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Diabetic retinopathy (DR) is a common diabetic complication and the main cause of
blindness worldwide, which seriously affects the quality of life of patients. Studies have
shown that noncoding RNA (ncRNA) has distinct differentiated expression in DR and plays
an important role in the occurrence and development of DR. ncRNAs represented by
microRNAs (miRNAs), lncRNAs (lncRNAs), and circRNAs (circRNAs) have been shown to
be widely involved in the regulation of gene expression and affect multiple biological
processes of retinopathy. This article will review three RNAs related to the occurrence and
development of DR on the basis of previous studies (especially their effects on retinal
microangiopathy, retinal pigment epithelial cells, and retinal nerve cells) and discuss their
underlying mechanisms and connections. Overall, this review will help us better
understand the role of ncRNAs in the occurrence and development of DR and provide
ideas for exploring potential therapeutic directions and targets.

Keywords: diabetic retinopathy, miRNA, lncRNA, circRNA, diabetes
INTRODUCTION

Diabetic retinopathy is one of the most common microvascular complications of type 1 and type 2
diabetes (Figure 1) and is the leading cause of blindness worldwide (1, 2). As the social environment
changes, the impact of DR on human vision has become increasingly prominent. There is evidence
that the current prevalence of DR in the United States is approximately 35% (3, 4). In the past 30
years, the prevalence of diabetic retinopathy has increased by 7.7%, but the crude prevalence of
other blinding diseases has decreased (5). As a complication of a chronic disease, the prevalence and
severity of DR are positively correlated with age and the course of the disease (6). The relatively long
course of DR can be divided into mild DR or nonproliferative DR (NPDR), characterized by an
increase in the number of microaneurysms, and proliferative DR (PDR), characterized by the
formation of new blood vessels on the posterior surface of the retina and vitreous, which is more
severe than NPDR. Increased vascular permeability, macular edema, retinal distortion and
detachment caused by angiogenesis and fibrous tissue contraction and neovascular bleeding are
all progressive pathological changes in the development of DR under continuous hyperglycemia
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stimulation (7). Without treatment, most patients with DR may
lose vision within 5-10 years of diagnosis. Currently, there is no
optimal clinical treatment method. Vascular endothelial growth
factor (VEGF) is considered a promising target, and research has
found that VEGF may influence inflammation in DR (8). VEGF
can only achieve good curative effects in the late stage of DR,
however, and VEGF administration is cumbersome, which does
not lead to an ideal treatment method. Therefore, there are broad
prospects for the discovery of new therapeutic target molecules
and research over therapeutic applications.

A number of studies have confirmed that the pathological
process of diabetic retinopathy is related to the differential
expression of vascular dysfunction-related proteins, such as
VEGF, transforming growth factor (TGF), and sirtuin (SIRT),
and their expression levels are closely related to oxidative stress,
apoptosis and angiogenesis in the course of DR (9–12). miRNAs,
lncRNAs, and circRNAs can be used as upstream regulators or
interacting elements to participate in their functioning process.
Previous studies have found that 131 circRNAs (13), 8miRNAs
(14), and 427 lncRNAs with expression differences during the
development of DR compared with normal tissues (15), which
suggests that the three RNAs molecules are closely related to
the occurrence and development of DR. This review reveals the
influence of miRNAs, circRNAs, and lncRNAs on the
development of DR, which may increase our understanding of
the role of these important molecules and provide new
perspectives for clinical DR molecular targeted therapy.

miRNA
miRNAs are single-stranded ncRNAs consisting of 20-24
nucleotides. In the classical pathway, miRNA is a primary
miRNA transcript formed by RNA polymerase II transcription of
precursormiRNAgenes. After the stem-loop structure is formed, it
Frontiers in Endocrinology | www.frontiersin.org 2
is cleaved into precursor miRNA and proceeds to mature miRNA
by the Disher enzyme (16–18). miRNA can interact with the 3’-
untranslated region (UTR) of targetedmRNA through its 6 nt seed
sequence,mediate posttranscriptional gene silencing (PTGS) in the
cytoplasm (19), and participate in almost all cellular activity
regulation, including cell proliferation, migration, differentiation
and apoptosis (20, 21). An increasing number of studies have
demonstrated that miRNAs play an indispensable role in the
development of DR lesions.

CircRNA
CircRNA was first discovered by Hsu in 1979 to be expressed in
the cytoplasm of mammals (22). CircRNAs are a new type of
ncRNA generated from linear precursor mRNAs via nonclassical
splicing (23). Because its closed loop structure is difficult to
degrade by nucleases, circRNA is more stable than its linear
transcript (24). The composition of circRNA can be divided into
exon circRNA (ecircRNAs), intron circRNA (ciRNAs), and exon
and intron circRNA (elciRNAs) (25). It has been confirmed that
circRNAs mainly regulate the physiological and pathological
functions of cells in four ways: serving as miRNA sponges,
protein regulators, translation templates and gene expression
regulators (23).

