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Abstract: Patient safety culture is important in preventing medical errors. Thus, many instruments
have been developed to measure it. Yet, few studies focus on the data processing step. This study, by
analyzing the Chinese version of the Safety Attitudes Questionnaire dataset that contained 37,163
questionnaires collected in Taiwan, found critical issues related to the currently used mean scoring
method: The instrument, like other popular ones, uses a 5-point Likert scale, and because it is an
ordinal scale, the mean scores cannot be calculated. Instead, Item Response Theory (IRT) was applied.
The construct validity was satisfactory and the item properties of the instrument were estimated
from confirmatory factor analysis. The IRT-based domain scores and mean domain scores of each
respondent were estimated and compared. As for resolution, the mean approach yielded only around
20 unique values on a 0 to 100 scale for each domain; the IRT method yielded at least 440 unique
values. Meanwhile, IRT scores ranged widely at each unique mean score, meaning that the precision
of the mean approach was less reliable. The theoretical soundness and empirical strength of IRT
suggest that healthcare institutions should adopt IRT as a new scoring method, which is the core step
of processing collected data.
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1. Introduction

Since the end of the 20th century, when the landmark report “To err is human: Building a safer
system” was released, patient safety has been considered to be one of the most important topics
in healthcare [1,2]. Thus far, many resources have been invested in improving safety globally [2,3].
The experience from such efforts makes it clear that the success of any endeavors to create errorless care
is largely affected by the level of the safety culture of the target place [4–9]. Therefore, understanding
the precise situation of a safety culture is considered a vital component in ensuring the success of safety
programs, and many survey instruments have been developed and applied in the various areas of
healthcare [8,10–14]. The usefulness of such instruments in improving safety per se is undeniable, and
a large amount of data have been collected. However, few studies have looked into improving the
methods of processing the collected data; such ignorance might have lessened the effectiveness of
the instruments.

Int. J. Environ. Res. Public Health 2020, 17, 854; doi:10.3390/ijerph17030854 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-8619-4974
https://orcid.org/0000-0001-8181-1195
http://dx.doi.org/10.3390/ijerph17030854
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/17/3/854?type=check_update&version=2


Int. J. Environ. Res. Public Health 2020, 17, 854 2 of 10

Most survey questionnaires use a Likert scale for response options of items. To illustrate, the
Safety Attitudes Questionnaire (SAQ), one of the most popular instruments [13,14], uses a 5-point
Likert scale (1 = disagree strongly, 2 = disagree slightly, 3 = neutral, 4 = agree slightly, 5 = agree
strongly) to measure respondents’ attitudes toward items such as “Staff input is well received in this
clinical area” [15]. However, a Likert scale is an ordinal (i.e., ordered categorical) scale by definition,
where the difference between any two adjacent response options is not necessarily the same difference
as between another pair of adjacent options [16]. Thus, we cannot be sure in stating that the difference
between “disagree strongly” and “disagree slightly” is the same as between “agree slightly” and “agree
strongly.” In addition, these differences vary across items. Therefore, unlike an interval scale built with
the same intervals on a trait continuum, a Likert scale does not allow us to calculate the traditional
mean score of items [17]. Although we relax such restrictions arising from this theoretical concept
about scale, a practical issue remains: When the number of items is small in a construct (domain), the
mean, or summed score, does not offer sufficient resolution to detect subtle changes or differences in
the safety culture level.

Item response theory (IRT) provides a practical solution to these problems. It estimates each
item’s properties, such as where on the safety culture continuum respondents switch their responses to
the adjacent option. Fayers defined IRT as “a model-based measurement, also known as latent trait
theory, in which trait level estimates depend on both a person’s responses and on the properties of the
items that were administered” [18]. This definition implies that, once items are calibrated and their
properties are revealed, the safety culture of respondents can be estimated at a highly reliable precision
by appropriately handling responses on a Likert scale [19].

