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Abstract: Bacterial phage-like particles (gene transfer agents—GTAs) are widely employed as a
crucial genetic vector in horizontal gene transfer. GTA-mediated gene transfer is induced in response
to various stresses; however, regulatory mechanisms are poorly understood. We found that the
persulfide-responsive transcription factor SqrR may repress the expression of several GTA-related
genes in the photosynthetic bacterium Rhodobacter capsulatus. Here, we show that the sqrR deletion
mutant (∆sqrR) produces higher amounts of intra- and extracellular GTA and gene transfer activity
than the wild type (WT). The transcript levels of GTA-related genes are also increased in ∆sqrR.
In spite of the presumption that GTA-related genes are regulated in response to sulfide by SqrR,
treatment with sulfide did not alter the transcript levels of these genes in the WT strain. Surprisingly,
hydrogen peroxide increased the transcript levels of GTA-related genes in the WT, and this alteration
was abolished in the ∆sqrR strain. Moreover, the absence of SqrR changed the intracellular cyclic
dimeric GMP (c-di-GMP) levels, and the amount of c-di-GMP was correlated with GTA activity and
biofilm formation. These results suggest that SqrR is related to the repression of GTA production and
the activation of biofilm formation via control of the intracellular c-di-GMP levels.

Keywords: transcriptional regulation; gene transfer; persulfide; redox signaling; cyclic GMP

1. Introduction

Bacteria do not perform sexual reproduction but are capable of acquiring exogenous
DNA by horizontal gene transfer (HGT), which is important for genetic diversity and
evolution [1]. Although HGT is classically mediated by transformation, conjugation and
transduction, small bacteriophage-like particles called gene transfer agents (GTAs), which
package random segments of cellular DNA, also mediate HGT [2,3]. GTA was originally
discovered as a novel genetic vector in the alphaproteobacterium R. capsulatus [4], and
subsequently in other diverse bacteria [5]. In particular, homologous GTAs are conserved
in a number of families in the alphaproteobacterial order Rhodobacterales, which occupy
over 25% the total prokaryotic community in some marine environments [6–8]. Moreover,
gene transfer rates of antibiotic resistance markers via putative GTAs were, remarkably,
one-million-fold higher than previous estimates of transformation and transduction rates
in natural environments [9]. Therefore, it appears that GTAs are widely employed as an
important genetic vector in bacterial HGT.

The GTAs of R. capsulatus (RcGTA) have been investigated in detail. It has been
reported that gene transfer by RcGTA is induced at the stationary phase and by carbon
starvation [10,11]. In these regulations, the GtaI-GtaR quorum-sensing system [12,13]
and the CckA-ChpT-CtrA phosphorelay [14,15] are centrally important. Moreover, the
transcription factor GafA functions as a direct activator of the RcGTA structural gene
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cluster [16]. Quorum-sensing is a well-known cell-to-cell communication system in bacteria.
Bacteria produce and release autoinducers such as acyl-homoserine lactones (AHL) during
growth, sense the outside concentration of autoinducers to recognize high concentrations
of related species, and consequently modulate the expression of certain genes [17]. R.
capsulatus possesses an AHL synthase (GtaI), and its regulator (GtaR) indirectly regulates
RcGTA production in response to AHL [13]. This regulation mechanism is thought to be
involved in RcGTA production associated with the growth phase. The CckA-ChpT-CtrA
phosphorelay is one widely studied phosphorelay that controls the cell cycle in many
alphaproteobacteria. CtrA functions as a response regulator whose activity is controlled
through the histidine kinase CckA [18] and the histidine phosphotransferase ChpT [19].
This phosphorelay system also regulates RcGTA production, switching from the production
phase to the release phase dependent on the phosphorylation state of CtrA [14,15]. The PAS
domain protein DivL promotes the phosphorylation of CtrA via the enhancement of CckA
kinase activity, and thereby RcGTA production is controlled [20]. The RNA polymerase
omega subunit is required for the RelA/SpoT-related stringent response induction of
RcGTA production under carbon starvation, although its association with the CtrA pathway
is unclear [11]. Another aspect of the CtrA regulation of RcGTA production is manifested
by c-di-GMP, via the possible modulation of c-di-GMP metabolic enzymes [21]. Thus, the
outline of a complex regulatory network has been revealed; however, the details of each
regulatory pathway and their possible connections are unclear.

