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PLGA nanoparticle encapsulation 
reduces toxicity while retaining the 
therapeutic efficacy of EtNBS-PDT 
in vitro
Hsin-I Hung1, Oliver J. Klein1, Sam W. Peterson1, Sarah R. Rokosh1, Sam Osseiran1,2,  
Nicholas H. Nowell1 & Conor L. Evans1

Photodynamic therapy regimens, which use light-activated molecules known as photosensitizers, are 
highly selective against many malignancies and can bypass certain challenging therapeutic resistance 
mechanisms. Photosensitizers such as the small cationic molecule EtNBS (5-ethylamino-9-diethyl-
aminobenzo[a]phenothiazinium chloride) have proven potent against cancer cells that reside within 
acidic and hypoxic tumour microenvironments. At higher doses, however, these photosensitizers 
induce “dark toxicity” through light-independent mechanisms. In this study, we evaluated the use of 
nanoparticle encapsulation to overcome this limitation. Interestingly, encapsulation of the compound 
within poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-EtNBS) was found to significantly 
reduce EtNBS dark toxicity while completely retaining the molecule’s cytotoxicity in both normoxic 
and hypoxic conditions. This dual effect can be attributed to the mechanism of release: EtNBS remains 
encapsulated until external light irradiation, which stimulates an oxygen-independent, radical-
mediated process that degrades the PLGA nanoparticles and releases the molecule. As these PLGA-
encapsulated EtNBS nanoparticles are capable of penetrating deeply into the hypoxic and acidic cores 
of 3D spheroid cultures, they may enable the safe and efficacious treatment of otherwise unresponsive 
tumour regions.

Ovarian cancer (OvCa) is the leading cause of gynaecologic cancer death and is the 5th most common cause of 
cancer death in women in the United States1. The most common type, epithelial ovarian cancer (EOC), accounts 
for 90% of ovarian cancer cases1. Due to a lack of early detection methods and non-specific symptoms, over 
75% of OvCa patients are diagnosed with metastatic, advanced-stage disease. The current standard treatment for 
OvCa is cytoreductive surgical debulking followed by platinum- and taxane-based combination chemotherapy. 
Although 80–90% of EOC patients are initially responsive, nearly 70% of these patients will develop resistance 
to chemotherapy over time2. This evolution of therapeutic resistance in EOC results in a poor quality of life for 
patients and a dismal overall five-year survival rate of 30%1–3. As such, significant efforts have focused on combat-
ing treatment resistance early in the therapeutic process.

Microenvironmental factors, including hypoxia and acidosis, are known to play a role in treatment resist-
ance. Hypoxia is recognized as a major obstacle in cancer therapy due to the resulting upregulation of a host of 
cellular survival mechanisms, including the HIF1 cellular survival pathway. An acidic tumour environment has 
similar cellular protective effects, partly through hindering drug uptake4–10. Of particular importance to OvCa, 
numerous reports have suggested that tumour initiating cells (TICs), also known as cancer stem cells (CSCs), and 
their associated tumour microenvironment play a significant role in the development of therapeutic resistance 
and treatment failure2–5,11. TICs are thought to inhabit protective hypoxic niches4,12. and TIC-associated tumour 
relapse and post-therapy metastasis is postulated as a major cause of patient death. Targeted cellular killing of 
TICs and the disruption of their associated microenvironment may therefore be an effective approach to elimi-
nating resistant OvCa early in the treatment process.
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Photodynamic therapy (PDT) is a light-activated therapeutic modality that makes use of molecules known as 
photosensitizers. When exposed to specific wavelengths of light, photosensitizers generate reactive radical species 
that can cause apoptosis or necrosis13. This approach reduces systemic toxicity when compared to chemotherapy, 
as photosensitizers are activated only when exposed to light. Direct targeting of cellular organelles, a general 
lack of nuclear or DNA damage, and the preferential uptake of photosensitizers into tumours give PDT many 
advantages over traditional chemotherapy and radiotherapy13,14. As a result, PDT has great potential to overcome 
adaptive therapeutic resistance15–17. In both basic and clinical studies, PDT was found to not contribute to the rise 
of therapeutically resistant cell populations, even if used repeatedly14. A number of photosensitizers are available 
for PDT, with the FDA-approved, porphyrin-based Photofrin having been used clinically for over three decades 
for a range of malignancies18,19. PDT has found numerous clinical applications, including the therapy of meso-
thelioma20, prostate cancer21, pancreatic cancer22, head and neck cancer23, and glioblastoma24. PDT treatments 
against metastatic OvCa have shown promise in pre-clinical experiments25 and are currently undergoing testing 
in a Phase I clinical trial. For these reasons, PDT appears well suited for the treatment of OvCa.