We applied IRT to the Chinese version of SAQ (SAQ-C), which has been used in Taiwan for the
past decade. During the development of the SAQ-C, the stress recognition (SR) domain from the
original version developed by Dr. Bryan Sexton was excluded, because it did not perform well in
Taiwan. This issue was not Taiwan or SAQ-C specific. Several countries that adopted the SAQ reported
the same problem [20]. In addition, two items in double negative sentences from the original version
did not function well when translated into Chinese; thus, they were removed. This was not an SAQ-C
specific issue either [21]. Eventually, the remaining 30 items on the SAQ-C contained five domains:
teamwork climate (TC: 5 items), safety climate (SC: 6 items), job satisfaction (JS: 5 items), perception of
management (PM: 10 items) and working conditions (WC: 4 items) [15,22].

This study tried to examine whether the IRT approach is suitable for scoring already collected
SAQ-C responses, and determine whether IRT can produce scores in higher resolution than the
traditional mean approach. By examining the differences between the two scoring methods for
individual responses, while holding the other steps constant across the methods, we intended to
answer whether it is worth considering a switch to the new methods.

2. Methods

2.1. Data Source

We used SAQ-C data collected from 200 hospitals in Taiwan from 31 May to 30 June,2008, the first
national administration of the survey. Item parameters theoretically do not vary across respondents,
but if a person takes the same survey multiple times, the parameters might change gradually [23].
Considering the voluntary and anonymous nature of SAQ-C administration in Taiwan, such item
parameter drift (IPD) cannot be traced, and the proportion of drifters is unknown. Thus, using the first
administration dataset was the most reasonable option for item calibration to avoid the risk of IPD.

2.2. Calculating Traditional Mean Domain Scores

The suggestions from the rubric provided by the developer of the SAQ were used to obtain a
mean score of each of the five domains: 1 is subtracted from each of the raw item scores (1 to 5), and
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then multiplied by 25. The average of the converted item scores is the mean domain score on a scale of
0 to 100.

2.3. Confirmatory Factor Analysis with IRT

The original SAQ and SAQ-C were validated using confirmatory factor analysis (CFA), based on
the assumption that the responses were on an interval scale (continuous variable) [22]. Therefore, we
first proved that IRT, the paradigm that treats responses as an ordinal categorical variable, can be applied
to our dataset. We developed a correlated factor model to conduct CFA, in order to maintain consistency
with the model used when the SAQ-C was developed. Specifically, we used a graded response model
(GRM) of IRT, because the response options were polytomous [24]. Since it is broadly acknowledged
that hospital levels, such as medical centers and regional, district, and psychiatric hospitals (Joint
Commission Taiwan classification) may influence culture level to some degree [25], a multigroup
component was added to the CFA model. Eventually, CFA using a multigroup- multidimensional-IRT
(MIRT) model was built, and both goodness-of-fit indices and item properties were achieved.

2.4. Calculating IRT-Based Domain Scores

After the model fit was established, we ran a unidimensional IRT model with expected a posteriori
(EAP) computation method for each domain, and estimated IRT scores in standard deviation (SD) as a
unit of reporting [26]. Note that, unlike SD in classical test theory (CTT), where it can be used to locate
a person’s level within a certain group, SD in IRT is less group-specific, and thus, fewer issues are
expected in a group-to-group comparison for longitudinal tracking of domain scores [19]. Achieved
IRT scores were rounded to 2 decimal places for practical purposes.

2.5. Comparing Traditional Mean and IRT-Based Scores

To examine the resolution of the scores obtained from each of the two methods, we used the
number of unique domain scores. Theoretically, the TC domain can possess 21 unique values because
it consists of five items measured by a 5-point Likert scale ((4 × number of items) + 1). In the same
way, SC, JS, PM and WC domains can have up to 25, 21, 41 and 17 unique scores, respectively. We
counted the actual number of unique mean scores by domain from the data. The number of unique
IRT scores was also counted by domain. Then, we observed how widely EAP scores varied at each of
the unique mean domain scores. The correlation coefficient for the scores from the two methods was
also calculated for each domain.