Recently, it was reported that persulfides, which are oxidized sulfur species generated
from sulfide, are signaling molecules and modulate various physiological functions in
both prokaryotes and eukaryotes [22–27]. Since hydrogen sulfide was abundant over
oxygen in the prebiotic Earth period, and for much of the Archean Eon, it is considered that
sulfide and persulfide contributed significantly to evolution in terms of energy metabolism
and signal transduction [28]. We have identified the persulfide-responsive transcription
factor SqrR as a regulator of sulfide-dependent photosynthesis in R. capsulatus [22]. SqrR
binds to the promoter regions of target genes to repress their expression in the absence of
persulfide. In the presence of persulfide, SqrR forms an intramolecular tetrasulfide crosslink
between two cysteine residues and loses the ability to bind DNA, which results in the
de-repression of target genes [22]. SqrR is the master regulator of the persulfide response:
RNA-seq analysis has shown that contributions of SqrR regulate 45% of sulfide-responsive
genes [22]. Interestingly, RNA-seq data have indicated that several RcGTA-related genes,
such as the RcGTA capsid protein gene (rcc01687), chpT (rcc03000) and divL (rcc00042),
were up-regulated between three and nine-fold in an sqrR deletion mutant (∆sqrR) [22]
(Table 1). Based on this observation, it appears that SqrR could contribute to the regulation
of RcGTA production. Here, we provide evidence that SqrR regulates RcGTA production
via H2O2 signaling. Because SqrR controls intracellular c-di-GMP levels, we suggest that
SqrR modulates both RcGTA production and biofilm formation.

Table 1. Transcript levels of GTA-related genes affected by the loss of SqrR.

Gene Annotation Transcript Fold
Change in ∆sqrR p-Value

rcc00042 divL 9.276648 4.94 × 10−64

rcc01687 capsid 3.318318 2.28 × 10−7

rcc03000 chpT 2.984249 2.6 × 10−8

rcc00645 c-di-GMP metabolic enzyme 118.6299 3.7 × 10−167

rcc02857 c-di-GMP metabolic enzyme 0.497602 0.002762

2. Materials and Methods
2.1. Bacterial Strains, Media, and Growth Conditions

R. capsulatus strains B10 [29], DE442 [30] and mutants were grown under aerobic–dark
(aerobically) or anaerobic–light (photosynthetically) conditions at 30 ◦C in PYS or YPS, a rich
medium, or RCV, a minimum medium [29,31,32]. For photosynthetic growth, a light-emitting
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diode (λmax = 850 nm) (CCS) was provided. To establish anaerobic conditions, cultures in
screw-capped test tubes were almost completely filled with the medium. Gentamycin and
rifampicin were used at a concentration of 1.5 µg/mL and 75 µg/mL, respectively.

Escherichia coli strains were grown on Luria Bertani (LB) medium at 37 ◦C. Ampicillin
and gentamycin were used at a concentration of 100 µg/mL and 10 µg/mL, respectively.

2.2. Cloning and Mutagenesis

sqrR disruption in R. capsulatus DE442 was performed using the plasmid pZJD29a::∆sqrR,
as previously described [22]. For the disruption of the oxyR gene, two ~500 bp DNA
fragments consisting of the N-terminal and C-terminal regions of oxyR were amplified by
polymerase chain reaction (PCR) with KOD one polymerase (TOYOBO). Two sets of primer
pairs were used for the amplification; one was a forward primer, oxyR F1, and a reverse
primer, oxyR R1, and the other was a forward primer, oxyR F2, and a reverse primer, oxyR
R2 (Table 2). These two fragments were cloned into the BamHI-cut pZJD29a [33] by an
In-Fusion HD Cloning kit (Clontech, Mountain View, CA, USA). The obtained plasmids
were introduced into R. capsulatus strains by conjugation with the E. coli strain S17-1/λpir,
and the subsequent homologous recombination events were induced as described [33]. The
isolated mutants were analyzed by DNA sequencing to confirm a deletion.

Table 2. The list of primers used in this study.

