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Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions.
Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 pre-
dicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any se-
quenced genome.
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Cyanobacteria have a tremendous capacity to acclimate to
changing environments (1). The filamentous cyanobacterium

Tolypothrix sp. PCC 7601 is studied for its phenotypic plasticity in
changing environments (2). Isolated from a Connecticut lake and
named Fremyella diplosiphon (UTEX 481), it was added to the
Pasteur Culture Collection as Calothrix sp. PCC 7601 and re-
named Tolypothrix sp. PCC 7601. It is a model organism for study-
ing the mechanism and regulation of chromatic acclimation, the
reversible modification of photosynthetic light-harvesting anten-
nae in response to changes in ambient light color, shifting the cell
phenotype between red and blue-green (2–4).

Tolypothrix sp. PCC 7601 responds to many additional abiotic
conditions. It acclimates to low sulfate conditions by producing
antennae proteins depleted in sulfur-containing amino acids (5,
6). It has multiple developmental pathways, changes its cellular
morphology and average filament length in different ambient
light colors, and historically could reduce atmospheric nitrogen
(7). Thus, it possesses an extensive repertoire of environmental
responses. Its genome contains large numbers of genes encoding
regulatory components, particularly two-component system pro-
teins.

Shortened filament mutant SF33 (also called Fd33) was gener-
ated from F. diplosiphon (UTEX 481) (8) and used for genome
sequencing. The sequence was generated using a full 3-kb paired-
end Titanium 454 sequencing run, representing 46.6-fold genome
coverage. A Newbler draft assembly was generated using Newbler

version vMapAsmResearch-02/17/2010. The draft genome is
9,963,861 bp in length and contains 157 contigs (�139 bp in
length) with a mean contig size of 63,464 bp and a maximum
length of 955,511 bp. The draft was not further joined due to the
presence of approximately 150 repetitive regions (probable en-
dogenous transposable elements). The mean G�C genome con-
tent is 40.6%. Annotation and gene prediction used the TIGR
Gene Indices gene annotation process (9). Coding sequences were
predicted using GeneMark (10) and Glimmer3 (11). Intergenic
regions not spanned by GeneMark and Glimmer3 were blasted
against NCBI’s nonredundant bacterial (NR) database. Loci were
then defined by clustering predictions with the same reading
frame. The best prediction at each locus was selected by evaluating
all predictions against nonredundant bacterial, NR, and Pfam ev-
idence (12) and resolving overlaps between adjacent coding genes.
tRNA genes were determined using tRNAscan-SE (13) and non-
coding RNA genes by RNAmmer (14) and Rfam (15). The final
gene set was processed through KEGG (16), psortB (17), and In-
terproscan (18) to determine possible function. Gene product
names were determined by BLAST Extend Repraze (http:
//sourceforge.net/projects/ber/).

A total of 10,065 coding sequences were predicted, including
305 two-component-system proteins and 27 phytochrome-class
photoreceptors, the largest number of each of these groups of
sensory proteins reported for any bacterial genome to date. These
results suggest the presence of complex sensory and regulatory
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systems that are required for the extensive environmental respon-
siveness and phenotypic plasticity of this cyanobacterium.

These sequence data will be useful for elucidating the regula-
tory systems of prokaryotes with large, complex genomes.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited in DDBJ/EMBL/GenBank un-
der the accession number AGCR00000000. The version described
in this paper is the first version, AGCR01000000.
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