There are two types of radical photochemistry that can occur during PDT26. The most well-known process is 
oxygen-dependent and proceeds through energy exchange between a photosensitizer’s excited triplet state and 
molecular oxygen. This “Type II” photochemical mechanism causes the efficient generation of singlet oxygen 
molecules that then impart cellular cytotoxicity. In the second mechanism, excited photosensitizers27 directly 
react with their surroundings via their excited states. This so-called “Type I” mechanism proceeds via electron 
transfer to water, proteins, and lipids to create reactive species including the hydroxyl radical (∙OH) and hydrogen 
peroxide (H2O2). Though potentiated by oxygen, this second mechanism can operate independently of oxygen, 
making it useful against cells in hypoxic microenvironments.

PDT agents currently used in the clinic operate primarily through the oxygen-dependent Type II mechanism, 
meaning that these agents are largely ineffective in hypoxic environments. Recently, we and others found that 
a lysosome-targeted photosensitizer, EtNBS, specifically accumulated into otherwise therapeutically unrespon-
sive acidic and hypoxic tumour microenvironments and was capable of killing cells within these problematic 
regions28,29. Importantly, this cationic molecule was found to trigger cell killing through a combination of Type I 
and II mechanisms and was found to retain its therapeutic efficacy even under severely hypoxic conditions28–31. 
As hypoxic microenvironments are traditionally difficult to treat with chemotherapy and radiation therapy, 
combination therapeutic regimens with EtNBS may offer new options for patients29. The molecule’s localiza-
tion to acidic environments and its potency under hypoxic conditions also make EtNBS a potent agent for the 
treatment of unresponsive tumour regions, as well as a potential therapeutic for killing TICs in their niche. The 
current drawback to EtNBS is that it demonstrates dark toxicity – toxicity in the absence of light activation – at 
high micromolar concentrations32. As EtNBS can accumulate within cells and tissues at such concentrations, 
approaches are needed that can lessen or ameliorate dark toxicity.

Nanoparticle encapsulation provides one solution to minimize the potential dark toxicity of EtNBS. 
Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable and biocompatible material that has been FDA-approved 
for the safe delivery of drugs33. PLGA can be readily formulated into nanoparticles for the encapsulation of 
numerous hydrophilic compounds, including chemotherapeutics34, analgesics35, and anti-inflammatories36. 
Moreover, the conjugation of PLGA to various drugs has been very well documented33,37,38. In this study, we 
sought to encapsulate EtNBS within PLGA nanoparticles to reduce the dark toxicity associated with its free deliv-
ery. Although it was assumed that this would reduce the overall efficacy of EtNBS-PDT, we saw no such reduction 
in vitro due to a photodynamic release mechanism that liberates EtNBS from the nanoparticle in a light-dose 
dependent fashion. This retained efficacy, along with the ability to co-encapsulate other therapeutic agents, makes 
PLGA-EtNBS constructs promising agents for future pre-clinical studies.

Results
PLGA-encapsulated EtNBS nanoparticles show reduced dark toxicity compared to free 
EtNBS. The delivery and dark toxicity of EtNBS physically encapsulated in PLGA nanoparticles (PE) were 
first compared to control PLGA nanoparticles alone (PA) and free EtNBS. Characteristics of the nanoparticles 
measured by dynamic light scattering (DLS) can be found in Table 1. The size of PE nanoparticles were found to 
be approximately 170 nm, with zeta potentials ranging from − 34 to − 41 mV, indicating good particle stability 
in solution. OVCAR5 cells were loaded with 0.5 μ M, 1 μ M, 2.5 μ M, 5 μ M and 10 μ M of either free EtNBS or the 
equivalent EtNBS concentration physically encapsulated in PLGA (PE) in suspension for 1.5 h. Collected cell pel-
lets were processed as described in the Methods section to release EtNBS from the delivered PLGA nanoparticles. 
The resulting solutions were measured with a fluorometer to assess the degree of EtNBS cellular uptake (Fig. 1A). 
All readings were normalized to that of cells exposed to free EtNBS at 0.5 μ M. For any given EtNBS dose, no statis-
tically significant difference in uptake was observed between free and physically encapsulated EtNBS. Additional 
uptake experiments were carried out with 45 min and 3 h incubation periods (data not shown). These experiments 
revealed that the uptake profile of PLGA-EtNBS is similar to that of free EtNBS20,21, plateauing between 45 and 

Nanoparticle diameter (nm) Zeta potential (mV)

PLGA nanoparticles alone (PA) 138 − 39.9

Physically encapsulated PLGA-EtNBS nanoparticles (PE) 167 − 33.7

Chemically conjugated PLGA-EtNBS nanoparticles (CC) 212 − 40.8

Table 1.  Sizes and zeta potentials of PLGA nanoparticles.
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90 min. For this reason, 1.5 h of incubation time was used throughout all experiments with EtNBS in monolayer 
OVCAR5 cultures.