Name Sequence 5′–3′ Purpose

oxyR F1 CGACTCTAGAGGATCATTGCCGTATTTCTTCTTGATCGGC

Cloning for gene disruptionoxyR R1 CGAGAGGTTTATCATAATGAAAAACTATCGCAGGC
oxyR F2 ATGATAAACCTCTCGGCGCGGGAGGCGTGAGGTCGGCGGGTTCGG
oxyR R2 CGGTACCCGGGGATCGCGCATCCGCTGGCGCCCGAGACGC

divL-F CGGTACCCGGGGATCAGAATGCGCCGGTGCCGCGGCGCTC

Cloning for DNA probes of the gel shift assay

divL-R CGACTCTAGAGGATCGACTGCAGCCCTCTCGCCTGTCCCG
cckA-F CGGTACCCGGGGATCCGCCGCAGCTATTCCCCGCGCGACG
cckA-R CGACTCTAGAGGATCGGGCTGATCGGGATGTACCACTGGC
chpT-F CGGTACCCGGGGATCAAGCTGCACCCGTCGCCCGTCGATC
chpT-R CGACTCTAGAGGATCGGGTCATGGTGGATCTCCCTTTCGG
gafA-F CGGTACCCGGGGATCGTAATCGCGCTGCCCGAAGCGTGCG
gafA-R CGACTCTAGAGGATCCTCCGGTCTCCCATCGACAGGCTGG
capsid-F CGGTACCCGGGGATCACCGGCGGGCATGCTTTTGCCGAGA
capsid-R CGACTCTAGAGGATCGTCTTGCGTGACCCGCCTCTCATGC
ctrA-F CGGTACCCGGGGATCGCCGCCGAAAGAAACGCGTCGTTGG
ctrA-R CGACTCTAGAGGATCCCTGGGTTCTCCGCATTAATCCCTC
02857-F CGGTACCCGGGGATCTGGTGCCCCAGCCTAACCGCGGGAT
02857-R CGACTCTAGAGGATCCGGGAACGGACCCCTTCGAGTGGAT
02630-F CGGTACCCGGGGATCGTGCCCGGACCGGAGGCGGTTTTCC
02630-R CGACTCTAGAGGATCGGACCCTCCTCGCGCGGACCATAGC
00620-F CGGTACCCGGGGATCCTTGTCGGGGGGGATGACGCCGCTG

uvrD qF CAGAAGGAACACACGGTCAA

For qRT-PCR

uvrD qR AAAGTGTCAGGCGGAATCTC
divL qF CCGACGCTTTATGCCTTTCT
divL qR CCTGTTCCAGTTCCGTCATCT
cckA qF GCGCATGATTTCAACAACTT
cckA qR TTCTGGCTGATCTGGTCAAG
chpT qF ACGGGGTGGAGTTGCTGAA
chpT qR AAAGGCGATGCGGAAGAA
ctrA qF TTTGGCGCCGATGATTAC
ctrA qR GGATGATCGACTGCGAATG
gafA qF GCTGAACGGCTGGATCTT

gafA qR TTCCAACAGCCGCTTCAA
capsid qF CGGTTGCCGAGGTGAAA
capsid qR CACACGCTCTTCCTGTTGTTG
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2.3. GTA Transduction Assay

GTA transduction assays were performed referring to previous study [34]. The rifampin-
resistant donor strain was grown photosynthetically to the log phase (WT: OD660 = 1.2, DEsqrR:
OD660 = 1.1) or stationary phase (WT: OD660 = 1.7, DEsqrR: OD660 = 1.4) in YPSm medium.
Then, 1.5 mL culture normalized at OD660 = 1.0 with 20 mM Tris-HCl (pH 8.0) was cen-
trifuged, and supernatant was filtered using a 0.45 µm membrane filter. Next, 100 µL of the
obtained sample was mixed with 500 µL of rifampin-sensitive B10 recipient cells grown
photosynthetically to mid log phase (OD660 = 0.5). The harvested cells were re-suspended
with G buffer (10 mM Tris-HCl (pH 8.0), 1 mM MgCl2, 1 mM CaCl2, 1 mM NaCl, 250 µg/mL
BSA). The mixture was incubated under aerobic shaking conditions at 30 ◦C for 1.5 h to
undergo gene transfer to the recipient cells. The harvested cells were re-suspended with
RCV medium and plated on rifampin-containing plates. The number of rifampin-resistant
colony-forming units was determined.

