicted risk of revision
surgery or potentially serious postoperative complications.

A powerful predictive tool that aids in clinical decision-making by
being able to integrate a large amount of information and identify
complex patterns, ML is still vulnerable to the biases faced in other
forms of clinical research [65e68]. Among these biases are those
related to nonrandom missing data, limited sample size and un-
derestimation to avoid overfitting by the models, and misclassifi-
cation of disease or discrepancies in measurement between
providers [65,67]. These result in specific biases as there can be a
limited number of inputs based on researchers’ belief of which
variables are important or the ability to collect all possible variables,
thus limiting the accuracy and generalizability of the model. Models
created on single-institution data sets may not be generalizable
because of variation in measurement or reporting of the variables or
outputs [65]. Some national data sets that are often used to create
these models do not provide granular data which can lead to errors.
Other databases can be subject to several biases including selection
bias and misclassification of diagnosis as some of these sets have
been created for purposes other than research, such as billing
[67,68]. Sample size and the population fromwhich the training set
is sourced from are also important when considering generaliz-
ability; these models may be better at making predictions for those
individuals with high access to care as they are built of their data
[67]. In both smaller single and large multicenter databases, there is
often a lack of information related to social determinants of health
which may contribute to disparities seen within our current system
[65,68]. Controversy surrounding the use of gender and race infor-
mation in AI/ML models raises ethical concerns regarding potential
introduction of bias into prediction models which are designed to
Table 6
Statistical comparisons of reported model performance metrics, by AI/ML algorithm.

AI/ML algorithm Performance metrics: Me

AUC

ANN 0.81 (0.11, 56)
Bayesian 0.81 (0.07, 8)
Boosting 0.79 (0.07, 19)
Decision tree 0.78 (0.1, 41)
Regression 0.77 (0.07, 62)
SVM 0.77 (0.11, 26)
ANOVA P ¼ .252
Tukey Post Hoc Tests (stat. significant results) d

AI/ML, artificial intelligence/machine learning; ANN, artificial neural network; ANOVA,
vector machine.
optimize outcomes based on historically inequitable health-care
data [66,69,70]. These challenges must be taken into account when
implementing the use of AI/ML in clinical settings, especially given
the well-studied systemic racial and socioeconomic disparities that
exist in US health care [70].

The application of AI/ML to clinical decision-making in hip and
knee arthroplasties may result in optimized outcomes by aiding in
accurate patient selection and surgical planning during the peri-
operative period. Several studies in our review demonstrated the
use of AI/ML models to predict hospital LOS and readmissions and
associated inpatient costs after total joint arthroplasty [14,22-
25,27-29,46]. Other studies have demonstrated AI/ML potential to
reduce unnecessary expenditures and create risk-adjusted reim-
bursement models [24,27,28,46]. AI/ML may even enable insurers
to more accurately account for individual patient risk and case
complexity, especially for bundled payment models. However, the
shift away from fee-for-service models and toward models which
reward cost-efficiency and incentivize treating a low-acuity patient
population may indirectly exclude certain patients from accessing
care, especially when based on ethnic or socioeconomic back-
ground and associated comorbidities and risk factors [71,72]. AI/ML
is a powerful tool that can be broadly adopted in health care and,
more specifically, within the field of hip and knee arthroplasty, to
optimize patient outcomes, but the data sets upon which these
models are trained on must be carefully constructed not only to be
of a sufficient size but also to adequately represent the complexities
of our patient population. This study has several potential limita-
tions, as we did not use criteria to evaluate the quality of the various
data sets used in the reviewed studies, and additional studies using
more standardized data sets would be required before making
conclusions about clinical efficacy.
an (SD, n)

Accuracy Sensitivity Specificity

87.6 (11.7, 14) 70.69 (24.18, 15) 88.4 (12.9, 15)
84.1 (2.6, 4) d d

77.3 (7.1, 7) 77.8 (5.36, 5) 72.8 (11.7, 5)
89 (d, 1) 86.35 (16.05, 2) 99.8 (0.4, 2)
79 (8.7, 7) 75.75 (11.28, 6) 70.4 (14.6, 6)
83.2 (10, 5) 86.1 (7.34, 5) 80.5 (16.1, 5)
P ¼ .228 P ¼ .497 P ¼ .019
d d d

analysis of variance; AUC, area under curve; SD, standard deviation; SVM, support
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Conclusions

The body of literature on AI/ML-based applications in hip and
knee arthroplasties is growing rapidly. Currently, these models are
doing well in predicting some postoperative complications but are
still limited in predicting postoperative opioid use and need for
readmission or reoperation. The accuracy of these predictive tools
has the potential to increase with technological advancements and
larger data sets, but these models also require external validation.
Future work in AI/ML-based applications should aim at creating
accurate commercially ready tools that can be integrated into
existing systems and to fulfill their role as an aid to physicians and
patients in clinical decision-making.
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