Next, to explore the effect of nanoparticle encapsulation on EtNBS dark toxicity, OVCAR5 cells were loaded 
with either PE nanoparticles or free EtNBS at doses from 0.5 μ M to 10 μ M for 1.5 h. Empty PLGA nanoparticle 
controls (PA), otherwise identical to the EtNBS-loaded PLGA nanoparticles (PE), were also loaded into OVCAR5 
cells at volumes equivalent to those of the corresponding PE nanoparticles. Measured via the MTT assay, the PA 
control did not cause any dark toxicity compared to untreated cell controls (Fig. 1B). Free EtNBS began to show 
significant dark toxicity starting at 1 μ M (p <  0.05). By 10 μ M, free EtNBS caused nearly complete toxicity without 
light activation (Fig. 1B). In contrast, the PE nanoparticles demonstrated reduced dark toxicity, with protective 
effects observed even at 10 μ M equivalent doses (Fig. 1B). These results confirm the ability of PLGA nanoparticles 
to deliver EtNBS with reduced dark toxicity, even at doses that would otherwise be completely cytotoxic.

PLGA-encapsulated EtNBS nanoparticles maintain PDT efficacy. While PLGA nanoparticle encap-
sulation was able to reduce the dark toxicity of EtNBS, it was not clear if the EtNBS contained within would still 
be available for PDT. To determine the therapeutic efficacy of the PE nanoparticles, we next evaluated their PDT 
efficacy as compared to free EtNBS. PE and free EtNBS were incubated with cells at doses ranging from 0.5 μ M to 
2.5 μ M and treated with 1 J/cm2, 5 J/cm2, and 10 J/cm2 light doses at 660 nm. As free EtNBS concentrations of 5 μ M  
and 10 μ M caused 70% and 90% dark toxicity, respectively, comparisons between PE and free EtNBS were not 
made at these doses.

PA nanoparticles, administered as vehicle-only controls, showed zero cellular killing effect across all light 
doses and compound concentrations, as expected (Fig. 2A). For the PE nanoparticles, PDT efficacy positively 
correlated with both the light dose and delivered photosensitizer dose (Fig. 2B). The treatment efficacy of the PE 
nanoparticles was found to correspond well to that of free EtNBS at both 500 nM and 1 μ M doses, concentrations 
where EtNBS dark toxicity was minimal or non-existent. Despite the free EtNBS dark toxicity observed at 2.5 μ M  
(Fig. 1B), the cellular viability of PE and free EtNBS (Fig. 2B,C) was still found to be similar, differing only by 
the degree of dark toxicity observed in Fig. 1B. This similarity in PDT efficacy between PE and free EtNBS deliv-
ery demonstrates that even though encapsulation within the PLGA nanoparticle protects cells from the cyto-
toxic effects of high levels of EtNBS, the photosensitizer contained inside retains its therapeutic efficacy. It is 

Figure 1. Comparison of uptake and dark toxicity of free EtNBS and PLGA-EtNBS nanoparticles. 
(A) Cellular uptake of free EtNBS and PLGA-EtNBS at equivalent cellular incubation concentrations. (B) Dark 
toxicity caused by PLGA vehicle controls (PA), free EtNBS, and PLGA-EtNBS nanoparticles (PE) at equivalent 
incubation concentrations/equivalent volumes. Viability was determined via the MTT cell viability assay.
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hypothesized that this occurs through two sequential processes: (1) PLGA nanoparticles are endocytosed within 
cells and (2) upon excitation, EtNBS is released from the nanoparticles intracellularly.

Figure 2. PDT-induced death of OVCAR5 cells in monolayer culture. (A) Viability of cells to PLGA vehicle 
only controls, showing no observed toxicity at any light dose. (B) Viability of cells following PLGA-EtNBS PDT 
across a range of concentrations and light doses. (C) Viability of cells following EtNBS-PDT across a range of 
concentrations and light doses. Viability was determined via the MTT cell viability assay.
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PLGA-encapsulated EtNBS nanoparticles likely undergo endocytosis into lysosomes. PLGA 
nanoparticles have been shown to deliver their cargo via several mechanisms, including “kiss-and-run” and endo-
cytotic mechanisms39. Though there is a possibility that EtNBS is delivered to the cells via a kiss-and-run mecha-
nism, a process through which compounds within PLGA nanoparticles are transferred into endosomes at the cell 
surface, it is unlikely to be the case here, given the similarity between PE and free EtNBS PDT efficacy. To better 
determine which mechanism (endocytosis vs. kiss-and-run) was contributing to EtNBS nanoparticle uptake, a 
chemically conjugated (CC) form of the nanoparticle was designed, where EtNBS was synthesized with an amine 
terminal group that was covalently linked to PLGA. If delivery of PLGA-EtNBS was mediated by a kiss-and-run 
mechanism, we would not expect to see the uptake of the CC nanoparticles.

CC nanoparticles, formed through nanoprecipitation, were co-delivered to cells along with Lysotracker. 
EtNBS fluorescence was found to be co-localized with the Lysotracker signal, demonstrating that CC nanoparti-
cles are endocytosed into cells and localize primarily within lysosomes (Fig. 3). PE nanoparticles, when delivered 
to cells under similar conditions, also demonstrated primarily lysosomal localization. Furthermore, the uptake 
of CC nanoparticles across all administration doses, from 50 nM to 5 μ M, and incubation periods, from 45 min 
to 90 min, was found to be very similar to the uptake of both free EtNBS and PE nanoparticles, with EtNBS fluo-
rescence plateauing between 45 min and 1.5 h (data not shown). As both CC and PE nanoparticles were found to 
have similar sizes and zeta potentials (Table 1), endocytosis is likely a major mechanism of PLGA-EtNBS nano-
particle cellular uptake.