2.4. Western Blotting of Capsid Protein

R. capsulatus was grown photosynthetically to the log phase or stationary phase in
YPSm medium. Then, 1.5 mL culture normalized at OD660 = 1.0 with 20 mM Tris-HCl
(pH 8.0) was separated by centrifugation, and the supernatant was filtered through a
0.45 µm pore-size membrane filter. Cell pellets were re-suspended in 500 µL of 20 mM Tris-
HCl (pH 8.0) and disrupted by sonication. Proteins were then separated by 15% SDS-PAGE
gels. After electrophoresis, proteins were blotted onto PVDF membrane and probed with
commercially available RcGTA major capsid antiserum (AS08 365; Agrisera AB) according
to the product’s instructions. The secondary antibody was visualized by Clarity Western
ECL substrate (Bio-Rad, Hercules, CA, USA).

2.5. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)

R. capsulatus was grown photosynthetically to the log phase or stationary phase in
YPSm medium. For sulfide or H2O2 treatment, a final 0.2 mM of Na2S or 1 mM H2O2
was added at the mid-log phase (OD660 = 0.7), and cells were further grown for 30 min.
Then, 0.5 mL of cells were harvested, and the total RNA of each sample was extracted
using NucleoSpin RNA (TaKaRa). The quality of the purified RNA was checked to confirm
a typical OD260 to OD280 ratio of approximately 2.0. RNA samples were reverse tran-
scribed using a PrimeScript RT Reagent kit (TaKaRa, Shiga, Japan). qRT-PCR reactions and
detection were performed using the THUNDERBIRD Next SYBR qPCR Mix (TOYOBO,
Osaka, Japan) and the CFX Connec Real-Time System (Bio-Rad). As an internal control, the
house-keeping gene uvrD that encodes DNA helicase [16] was used with the gene-specific
primers (Table 2).

2.6. Overexpression and Purification of SqrR

Recombinant SqrR was overexpressed in the E. coli strain BL21 (DE3) overexpression
system utilizing pSUMO::SqrR plasmid, and was purified as previously described in [22].

2.7. Gel Mobility Shift Analysis

An FITC-labeled 200–300 bp DNA probe containing each promoter region was pre-
pared by PCR amplification with the primer sets (Table 2). The amplified fragment was
cloned into a pUC19-linearized vector (TaKaRa) using the In-Fusion HD Cloning kit (Clon-
tech). The inserted DNA was amplified by PCR with a FITC-labeled primer, as described
previously [35]. The amplified DNA was purified and utilized as a probe for the assays.

The gel shift assay was performed as described in [22]. The binding reaction buffer
(25 mM Tris-HCl (pH 8.0), 100 mM NaCl, 2 mM MgCl2, 6% glycerol, 0.5 mM DTT and
50 µg/mL heparin) was utilized for the reaction with the DNA probes and proteins. For
the electrophoresis, 7% polyacrylamide gel was used in a buffer composed of 25 mM Tris-
HCl (pH 8.0), 1 mM ethylenediaminetetraacetic acid (EDTA) and 144 mM glycine. After
electrophoresis, the gel was analyzed using the Lumino Graph I (ATTO, Tokyo, Japan).



Microorganisms 2022, 10, 908 5 of 13

2.8. Quantification of c-di-GMP

R. capsulatus was grown photosynthetically to the log phase or stationary phase in
YPSm medium. Cells from 1 mL culture were disrupted by sonication with 20 mM Tris-HCl
(pH 8.0). After centrifugation, the supernatant was utilized for detecting c-di-GMP using
the Cyclic di-GMP ELISA Kit (Cayman). The obtained values were normalized by the
protein concentration of the supernatant.