Analyses were performed using the statistical software packages flexMIRT 3.51 (Vector
Psychometric Group, LLC, Chapel Hill, North Carolina) and Stata 16.1 (Stata Corp., College Station,
Texas). This study was approved by the Institutional Review Board of the Taipei Veterans General
Hospital, Taiwan (2017-07-015CC#1).

3. Results

3.1. Characteristics of Respondents

The dataset contained 45,242 questionnaires. Among them, we excluded 8089 questionnaires
for two reasons. First, since each domain of the SAQ consists of a small number of items, common
techniques to treat missing values, such as calculating the mean score from only the answered items or
multiple imputation, could not be used. Even if they were applied, such ad hoc approaches might
have prevented the summed score to EAP conversion described in a later section. Second, because we
conducted a multi-group analysis based on the hospital level, we unavoidably excluded questionnaires
with the hospital level variable left unanswered. Eventually, 37,163 questionnaires were analyzed.
As described in Table 1, seemingly unbalanced distributions were observed in most categories, such
as the fact that 88.2% were female, 55.5% were in their 20s, and 70.6% were nurses. There were 20
medical centers in Taiwan, but they made up a 44.7% share of collected questionnaires. Although
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such imbalance may reflect the reality of Taiwan’s healthcare topography, sensu stricto, there was an
unavoidable risk of bias arising from survey administration that was conducted in an anonymous
manner. We could only say that as the first and the most extensive dataset collected across the country,
it was relatively stable and free from the risk of IPD. Before moving on, we should make what follows
clear. Some researchers have argued that the representativeness of the dataset is not too important
“because the IRT paradigm is relatively generous to sample characteristics.” [27] However, no studies
can use such an argument as protection against all criticism about sample representativeness issues,
and this study is no exception.

Table 1. Characteristics of respondents.

Characteristics N %

Gender
Male 4,375 11.8
Female 32,788 88.2

Age group (years)
≤20 110 0.3
21–30 19,668 55.5
31–40 11,656 31.7
41–50 4,422 12.0
51–60 829 2.3
>60 58 0.2

Job types
Physicians 2,369 6.4

Nurses 26,229 70.6
Technicians 3,054 8.2
Pharmacists 1,835 4.9
Administrative staff 792 2.1
Others 806 2.2
Missing 2,078 5.6
Hospital levels (N)
Medical centers (20) 16,613 44.7
Regional hospitals (57) 13,510 36.4
District hospitals (104) 5,698 15.3
Psychiatric hospitals (19) 1,342 3.6

Total 37,163 100

3.2. Results of Confirmatory Factor Analysis

In the middle column of Figure 1 lie the factor loadings of each item, which were all satisfactory:
0.60 (WC1)–0.95 (JS4) [28]. There were correlation coefficients between domains on the left of the table,
and all of them were high, spanning from 0.75 between TC and JS, to 0.91 between TC and SC. As for
fit indices of the model as a whole, the full-information goodness-of-fit (GOF) tests based on popular
Pearson’s χ2 or G2-based statistics were not reliable because the contingency table from this 30-item
ordinal scale dataset was too sparse. Therefore, we used limited-information GOF tests instead, with
M2* statistics [29,30], the root mean square error of approximation (RMSEA) and the non-normed fit
index (NNFI; also known as the Tucker-Lewis index). Both showed satisfactory results: 0.03 for RMSEA
(cut-off <0.06) and 0.98 for NNFI (cut-off >0.95) [31]. Note that, the repertoire of limited-information
statistics is small compared to that of full-information statistics at the moment of writing this [30].
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Figure 1. Item and model parameters. Note: In the multidimensional IRT (Item Response Theory)
model, the intercepts are preferred over ‘b,’ the difficulty parameter that is dominantly used in the
unidimensional model. (TC: Teamwork Climate; SC: Safety Climate; JS: Job Satisfaction; PM: Perception
of Management; WC: Working Climate).