Figure 3. Physically encapsulated (PE) and chemical conjugated (CC) PLGA-EtNBS nanoparticles are 
both endocytosed into lysosomes. (A) Uptake of PE nanoparticles into OVCAR5 cells. EtNBS fluorescence is 
in red, while Lysotracker Green is displayed in green. (B) Uptake of CC nanoparticles, with EtNBS in red and 
Lysotracker in green. Note that in the CC nanoparticle case, the EtNBS signal is solely localized in lysosomes, 
while the PE nanoparticles demonstrate more diffuse EtNBS signal. This is thought to arise from minor leakage 
during the incubation period of EtNBS from the PE nanoparticles into the endoplasmic reticulum. (C,D) Trans-
illumination images of (A,B), respectively.
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PLGA-encapsulated EtNBS nanoparticles release EtNBS by a light-dependent mechanism.  
While imaging the localization of EtNBS nanoparticles in cells, it was observed that instead of photobleaching 
under constant illumination, cells incubated with the PE form photobrighten over time (Fig. 4). Moreover, the 
greater the light irradiance, the more rapidly this photobrightening occurred. Throughout the photobrightening 
process, the localization pattern of EtNBS fluorescence was observed to change from its original punctate appear-
ance to a largely diffuse pattern spanning entire cells (see Supplementary Video S1). This change in localization 
pattern closely matches the spread of free EtNBS observed within cells following irradiation observed previ-
ously29,40,41. EtNBS-PDT has been shown to disrupt lysosomal integrity, causing EtNBS to diffuse throughout the 
cell body. The strong similarity between both free and nanoparticle-delivered EtNBS redistribution during PDT 
suggests that the photosensitizer released from lysosomes in these experiments is no longer nanoparticle-bound.

Such a photochemical mechanism, known as photodynamic release (PDR), has been observed with other 
photoactive compounds42. EtNBS molecules are well known to undergo ground state quenching when placed 

Figure 4. Photobrightening of PLGA-EtNBS nanoparticles over time. Cells were continuously observed 
over 3.5 min on a confocal microscope using 1.4 mW of focused 635 nm excitation raster-scanned across the 
field of view to visualize EtNBS via its 670 nm-centred fluorescence (via a 60X, 1.20NA objective, corresponding 
to a field of view size of 212 ×  212 μ m2, 512 ×  512 pixels, a pixel dwell time of 4 μ s/pixel, and 3x line averaging, 
resulting in an acquisition time of 3.3 seconds per frame). Initially, EtNBS fluorescence is weak and localized 
to lysosomes. As the 635 nm light is continuously scanned, the fluorescence intensity increases and eventually 
plateaus, as shown in the inset depicting the increase in fluorescence intensity across the field of view.
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into close proximity43; this is why PE and CC nanoparticles must first be broken down and dissolved prior to 
spectrophotometric or fluorescence quantification. As a photosensitizer, EtNBS interacts with its environment 
to produce radical species that mediate its cytotoxic potential. The data suggest that this photochemical process 
can create radical species that react with the nanoparticles’ PLGA matrix, generating pores and channels through 
which EtNBS is released. Although EtNBS within particles is in a quenched state, this quenching is not com-
plete43, enabling a fraction of molecules to absorb photons and react.

PLGA-encapsulated EtNBS nanoparticles remain potent under hypoxic conditions. One of the 
attractive prospects for the use of EtNBS in the treatment of cancer is its ability to impart cytotoxicity in severely 
hypoxic environments, leading to the killing of otherwise therapeutically unresponsive cell populations. Prior 
reports of PDR made use of primarily type II photosensitizers that act via the generation of singlet oxygen, which 
makes such particles ineffective at low oxygen partial pressures. As EtNBS can react via both oxygen-dependent 
and oxygen-independent pathways, it was important to determine if PE nanoparticles were still effective under 
hypoxic conditions. The effects of PDT under hypoxic conditions are shown in Fig. 5. For the PA control and PE 
nanoparticle treatment groups, cells experience no significant difference in dark toxicity between normoxic and 
hypoxic conditions (Fig. 5A). Interestingly, free EtNBS still was found to cause dark toxicity in a dose-dependent 
manner, but was found to be less toxic in hypoxic environments than in normoxic conditions, likely a result of 
reduced reactive oxygen species generation. At a concentration of 5 μ M and under hypoxic conditions, free EtNBS 
was observed to cause significantly less dark toxicity than under normoxic environments at the same concentra-
tion (p <  0.05) (Fig. 5A).