2.9. Quantification of Biofilm Formation

The amount of biofilm formation was quantified based on crystal violet staining by
the Biofilm Formation Assay Kit (DOJINDO, Kumamoto, Japan), according to the product’s
instructions. In short, R. capsulatus was grown photosynthetically to the stationary phase
and dispensed onto a 96-well plate. The plate was covered by a 96-well peg lid containing
protrusions that were immersed into the culture of the wells. Biofilm formed around this
protrusion during overnight cultivation at 30 ◦C. The 96-well peg lid was washed with
20 mM Tris-HCl (pH 8.0) and the formed biofilm was stained by crystal violet solution.
This staining was eluted by 100% ethanol after being washing twice with 20 mM Tris-HCl
(pH 8.0). The absorbance at 600 nm of eluate was measured using the GloMax Multi
Detection system (Promega, Madison, WI, USA). The obtained values were normalized by
the OD660 of the culture.

3. Results
3.1. SqrR Contributes to GTA Production and Release

Because only ~3% of the cells in a population are responsible for the release of RcGTA
in the WT R. capsulatus strain SB1003 [36,37], we constructed the ∆sqrR mutant using the
R. capsulatus RcGTA overproducer strain DE442 as a background to verify whether SqrR
contributes to RcGTA production and release. The DE442 strain had a mutation in the
rcc00280 gene that increased the amount of RcGTA production [37], but was WT in terms
of the sqrR gene. The growth rates of the parental wild-type strain (WT) and ∆sqrR were
similar, although ∆sqrR showed a slightly longer log growth phase (Figure 1A). Both strains
were cultivated using the YPSm-rich medium, and gene transduction was analyzed at the
log and stationary phases to explore whether the deletion of sqrR affected the functional
activity of RcGTA. In the WT strain, there was a low frequency of gene transduction in
the log phase, with an induction in the stationary phase (Figure 1B). In contrast, the ∆sqrR
mutant showed a significantly greater gene transduction frequency in both the log and
stationary phases than the WT strain. We also measured the amount of RcGTA capsid
protein by Western blotting using an anti-capsid antibody. A greater amount of RcGTA
capsid protein was detected in ∆sqrR compared to the WT strains of both the pellet (cellular)
and supernatant (extracellular) fractions at the stationary phase (Figure 1C). Although it
was difficult to detect a difference at the log phase because of the weakness of the signal,
the gene transduction frequency clearly showed a higher amount of RcGTA released from
the ∆sqrR than the WT strain at the log phase (Figure 1B). These data indicate that SqrR
contributes to RcGTA production and release.

We subsequently analyzed the transcript levels of RcGTA-related genes by real-time
PCR (qRT-PCR). The transcript of the gene encoding the capsid protein was increased by
sqrR deletion in correlation with the intracellular amount of GTA capsid protein at the
log phase (Figure 2A). Moreover, the gafA gene, which encodes a direct activator of the
RcGTA gene cluster, was also up-regulated in the ∆sqrR mutant. These data indicate that
SqrR is needed to repress these genes at the log phase. In contrast, the transcripts of the
phosphorelay-related regulators, divL, cckA, chpT, and ctrA, were unaffected (Figure 2A).
We further tested the effect of sulfide on these transcriptional changes, because SqrR
functions as a (per)sulfide-responsive transcriptional repressor. Unexpectedly, treatment
with sulfide did not alter these transcript levels at the log phase of either the WT or ∆sqrR
strains (Figure 2B). Since SqrR senses sulfide by persulfidation via the oxidation of cysteine
residues, it was possible that another oxidant, such as hydrogen peroxide (H2O2), could
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react with SqrR in vivo. Therefore, we subsequently tested the effect of H2O2 on the
transcript levels of RcGTA-related genes. It was found that transcripts of the capsid and
gafA genes were increased by the treatment of cells with H2O2, and this up-regulation
did not occur in the ∆sqrR mutant (Figure 2C), indicating that SqrR contributes to the
H2O2-induced transcription of RcGTA-related genes at the log phase. We also analyzed the
transcript levels when cells were treated with mitomycin c, which induces the SOS response
via DNA damage [38], in order to explore whether this effect of H2O2 on the transcript
levels was due to a change in the intracellular redox state, or if it was an SOS response
induced by H2O2 [39] that could be related to RcGTA regulation [40]. Although the gafA
transcript was increased approximately two-fold by treatment with mitomycin c in the
WT strain (Figure 2D), this change was a lot smaller than that resulting from the treatment
with H2O2, indicating that the SqrR-related H2O2-induced transcriptional change in the
RcGTA-related genes may have been due to a change in intracellular redox state.
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Figure 1. Effects of sqrR deletion on growth, gene transfer and GTA production and release.
(A) Growth curves of the parental wild-type strain (filled circle) and the ∆sqrR strain (open cir-
cle) of R. capsulatus DE442 under anaerobic photosynthetic conditions. Data shown are the mean of
triplicate culture tubes. (B) Transduction frequencies using GTA produced at the log phase (white
bar) and stationary phase (gray bar) in the parental wild-type strain (WT) and the ∆sqrR strain. Bars
show the mean, error bars show standard deviation of three biological replicates, and star (*) indicates
a statistically significant difference (t-test, p-value < 0.05). (C) Western blots of the WT and ∆sqrR
strain culture cell pellets and supernatant fractions at the log and stationary (stat.) phases, probed
with R. capsulatus GTA capsid antiserum.
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levels of the GTA-related genes after the addition of 0.2 mM sodium sulfide (B), 1 mM hydrogen
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3.2. Molecular Mechanism of the SqrR-Related H2O2-Induced Transcription of GTA-Related Genes