LncRNA
LncRNAs are noncoding protein transcripts composed of more
than 200 nucleotides. Studies have shown that a small number of
lncRNAs have the potential to encode proteins (26), but this is not
the main role of lncRNA in the regulation of cell life activities.
LncRNAs mainly regulate gene expression at the pretranscription,
posttranscription and posttranscriptional levels, such as epigenetic
regulation (group protein methylation, and chromatin
remodeling), regulatory transcription factors, endogenous
competitive RNA, and antisense lncRNAs (27–29). In many
diseases, lncRNAs are differentially expressed, and DR is no
exception. Gene therapy based on lncRNAs is an emerging
disease treatment strategy and has great potential in the
treatment of DR.
THREE TYPES OF RNA INFLUENCE THE
DEVELOPMENT OF DR THROUGH
MICROVASCULAR ENDOTHELIAL CELLS

The retinal vessel wall is composed of three layers: intima, media,
and adventitia. The innermost intima consists of a single layer of
endothelial cells in direct contact with the vascular cavity, and
the media is composed of multiple layers of smooth muscle cells
and pericytes. The blood basement membrane forms an outer
membrane on the outside (30, 31). Retinal vascular endothelial
cells (HRVECs) in the HG state will activate, proliferate and
migrate abnormally, which may lead to changes in retinal
vascular function (32). Increasing evidence shows that three
types of RNAs have important regulatory effects on the process
of HG-stimulating dysfunction of retinal vascular endothelial
cells (Figure 2).
FIGURE 1 | Main causes and consequences of DM.
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miRNA-Mediated Mechanism
Some miRNAs may target specific molecules to protect retinal
microvascular endothelial cells (RMECs) in DR. The most
important target is VEGF. For example, miR-29b-3p can
negatively regulate the expression levels of VEGFA and
platelet-derived growth Factor B (PDGFB), inhibiting cell cycle
progression by decreasing the expression levels of cell cycle-
related proteins (cyclins A2, D1, and E1), which prevents the
abnormal proliferation of RMECs (33). Previous studies have
also found that miR-29b-3p can downregulate SIRT1 to promote
RMEC apoptosis (34). However, Pan et al. found that SIRT1 can
positively regulate the expression of miR-20a so that miR-20a
induces YAP/HIF1a to downregulate VEGF activity and hinder
the abnormal proliferation of RMECs in the HG state, suggesting
that the restoration of SIRTI may protect RMECs in the HG state
(35). MiR-199a-3p might be another target for regulating VEGF.
It can downregulate the expression of VEGF and inhibit the
PI3K/AKT pathway related to VEGF, protecting RMECs from
HG (36). miR-203a-3p is downregulated under the induction of
HG, and high expression can decrease the expression levels of
VEGFA and HIF-1a to reduce the pathological retinal
angiogenesis of PDR (37). Previous studies have shown that
miR-15b (38), miR-9 (39), and miR-152 (40) can directly or
indirectly downregulate VEGF in RMECs treated with HG,
reduce the proliferation of endothelial cells, and hinder the
progression of PDR. In addition to VEGF, many miRNAs
protect RMECs in the DR state through other signaling
pathways. PDLIM1 is a cytoskeletal protein associated with
Frontiers in Endocrinology | www.frontiersin.org 3
stress fibers, and miR-200a can downregulate the expression of
PDLIM1 in RMECs and reduce the apoptotic state of RMECs,
decreasing retinal microvascular leakage (41), which implies that
miR-200a may be an efficient therapeutic target for the early
stage of DR. miR-148a-3p specifically binds to the 3’
untranslated regions of TGFB2 and FGF2, downregulates their
expression, and reduces the apoptosis of microvascular epithelial
cells in the HG state (42). OPN regulates the inflammatory
response at multiple levels (43). In the capillary endothelial cells
of DR, it can inhibit miR-29a, indirectly increase the synthesis of
type IV collagen, thicken the basement membrane, and aggravate
the pathological changes of DR (44). Research in recent years
found that miR-29a/b (45), miR-590-3p (46), miR-138-5p (47),
and miR-384-3p (48) all have the ability to protect microvascular
endothelial cells in DR.