Figure 5. PDT of EtNBS and PLGA-EtNBS nanoparticles at equivalent loading concentrations under 
hypoxic conditions. (A) Viability of cells following incubation of each agent under hypoxia without the 
application of light. (B) Viability of cells under hypoxia following PDT at 0.5 μ M and 5 μ M equivalent EtNBS 
doses at different light doses. Note that PLGA-EtNBS nanoparticles have similar efficacy to free EtNBS even 
under hypoxic conditions. Viability was determined via the MTT cell viability assay.
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To assess the PDT efficacy of PE nanoparticles under severe hypoxia, OVCAR5 cells were pre-treated for 6 h 
in the hypoxia chamber. As expected, cells in the PA control group were not found to experience any cytotoxicity 
(Fig. 5B). Importantly, both PE and free EtNBS showed similar levels of cytotoxicity under hypoxia, demon-
strating that the PE nanoparticles were capable of releasing their EtNBS cargo even under hypoxic conditions 
(Fig. 5B). Collectively, the results shown in Fig. 5 demonstrate that under hypoxia, the PLGA-EtNBS nanopar-
ticles mitigated EtNBS dark toxicity while still maintaining PDT efficacy similar to that of EtNBS. Additionally, 
the effectiveness of the PLGA-EtNBS nanoparticle was unchanged under hypoxic conditions. The effective killing 
of cells in hypoxic environments indicates that photodynamic release of EtNBS can still be triggered by a Type I 
mechanism in low oxygen conditions.

PLGA-encapsulated EtNBS nanoparticles demonstrate uptake throughout three-dimensional 
tumour culture models. In order for PE nanoparticles to be effective within hypoxic cellular microenvi-
ronments, the particles themselves must also be capable of diffusing into these deep acidic tumour regions. While 
EtNBS was found to readily diffuse along pH gradients into hypoxic tumour environments, it was not known if 
PE nanoparticles would have the same ability. Three-dimensional OVCAR5 tumour nodules, grown for a period 
of 10 days, are known to contain both hypoxic and acidic cores28,29. 3D cultures were incubated with PE nanopar-
ticles for 4.5 h, and then visualized using confocal microscopy. As can be seen in Fig. 6, EtNBS fluorescence can be 
observed in cells throughout the spheroid within punctate, perinuclear lysosomes. When continually illuminated 
with raster-scanned 635 nm laser light, EtNBS within 3D spheroid cells was observed to photobrighten, indicating 
the release of EtNBS from the nanoparticles (see Supplementary Video S2). Furthermore, similar to that observed 
in monolayer cultures, EtNBS photobrightening is accompanied by localization changes from punctate particles 
to a more cytoplasmic distribution. These results demonstrate that PLGA-EtNBS nanoparticles are able to diffuse 
throughout 3D spheroids, as free EtNBS does.

Discussion
PLGA nanoparticle encapsulation of EtNBS is a successful strategy for overcoming dark toxicity, a critical issue 
currently limiting EtNBS and similar cationic photosensitizers. Moreover, this encapsulation approach did not 
result in a loss of function or efficacy, with nanoparticles retaining the same cellular delivery and photodynamic 
therapy efficiency via a light-mediated release mechanism. The significant reduction in dark toxicity is an impor-
tant step in advancing EtNBS and its family of compounds29 towards pre-clinical and clinical application.

A particularly exciting finding was that PLGA-encapsulated EtNBS nanoparticles are potent in both nor-
moxia and hypoxia. Many chemotherapeutics, including taxanes, anthracyclines, and platinum compounds, as 
well as ionizing radiation, experience reduced cytotoxic potential under low oxygenation, making hypoxia a 
significant challenge in modern cancer treatment. EtNBS, in contrast, has been found to have an appreciable 
advantage in this regard, as it has been recognized to retain tumour-killing effects even under severely hypoxic 
conditions29,44,45. As hypoxic tumour regions are thought to promote more aggressive phenotypes and perhaps 
harbour tumour initiating cells, EtNBS PDT represents a potential route to reducing local tumour recurrence and 

Figure 6. Uptake of PLGA-EtNBS nanoparticles into ovarian cancer in vitro spheroids (OVCAR5). 
PLGA-EtNBS nanoparticles are distributed throughout all cells within in vitro tumour spheroids, indicating 
that the nanoparticles diffuse and are transported through multiple cell layers. The dimmer appearance of 
EtNBS fluorescence in the centre of the spheroid relative to the periphery is not reflective of the actual cellular 
uptake and is the result of light scattering within the solid cellular mass. The distribution of PLGA-EtNBS 
under confocal microscopy matches that observed under identical conditions for free EtNBS, where the 
photosensitizer was found to be taken up throughout the spheroid.
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metastasis. Since PLGA nanoparticle encapsulation of EtNBS reduced dark toxicity, PLGA nanoparticle formula-
tions may present a safer administration approach for the treatment of hypoxic tumour regions. It is worth noting 
that the strong fluorescence of EtNBS may even be leveraged in such applications in vivo to permit facile tracking 
of EtNBS distribution and lysosomal disruption throughout tumours.