To verify whether SqrR directly regulates RcGTA-related genes, we performed gel
mobility shift assays using SqrR recombinant protein and DNA probes containing the
predicted promoter region of each gene. Unexpectedly, SqrR did not bind to the promoter
regions of the gafA or capsid gene (upstream of the first gene of the structural gene cluster,
g1). However, distinct binding to the sqr promoter region as a positive control was shown
(Figure 3A). Therefore, the SqrR modulation of the RcGTA production appeared to require
at least one additional factor. It is well known that the transcription factor OxyR functions
as a master regulator of reactive oxygen species (ROS) signaling in bacteria [41,42]. As
R. capsulatus also has OxyR, we explored the contribution of OxyR to the H2O2-induced
transcription of RcGTA-related genes. To elucidate this, we constructed the oxyR single-
deletion mutant (∆oxyR), the sqrR, and the oxyR double-deletion mutant (∆sqrR∆oxyR), and
measured the transcript levels of capsid and gafA after treatment with H2O2 (Figure 3B).
The transcripts were slightly increased in the ∆oxyR strain compared to the ∆sqrR strain
and, particularly, the transcript of the capsid protein significantly increased. Moreover,
the ∆sqrR∆oxyR double mutant showed significantly lower levels of these transcripts than
every single mutant, except for the transcript of the capsid in ∆sqrR. These results indicate
that SqrR and OxyR independently regulate the H2O2-induced transcription of RcGTA-
related genes. Overall, SqrR appears to act downstream of the H2O2-induced regulation of
RcGTA production, independently of OxyR, and indirectly mediates the transcriptional
regulation of RcGTA-related genes to control RcGTA and gene transfer frequency.
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Figure 3. Molecular characterization of SqrR in the H2O2-induced transcriptional regulation of
GTA-related genes. (A) Gel mobility shift assay using a DNA probe of the sqr, capsid gene and gafA
promoter region under 5 mM DTT-reducing conditions without (−) or with (+) 0.5 mM DTT-reduced
SqrR. (B) Changes in the relative transcript levels of the capsid gene (green) and gafA (blue) after the
addition of 1 mM hydrogen peroxide to WT and each mutant culture. Cells were grown to mid-log
phase under anaerobic photosynthetic conditions and each chemical was added at t = 0. Cells were
harvested after 30 min and assayed for qRT-PCR. Bars show the mean, error bars show standard
deviation of three biological replicates, and star (*) indicates a statistically significant difference (t-test,
p-value < 0.05).