3.3. Item Properties

The five columns on the right side of Figure 1 describe the SAQ-C item parameters, ‘a’ to ‘c4,’
calibrated from CFA using an MIRT. Furthermore, ‘c1–c4’ are called intercepts on the attitudinal
level, at which respondents switch to the adjacent response options (e.g., c1 is the intercept between
“disagree strongly” and “disagree slightly”). The value of intercepts is inversely proportional to the
location of the switching points. Meanwhile, ‘a’ is the discrimination parameter implying how sharply
a respondent switches her answers at a location on the safety culture continuum denoted by the
intercepts, ‘c1’ to ‘c4.’ In each domain, the values of intercepts, ‘c1–c4’, and discrimination parameter,
‘a’ varied significantly by item. To illustrate, for TC1 and TC4, ‘a’ was 1.54 and 2.31, respectively, and
‘c1’ was 4.81 and 7.18, respectively. The parameters suggested that items performed quite differently,
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and IRT’s weighted score might better reflect the reality. Although not included in the table due to
space constraints, standard errors were obtained and the majority were 0.01 with others of 0.02.

3.4. Comparing the Results from Two Scoring Methods

After confirming that the model fit suffices from the correlated factor model, we estimated IRT
scores by domain using a unidimensional IRT model. To conserve space, we do not describe individual
item parameters, but the pattern was similar to that of the multidimensional model shown above. As
described in Table 2, the traditional mean scoring scheme yielded its theoretically maximum unique
values: 21, 25, 21, 41, and 17 for TC, SC, JS, PM, and WC, respectively. On the other hand, IRT provided
us 473, 498, 464, 511, and 440 unique scores for each of the five domains, respectively, suggesting
that scores were achieved at a much higher resolution with IRT. By increasing the number of decimal
places of EAP scores, we can obtain an even higher resolution. For all five domains, the traditional
mean scores spanned from 0 to 100 (the range was 100), meaning that there were respondents who
gave “disagree strongly” to all items, and also respondents who answered “agree strongly” to all
items. The lowest values of the IRT domain scores varied between −3.43 of TC and −2.88 of WC,
while the highest values spread between 1.83 of TC and 2.37 of PM. Therefore, the ranges of scores in
each domain spanned from 5.03 in WC to 5.74 in PM. Note that, unlike the range in scores from the
traditional mean (100 for all domains), the range of scores from IRT varied by domain, as expected.

Table 2. Comparison between traditional mean and IRT scores. (TC: teamwork climate, SC: safety
climate, JS: job satisfaction, PM: perception of management, WC: working condition, IRT: item response
theory).

Domain

N
Range of Scores Correlation

Between MethodsMean IRT

Mean IRT Lowest Highest Lowest (a) Highest
(b) |a–b|

TC 21 473 0 100 −3.43 1.83 5.26 0.97
SC 25 498 0 100 −3.41 2.06 5.47 0.97
JS 21 464 0 100 −3.15 1.95 5.10 0.97

PM 41 511 0 100 −3.37 2.37 5.74 0.99
WC 17 440 0 100 −2.88 2.15 5.03 0.96

The correlation coefficient between the two methods should be viewed with caution. It spanned
from 0.96 in WC to 0.99 in PM. Such a high correlation coefficient certainly means a strong linear
relationship, but it should not be interpreted as a single line-like relationship. See Figure 2. Although
the linearity did exist, IRT scores for each unique score achieved from the traditional mean approach
varied widely. To illustrate, we focused on a single value of 75 from the traditional mean scoring; the
value which the original SAQ rubric regards as the threshold distinguishing between respondents
with and without good safety attitudes. There, the range of IRT scores was at 1.51 (between −0.41 and
1.10). It took up as much as 28.7% of the total range of TC scores (1.51/5.26). This phenomenon raised
questions about the precision of the traditional scoring scheme, where item-specific properties based
on the ordinal categorical characteristics of a Likert scale are not taken into account.
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4. Discussion

4.1. Which Method Is Correct or Better?

Scaling is the process that assigns a value to a respondent according to the respondent’s position
on the safety attitudes continuum [32]. To calculate a mean domain score, a strong assumption should
hold: all items in a domain should be built on an interval scale (or ratio scale), and they should be
parallel instruments. That is if a respondent answered 2, 2, 3, 4, 5 to the five consecutive items in TC,
and another respondent answered 5, 4, 3, 2, 2, the mean TC scores of the two people should be the
same. However, as shown in Figure 2, items are not parallel: each unique mean score corresponded to
a very wide range of scores achieved from IRT. It is clear that responses on a Likert 5-point scale in the
SAQ should be scored using IRT that can relax the parallel item assumption, and treat response options
on an ordinal scale, as it should. The results suggested that IRT provides much higher precision with
greater resolution than the traditional means [33,34].