A logical extension of this photosensitizer-PLGA encapsulation approach is the co-encapsulation of other 
photosensitizers or therapeutics to treat cells within normally unresponsive tumour microenvironments. While 
photodynamic release has been demonstrated with Type II, oxygen-consuming photosensitizers, such formu-
lations would likely not be effective within hypoxic compartments. The efficacy of PLGA-EtNBS nanoparticles 
could pave the way for the encapsulation and release of drugs such as mitochondria-targeting or caspase-mediated 
cell death signalling pathway molecules, which have been shown to act synergistically with photosensitizers in 
previous PDT studies46,47. Extended PDR applications include the activation of multiple cargo complexes within 
the nanoparticle by different wavelengths of light at separate points in time for custom, highly-specific treatment 
plans for personalized medicine applications.

Also exciting is the highly extensible nature of PLGA nanoparticles; with further modifications to either their 
surface or cargo, these PLGA-EtNBS nanoparticles could target individual tumours or cell types within tumours 
via specific antibodies or aptamers. This is of particular interest in OvCa, where intraperitoneal PDT has been 
associated with bowel toxicity in animal studies. Targeting these nanoparticle platforms to specific cancer cell 
types and their associated stroma could significantly decrease collateral toxicity and may improve treatment 
outcomes48.

Methods
Monolayer cell culture. The OVCAR5 human ovarian cancer cell line (Fox Chase Cancer Institute) was 
used throughout all experiments. OVCAR5 cells were maintained in a complete RPMI 1640-glutamine con-
taining medium supplemented with 10% heat inactivated foetal bovine serum (FBS, Gibco, Invitrogen) and 1% 
antibiotics (penicillin-streptomycin 5000 IU/mL, CellGrow, MediaTech). Cells were passaged regularly every 
2–3 days with 0.05% trypsin (CellGrow, MediaTech). Trypsin was added to the cell cultures following a 20 min 
incubation period with calcium- and magnesium-free Dulbecco’s phosphate-buffered saline (DPBS, CellGrow, 
MediaTech).

Three-dimensional cell culture. Three-dimensional spheroid cultures created from OVCAR5 cells were 
prepared following previously published protocols in 35 mm glass-bottom plates (P35G-0-14, MatTek)29.

Synthesis of EtNBS and EtNBS-NH2. EtNBS and the amine-terminated 2-amino-N-(9-(diethylami-
no)-5H-benzo[a]phenothiazin-5-ylidene)ethanaminium chloride (EtNBS-NH2) were synthesized following pre-
viously described procedures49. Prior studies have found the amine-terminated EtNBS derivative to have identical 
photochemical properties to the parent molecule29.

Preparation of PLGA-encapsulated EtNBS nanoparticles (PE). To form PLGA nanoparticles that 
physically encapsulate EtNBS, PLGA (25 mg, MW 7,000–17,000, Sigma-Aldrich), N,N-dimethylformamide 
(DMF, 1 mL, Acros Organics) and EtNBS (1 mg) in methanol (250 μ L, Acros Organics) were mixed in a round 
bottom flask with a stir bar. The solution was rigorously mixed until homogeneous. This EtNBS solution was 
then added drop-wise into a stirred solution of bovine serum albumin (BSA, 100 mg, Sigma-Aldrich) in water 
(10 mL) to create the PLGA nanoparticles by nanoprecipitation50. The resulting solution was then immediately 
sonicated for 1 min. DMF and methanol were removed from the solution by rotary evaporation. The nanoparticle 
solution was centrifuged at 4,000 rpm for 15 min at 25 °C on a Sorvall RT 6000 to pellet and remove any large 
PLGA aggregates. The resulting supernatant was then processed through three rounds of serial centrifugation. At 
each round, the supernatant was transferred to Beckman Coulter Optiseal ultracentrifuge tubes and centrifuged 
at 12,000 rpm for 10 min at 25 °C on Beckman Coulter Optimal L-90 K ultracentrifuge. The pellet was retained 
upon each round of centrifugation, re-dissolved in water (1 mL), and stored at 4 °C. To form unloaded PLGA 
nanoparticles, the same procedure was followed with the EtNBS solution replaced with an equivalent volume of 
methanol. Nanoparticle size and zeta potential were measured via dynamic light scattering (Nano ZS, Malvern).

Initially, it was found that residual free EtNBS existed in solution immediately following nanoprecipitation, 
even after multiple rounds of washing on standard cell culture centrifuges. To remove this excess free EtNBS, 
ultracentrifugation was tested until the optimal g value to reversibly pellet the nanoparticles was determined. 
Dynamic light scattering was used to confirm nanoparticle size after each ultracentrifugation step. Ultimately, 
this resulted in a protocol that allows for the isolation of nanoparticles of consistent size across synthetic batches 
without the presence of free EtNBS.