It has been reported that CtrA regulates the transcript levels of c-di-GMP metabolic
enzymes (rcc00620, rcc00645, rcc02629 and rcc02857), and RcGTA production is negatively
regulated by c-di-GMP [21]. Interestingly, our previous RNA-seq data indicated a contri-
bution of SqrR to the expression of rcc00645 and rcc02857, which contain both GGDEF
(diguanylate cyclase) and EAL (phosphodiesterase) domains [22] (Table 1). To explore the
effect of SqrR on the level of c-di-GMP, we compared the intracellular amount of c-di-GMP
between the WT and ∆sqrR strains. A significant decrease in the amount of c-di-GMP
was detected in the ∆sqrR mutant compared with that in the WT strain at both the log
and stationary phases (Figure 4A). We further investigated whether these changes in intra-
cellular c-di-GMP levels were correlated to the transcript level changes in the c-di-GMP
metabolic enzymes. Relative to the WT strain, the transcript of rcc00620, which encodes a
c-di-GMP catabolic enzyme, was decreased at the log phase, and that of rcc02629, which
encodes c-di-GMP synthase, was increased at the stationary phase in the ∆sqrR mutant
(Figure 4B). These data do not correlate with a decrease in intracellular c-di-GMP levels.
Moreover, SqrR did not bind to the promoter region of rcc00620 and rcc02629 (Figure 4C).
These results indicate that SqrR does not modulate intracellular c-di-GMP levels via the
transcriptional regulation of CtrA-regulated c-di-GMP metabolic enzymes, but by another
of the ~14 possible genes encoding a diguanylate cyclase in the R. capsulatus genome.

It is well known that c-di-GMP positively controls biofilm formation [43]. In order to
confirm the effect of the intracellular c-di-GMP levels, we analyzed biofilm formation in
the WT and ∆sqrR strains. Biofilm formation was significantly lower in ∆sqrR than in WT
(Figure 5). This observation was congruent with the lower intracellular c-di-GMP levels
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in ∆sqrR compared to those in the WT strain (Figure 4A). Thus, the phenotype of biofilm
formation activity also supports the regulation of c-di-GMP production by SqrR.
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Figure 4. Effects of sqrR deletion on the intracellular c-di-GMP levels. (A) Relative c-di-GMP levels in
the parental wild-type strain (WT) (white bar) and ∆sqrR (gray bar) at the log and stationary phases,
compared to WT at the log phase. Error bars show the standard deviation of three biological replicates,
and star (*) indicates a statistically significant difference (t-test, p-value < 0.05). (B) Relative expression
levels in ∆sqrR, as compared with WT at the log and stationary phases. Cells were grown under
anaerobic photosynthetic conditions. Error bars show standard deviation of three biological replicates.
(C) Gel mobility shift assay using a DNA probe of the sqr, rcc00620, rcc02629 and rcc02857 promoter
region under 5 mM DTT-reducing conditions without (−) or with (+) 5 mM DTT-reduced SqrR.
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4. Discussion

We studied the contribution of SqrR to gene transfer via RcGTA in order to explore the
possibility of a novel regulatory process in RcGTA production. We have demonstrated that
SqrR transduces the H2O2-mediated regulation of RcGTA production and biofilm formation
by c-di-GMP as a novel regulatory pathway in R. capsulatus. This conclusion is based on
the effect of sqrR deletion on RcGTA production and the transcript levels of RcGTA-related
genes. The ∆sqrR mutant showed higher gene transfer frequency and greater amounts of
intracellular and released RcGTA, as compared with the WT (Figure 1B,C). The transcript
levels of the RcGTA capsid protein and the GafA direct activator of the RcGTA gene
cluster transcription were up-regulated by sqrR deletion, and this regulation mediated
H2O2 signaling (Figure 2). Although previous RNA-seq data have shown that chpT and
divL are also regulated by SqrR (Table 1), these transcript levels were not changed by the
deletion of sqrR (Figure 2A). This discordance could be due to different growth conditions,
aerobic conditions in the previous study, or the anaerobic conditions in this study, because
RcGTA production is affected by the oxygen tension of the culture. We note that RcGTA
production was delayed from the induction of the transcripts at the log phase. It appears
that transcription induction starts in the log phase, but high levels of RcGTA protein do
not accumulate until the stationary phase. In addition, SqrR modulated the amount of
intracellular c-di-GMP, which induced RcGTA production and inhibited biofilm formation
(Figures 1, 4 and 5).