4.2. Barriers against Switching to the IRT Methods

Understanding IRT might overwhelm those who want to switch. Indeed, IRT is a complex area,
and it is natural to feel uncomfortable with what one does not understand thoroughly. We recommend
reviewing an article by Jeong et al. (2016). Although it was based on a small pilot study, the authors
depicted most of the fundamental concepts of IRT visually using real SAQ data (Korean version) [35].

Meanwhile, the scarcity of computing resources has also been a critical issue. It is commonly
assumed that if personnel in charge of processing SAQ data wanted to apply IRT, they would have to
deal with hours of waiting for the results coming out from a computer. However, this is because of a
significant misunderstanding. Applying IRT to achieving SAQ scores consists of two steps: calibrating
items and calculating scores using the item parameters from the calibration step. The majority of
the time is spent on calibrating items. Once the parameters are revealed, they can and should be
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used for scoring future data without recalibration. This is a theoretically sound way of scoring,
and also buttresses the longitudinal comparison of scores. Such scoring only processes can be done
quickly. Furthermore, if one wants to obtain only domain scores, then a unidimensional model is
enough, where both the calibrating and scoring steps can be done in a short time. In addition, we
used Bock and Aitkin’s Expectation-Maximization algorithm because it provides GOF indices from
CFA. If one does not need GOF tests, a much more efficient Metropolis-Hastings Robbins-Monro
(MH-RM) algorithm would be a good alternative. MH-RM is a ‘Markov chain Monte Carlo-based
sampler’-driven data-augmented approximation that can easily handle complex models with a large
dataset at a dramatically increased speed [36,37].

Even when survey responses from the past administrations have already been scored in the form
of traditional mean, and the raw data were redacted, there is still a solution to make a switch to IRT.
By using the EAP score, we can generate a conversion table from the traditional mean (or summed
score) to the IRT score. Such backward compatibility was one of the reasons why we chose EAP over
the other scoring methods: Most IRT software tools at any budget level provide the summed score
to the EAP conversion table. Although such conversion inevitably coveys a considerable amount of
variance, Jeong et al. (2017) pointed out that if the interests lie in a group mean and not an individual
respondent’s score, the converted IRT scores performed well without raising significant issues. When
backward compatibility of scores does matter, the rule of thumb is to calibrate the earliest dataset that
contains the raw form of data. Then, to any dataset not in raw form, we apply the score conversion
methods. Of course, for a dataset with raw data, we can calculate EAP scores by using the calibrated
item parameters. In addition, the EAP calculation is known to have relative strength compared to the
other scoring methods in the longitudinal analysis that track changes in SAQ scores [26].

Understanding the IRT scores in SD may confuse users who are accustomed to the 0–100 scale
and may find difficulty in interpreting scores in SD. They might get lost, especially when attempting to
obtain the percent agreement (PA). However, this should not be an excuse for rejecting the adoption of
IRT in the SAQ: We can linear transform the IRT scores in standard SD to match the traditional SAQ
scoring format, ranging from 0 to 100 at any time [38]. To the transformed score, one can apply any
analysis methods as they used to do to the traditional mean score.

5. Conclusions

Using a large national dataset, this study proves that IRT can successfully be applied to the SAQ-C.
There were clear strengths in using IRT, such as treating SAQ response options as an ordinal scale, and
obtaining very high precision and resolution of achieved scores. With all due respect, by providing
practical solutions to overcome the barriers that have hampered healthcare from switching to the IRT
paradigm, we suggest that quality and safety personnel consider adopting the new IRT-based scoring
method of collected data, or at least use IRT to check the reliability of traditional mean score approaches.
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