In addition to the protective effect, some miRNAs regulate
downstream signals to make RMECs proliferate, promote the
formation of new blood vessels, and aggravate the PDR process.
HG upregulates miR-183, reduces the expression of BTG1, and
activates VEGF-related pathways to upregulate VEGF expression
and promote the proliferation of diabetic retinal vascular
endothelial cells (49). miR-21-5p is the upstream signal of
maspin. After high expression, it enhances the cellular viability of
RMECsandpromotes the angiogenesis ofPDR(50). SomemiRNAs
promote RMECapoptosis and aggravate the progression of PDR in
the HG state. Overexpressed miR-221 can bind to the 3’UTR of
SIRT1 mRNA and downregulate its expression, blocking the Nrf2
pathway and increasing the apoptosis of RMECs (51).
FIGURE 2 | Schematic overview of miRNAs, lncRNAs, and circRNAs affecting vascular endothelial cells and contributing to the pathogenesis of DR.
November 2021 | Volume 12 | Article 771552
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In summary, miRNAs have broad potential in DR treatment,
but the therapeutic effect may be difficult to grasp. For example,
miR-148a-3p, which is downregulated in RMECs under DR
conditions, can hinder the formation of new blood vessels after
upregulation, but it will also damage the blood-retinal
barrier (42).

CircRNA-Mediated Mechanism
The differential expression of circRNAs in HRVECs has a
significant impact on the progression of DR, which may cause
vascular dysfunction and/or promote the formation of new blood
vessels and participate in nonproliferative and proliferative DR
lesions. Overexpressed circ_001209 serves as a miR-15b-5p
sponge in HRVECs, indirectly regulating the expression of
COL12A1, causing vascular endothelial cell dysfunction,
significantly thinner retinal thickness, and increased apoptosis
(52). Similarly, the expression of circHIPK3 located in the
cytoplasm of HRVECs increased, downregulating the activity of
miR-30a-3p and thereby upregulating the expression of VEGFC,
FZD4 and WNT2. Knockout of circHIPK3 can reduce the
abnormal proliferation, migration and tubular formation of
HRVECs cultured in vitro, decreasing retinal acellular capillaries
and vascular leakage (53). Therefore, circHIPK3may play a role in
the progression of NPDR. As a sponge of miR-29b, circCOL1A2
promotes the proliferation of retinal microvascular endothelial
cells (HRMECs) and inhibits cell apoptosis under the action of
VEGF (54). Tissue-specific expression of angiomotin can promote
the proliferation of vascular endothelial cells and make them
tubular. hsa_circ_0002570 is an inhibitor of miR-1243, which
upregulates the expression of angiomotin and promotes the
formation of new blood vessels in DR (55). circ001897 is
circRNA whose expression level in DR tissues is significantly
higher than that in the control group. By targeting miR-30-3p
and downregulating its expression level, it can achieve the effect of
HRMEC migration and proliferation (56). However, the
downstream targeting molecule of miR-30-3p has not yet
been determined.

In addition to vascular endothelial cells, circRNAs also play
an important regulatory role in pericytes. The histopathological
feature in the earliest stage of DR is the loss of pericytes (57).
Under the stimulation of diabetes, CZNF532 acts as a sponge of
miR-29a-3p to induce increased expression of NG2, LOXL2 and
CDK2 to protect retinal pericytes and alleviate pericyte
degeneration and vascular dysfunction (58). Therefore,
cZNF532 is essential for maintaining pericyte function and
vascular homeostasis. Similarly, cPWWP2A in the cytoplasm
of pericytes acts as an endogenous miR-579 sponge to inhibit
miR-579 activity, which increases the expression of angiopoietin
1, occludin, and SIRT1 (59). Intervening in the expression of
cPWWP2A or miR579 may be a treatment strategy for diabetic
microvascular complications. A major cause of vascular
dysfunction is abnormalities in pericyte-endothelial cell
crosstalk (60). There is evidence that circRNAs may be
involved in this pathway. CircEhmt1, which is transferred from
pericytes to endothelial cells through exosomes, is highly
expressed in the nucleus of pericytes and upregulates the level
of transcription factor (NFIA), which ultimately inhibits the
Frontiers in Endocrinology | www.frontiersin.org 4
production of the NLRP3 inflammasome. Activation of the HIF
pathway may play an important role in the activation of the
NFIA/NLRP3 pathway.

In summary, circRNAs can regulate the functional changes of
endothelial cells and pericytes in the DR state through different
pathways (Table 1), possibly due to the different roles that
endothelial cells and pericytes play in neovascularization. DR
damage is the main pathway by which circRNAs regulate
endothelial cells, while DR protection is the main counterpart
in pericytes. The development of circRNA-targeted drugs is
helpful for the derivation of new strategies for the clinical
treatment of DR.