c-di-GMP is a ubiquitous bacterial second-messenger molecule that regulates many
bacterial functions and behaviors [44]. It is thought that c-di-GMP affects the CckA-ChpT-
CtrA phosphorelay by enhancing the phosphatase activity of CckA, and thereby gene
transfer by RcGTA is negatively regulated by nonphosphorylated CtrA [21]. Indeed, gene
transfer activity via RcGTA is affected by altering intracellular c-di-GMP levels by the
overexpression of the exogenous c-di-GMP metabolic enzyme [21], and CckA phosphatase
versus kinase activity is modulated by c-di-GMP [45]. Moreover, in positive regulatory
systems of biofilm formation, c-di-GMP allosterically modulates regulators—such as ef-
fector kinases in two-component systems or transcription factors—to promote biofilm
formation [46–48]. Our observations clearly show the alteration of RcGTA production
and biofilm formation associated with intracellular c-di-GMP levels (Figures 1C, 4A and 5).
Therefore, we suggest that SqrR regulates the levels of enzymes that metabolize c-di-
GMP, resulting in changes in the levels of c-di-GMP which, in turn, regulate the levels
of RcGTA [21]. It has been reported that c-di-GMP-mediated gene transfer is regulated
by a two-component system composed of a sensor histidine kinase encoded by rcc00621
and a c-di-GMP catabolic enzyme encoded by rcc00620 as a response regulator [49]. Our
findings indicate a new regulatory pathway of gene transfer via the control of c-di-GMP
levels by SqrR. The regulatory network of RcGTA production comprises various response
systems and the CtrA-dependent central regulation system to obtain a variety of abiotic
stress responses [10–13,20,21]. Thus, SqrR functions as a redox stress-responsive c-d-GMP
modulator, and may be valuable to appropriately regulate RcGTA production via the CtrA
phosphorelay in response to one of several abiotic stresses.

SqrR should be basically employed as the persulfide-specific responsive regulator in
R. capsulatus [22]. The promoter activity of the sqr gene, which encodes sulfide:quinone
reductase, the transcription of which is repressed by SqrR, was accelerated not by H2O2,
but by sulfide in vivo [22]. Moreover, previous MS-based reactivity profiling has revealed
that the modification of cysteine residue results from a reaction with persulfide, but not
other oxidants such as H2O2 [50]. Surprisingly, our data showed a distinct association be-
tween SqrR and the H2O2-induced regulation of RcGTA production and biofilm formation
(Figures 2 and 5). It has been reported that the well-established ROS responsive regulator
OxyR senses not only H2O2 via sulfene (–SOH) and/or the disulfide formation of cysteine
residue(s), but also persulfide via the persulfidation (–SSH) of cysteine residues [51]. Given
that persulfide might have been present earlier than ROS on the prebiotic Earth [28], and
that persulfide plays an important role as a signaling molecule for organisms as well as ROS,
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it is reasonable to suggest that the persulfide sensor protein detects both persulfide and
ROS. Therefore, SqrR might have the ability to mediate ROS signal transduction in vivo,
although the molecular mechanisms of how SqrR senses or mediates H2O2 signaling are
unclear. One possible mechanism is that the heme-binding ability of SqrR is available for
mediating H2O2 signaling. We have previously reported that SqrR can bind hemes, and
the redox state of the heme iron affects the secondary structure of SqrR [52], suggesting
that the SqrR repressor activity can be altered based on the redox state of the heme. How-
ever, we note that only 1.7% of SqrR can bind to a heme in vivo under normal growth
conditions without abiotic stress. Oxidative stress induces free hemes by dissociation from
hemoproteins [53,54], and heme-bound holo-SqrR showed lower DNA-binding affinity
than apo-SqrR [52]. Therefore, another possibility is that SqrR senses increased free hemes
under oxidative stress. Further analyses are needed to fully understand the mechanism of
how SqrR mediates H2O2 signaling in RcGTA production.

5. Conclusions

We suggest that SqrR mediates the H2O2-induced regulation of RcGTA production
by modulating c-di-GMP. Although SqrR appears to regulate RcGTA transcription, the
effect is indirect, implicating another regulatory factor of RcGTA that remains unknown.
However, our discovery of SqrR as a novel mediator of H2O2-induced RcGTA production
allows for further elucidation of how the whole regulatory network functions in this model
GTA-producing bacterium.
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