Preparation of chemically-conjugated PLGA-EtNBS nanoparticles (CC). N-hydroxysuccinimide- 
terminated PLGA (PLGA-NHS) was synthesized from the same PLGA stock as above following a previously 
published protocol44. To conjugate EtNBS-NH2 to PLGA-NHS, PLGA-NHS (43.5 mg), EtNBS-NH2 (3.25 mg) and 
N,N-diisopropylethylamine (18 mg) were added to DMF (3 mL) in a flask with a stir bar and stirred for 2 h. The 
resulting solution was dried by rotary evaporation. The dry crude product EtNBS-NH-PLGA was washed with 
water (3 ×  1 mL) until the extracts were no longer blue. To make the chemically-conjugated EtNBS-NH-PLGA 
nanoparticles, 8 mg of EtNBS-NH-PLGA was added to 417 μ L of DMF. This mixture was then added dropwise 
into a stirring solution of BSA (3.3 mL, 10 mg/ml in H2O) and then sonicated for 1 min before removing DMF by 
rotary evaporation. The nanoparticle solution was centrifuged at 4,000 rpm for 15 min at 25 °C on a Sorvall RT 
6000. The resulting supernatant was centrifuged under these conditions three times. Ultimately, the supernatant was 
transferred to Beckman Coulter Optiseal ultracentrifuge tubes and centrifuged at 12,000 rpm for 10 min at 25 °C on 
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a Beckman Coulter Optimal L-90K ultracentrifuge. The pellet was retained, dissolved in water (1 mL) and stored at 
4 °C. Nanoparticle size and zeta potential were measured via dynamic light scattering (Nano ZS, Malvern).

Nanoparticle loading. Once loaded into nanoparticles, the proximity between individual EtNBS mole-
cules is such that the molecules quench each other, likely though a ground state quenching mechanism43. This 
prevents straightforward determination of loaded EtNBS levels and requires the nanoparticles to be broken up 
in order to extract EtNBS for quantification. EtNBS loading within PLGA nanoparticles was measured by adding 
10 μ L of nanoparticle solution into a solution of 490 μ L dichloromethane (DCM) and 500 μ L acidified methanol 
followed by immediate homogenization with a probe sonicator until a clear, homogenous solution was obtained. 
The EtNBS concentration was then determined by diluting the obtained solution in acidified methanol and using 
a fluorometer (Eclipse, Cary) set for excitation at 630 nm and emission at 650–750 nm, with the total intensity 
measured by calculating the area-under-the-curve (AUC) of the emission band. Using known concentration 
standards, this AUC value was converted into EtNBS concentration.

Cellular EtNBS uptake and extraction. EtNBS and structurally similar compounds have been previously 
reported to bind to plastic surfaces40. To prevent any loss of compound, cellular uptake of EtNBS was carried 
out in suspension throughout the experiments. Briefly, OVCAR5 cells were trypsinized and 1,000,000 cells were 
pelleted at 1,000 rpm for 5 min. The resulting cell pellet was reconstituted in 1 mL complete RPMI 1640 medium 
with either EtNBS or EtNBS-encapsulated PLGA nanoparticles with final concentrations of 0.5 μ M, 1 μ M,  
2.5 μ M, 5 μ M, and 10 μ M. Cell-compound suspensions were incubated at 37 °C with 5% CO2 and controlled 
humidity for 1.5 h. Suspensions were vortexed every 10 min to avoid EtNBS binding to the plastic tube walls. 
Following incubation, cells were centrifuged at 1,000 rpm for 5 min, cell pellets were washed twice with DPBS 
without Ca2+/Mg2+, and pellets were subsequently collected for cellular EtNBS uptake extraction. EtNBS was 
extracted by adding 500 μ L of acidified methanol and 500 μ L of DCM to the collected pellets, followed by homog-
enization with a probe sonicator. Cellular EtNBS intensity was integrated as described above using a fluorometer 
and determining the AUC. Experiments were conducted in triplicate.

MTT monolayer cellular viability. OVCAR5 cellular response to therapy was measured using the MTT 
colorimetric assay following a published protocol29. The MTT assay is a standard assay performed in the evalua-
tion of PDT in cell culture. It should be noted that the MTT assay reports viability via mitochondrial oxidoreduc-
tase enzyme activity, where tetrazole is reduced into insoluble purple formazan in living cells. Compromised and 
non-viable cells lose mitochondrial activity, which can be detected via the MTT assay. When carefully tested and 
standardized across cell lines and experimental replicates, the MTT assay is a reliable method for reporting viable 
cell counts that correlates well with clonogenic assays51.

Dark toxicity measurement. OVCAR5 cells were plated in 24 well dishes at a density of 50,000 cells per 
well with complete RPM 1640 medium. 24 h later, the cells were incubated for 1.5 h at 37 °C, 5% CO2, with con-
centrations of 0.5 μ M, 1 μ M, 2.5 μ M, 5 μ M, and 10 μ M of either EtNBS alone or the equivalent concentration of 
EtNBS in PLGA-EtNBS nanoparticles. Next, the solutions in each well were replaced with fresh complete RPMI 
1640 medium for an additional 24 h incubation in the dark. At the end of the incubation period, cell viability was 
measured by the MTT assay. Experiments were conducted in triplicate.

Monolayer PDT efficacy. OVCAR5 cells were seeded in 24-well plates at 50,000 cells per well 24 h prior to 
the experiment. Cells were loaded with either EtNBS or EtNBS-encapsulated PLGA nanoparticles with EtNBS 
concentrations ranging from 0.5 μ M to 10 μ M and incubated for 1.5 h at 37 °C with 5% CO2 under controlled 
humidity. Prior to light exposure, each well was replaced with fresh complete medium. A fluence of 100 mW/cm2 
from a 660 nm diode was used to irradiate cells throughout PDT experiments (M660L2, ThorLabs) for 10, 50, or 
100 seconds to obtain 1 J/cm2, 5 J/cm2, or 10 J/cm2 light doses, respectively. The 24-well plate was incubated for an 
additional 24 h at 37 °C prior to the evaluation of cell response by the MTT-mediated cell viability assay.

Establishing and monitoring hypoxic conditions. An oxygen partial pressure of less than 10 mmHg 
pO2 was considered to be a hypoxic condition52. To achieve this level of oxygenation, a gas-tight hypoxia chamber 
(Stem Cell Technologies) was used to maintain a partial pressure of ≤ 3 mmHg pO2 in the extracellular environ-
ment throughout the experiment. The oxygen partial pressure was continuously monitored by an oxygen sensor 
probe (UniSense, OxyMeter) placed within the chamber. 24 h after plating, dishes were placed inside the cham-
ber and purged with 5% CO2 balance nitrogen gas for 10 min until the pO2 within the chamber reached a stable 
partial pressure of ≤ 3 mmHg. Next, the hypoxic chamber was sealed and placed into a 37 °C incubator for 6 h, 
and subsequently re-purged for 10 min with 5% CO2 balance nitrogen every hour until the final time point. The 
oxygen levels within the chamber were carefully monitored throughout this incubation period to ensure that the 
oxygen partial pressure within the chamber was maintained at ≤ 3 mmHg pO2. For experiments under hypoxic 
conditions, cells were first placed under hypoxia for 6 h, at which point the cells were loaded with either EtNBS 
or EtNBS-encapsulated PLGA nanoparticles with varied concentrations in complete RPMI 1640 medium bub-
bled by 5% CO2 balance nitrogen. After loading cells with the compounds, the cell plate was placed back into the 
hypoxic chamber and purged again to a pO2 partial pressure ≤ 3 mmHg. Cells were then incubated with either 
EtNBS or PLGA-EtNBS nanoparticles under hypoxic conditions inside the hypoxic chamber for 1.5 h. For the 
hypoxic dark toxicity study, following EtNBS/PLGA-EtNBS incubation, the cell medium was replaced with 
fresh medium and cells were incubated at 37 °C with 5% CO2 and controlled humidity for an additional 24 h. 
For the hypoxic PDT experiment, cells were first incubated for 1.5 h under hypoxic conditions with either 
EtNBS or PLGA-EtNBS. Next, the cell medium was replaced with fresh 5% CO2 balance nitrogen-purged 
complete medium prior to subsequent purging within the chamber with 5% CO2 balance nitrogen. Finally, 
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while still in a hypoxia chamber, the cells were irradiated under 5% CO2 balance nitrogen gas atmosphere with 
light doses of 1 J/cm2, 5 J/cm2, or 10 J/cm2, as described above.

Cellular localization. To observe cellular localization of the nanoparticles, OVCAR5 cells were trypsinized 
and plated in 35 mm dishes at 200,000 cells per dish 24 h prior to loading with nanoparticles. Cells were incubated 
with nanoparticles for 1.5 h, after which the cell medium was replaced with fresh complete medium. Lysotracker 
green dye was used to confirm lysosomal nanoparticle localization within the cell. For Lysotracker green labelling, 
OVCAR5 cells were loaded with 500 nM Lysotracker green DND-26 (excitation/emission maxima ~504/511 nm, 
Molecular Probes) for 1 h, and then replaced with complete fresh medium before imaging with confocal micros-
copy (Olympus FV1000).

Spheroid incubation. OVCAR5 spheroids were grown for 10 days. At this time, they were then incubated 
with 500 nM EtNBS/PLGA-EtNBS in complete medium for 4.5 h. The cell medium was then replaced with fresh 
complete medium and the spheroids imaged on a confocal microscope.

Confocal microscopy. All imaging experiments were carried out on an Olympus FV1000 confocal flu-
orescence microscope. Cellular images were acquired using either an Olympus UPlanSApo 20 ×  0.75NA or 
an Olympus UPlanSApo 60 ×  1.2NA objective. Spheroid images were acquired using an Olympus LUMPFl 
40 ×  0.8NA objective. EtNBS was excited using 635 nm light, with its emission collected between 650 and 750 nm. 
For long-term time-lapse experiments, samples were imaged on a heated incubator stage (Tokai-Hit) with 5% 
CO2, balance air gas.

Statistical analysis. The JMP 9 software package (SAS) was used to perform statistical analysis. The 
Student’s t-test was used to analyse statistical significance. p <  0.05 was considered statistically significant.
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