LncRNA-Mediated Mechanism
Existing studies have shown that adjusting the expression of
specific target mRNAs or miRNAs enables lncRNAs to regulate
endothelial cell diseases. In 2014, studies found that lncRNA
MALAT1 may cause damage to diabetic endothelial cells (70).
Recently, the damage mechanism of MALAT1 in DR vascular
endothelial cells was further explored, and it was discovered that
it may promote the development of DR by mediating the
activation and inhibition of different pathways. Highly
expressed MALAT1 is involved in HG-induced angiogenesis,
ERS and inflammation, which may be achieved by MALAT1’s
inhibition of the expression of GRP78 (61). Other studies have
found that highly expressed YAP1 may upregulate the expression
of MALAT1 to promote the proliferation of endothelial cells,
which may be the effect of downregulating miR-200b-3p and
increasing the expression of VEGF simultaneously (62). miR-
125b has also been proven to be a downstream targeting
molecule of MALAT1. The decreased expression of miR-125b
can upregulate the expression of the VE-cadherin/MALAT1-
catenin complex and neovascularization-related proteins to
participate in the process of DR (63). miR-203a-3p is also a
downstream target molecule of MALAT1 that has been explored
in HRMECs under HG treatment (64), but the downstream
signal of miRNA needs to be further studied. There are many
other lncRNAs involved in the pathological process of HRMEC.
Upregulated Linc00174 can target miR-150-5p, upregulate
VEGF, and promote the angiogenesis of DR (65). Similarly,
SNHG16 is also upregulated in HG-induced vascular endothelial
cells and activates the NF-kB pathway through miR-146a-5p/
IRAK1 and miR-7-5p/IRS1, with the NF-kB pathway triggered
by the PI3K/AKT pathway, promoting hRMEC dysfunction (66).
In addition to promoting HRMEC lesions induced by HG, some
lncRNAs have a protective effect on HRMECs. As an upstream
regulator of miR-195, after upregulating SNHG16, H2O2-
induced tube formation of HMRECs was significantly inhibited
(67). Likewise, TPTEP1 can inhibit the phosphorylation and
nuclear translocation of STAT3, thereby downregulating VEGFA
mRNA and protein levels and hindering the formation of new
blood vessels under HG conditions (68). MEG3 negatively
regulates miR-19b to inhibit HG-induced inflammatory factors
generated from HMRECs, caspase-3/7 and cell apoptosis (69).
Therefore, reversing the expression level of lncRNAs under
certain conditions may play a role in promoting the alleviation
of DR.
November 2021 | Volume 12 | Article 771552
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THREE TYPES OF RNA INFLUENCE THE
DEVELOPMENT OF DR THROUGH
RETINAL PIGMENT EPITHELIAL CELLS

The retinal pigment epithelium (RPE) is a lifelong layer of highly
polarized pigment epithelial cells located between the
photoreceptors and the choroid (71). The RPE participates in the
formation of the external visual blood barrier, and the melanin
particles in RPE can absorb light to protect it from lesions due to
photooxidative stress (72). In addition to phagocytosis, degradation
of the photoreceptor outer ganglion (POS) terminal, maintenance
of the retinoic acid cycle, and protection against light and oxidative
stress, RPE can also secrete proteins in a polarized manner; for
example, vascular endothelial growth factor (VEGF) is secreted
mainly toward the basal direction, which is essential for the growth
of choroidal blood vessels (73) and is also an important factor in
promoting the progression of DR in the proliferative phase. An
increasing number of studies have found that miRNAs, lncRNAs,
and circRNAs are differentially expressed in RPE induced by HG
and have certain effects on its pathological changes (Figure 3)
(Table 2). Therefore, understanding the role of these three RNAs in
RPE lesions may help us to understand the development of DR.

miRNA-Mediated Mechanism
Currently, miRNAs have been reported to play a key role in
regulating RPE apoptosis, proliferation, and migration.
Frontiers in Endocrinology | www.frontiersin.org 5
Abnormally expressed miRNAs promote pathological changes
in the retinal pigment epithelium by activating different signaling
pathways. Some miRNAs play a role in promoting RPE damage.
For example, miR-132 is highly expressed in the HG
environment and targets occludin to activate the JAK/STAT3
pathway, which increases the mobility and permeability of RPE
and decreases its survival rate (82). Suppressors of cytokine
signaling (SOCS3) are involved in the endoplasmic reticulum
stress pathway of tumor cells (90). Under hypoxic conditions
induced by high glucose, Mi-203a-3p can perform targeted
inhibition of the expression of SOCS3 and promote RPE
apoptosis (91). As a target of miR-218, the transcription factor
Runx2 is inhibited, promoting RPE apoptosis in the HG state
(92). The transcription factor NFE2 can directly upregulate the
activity of miR-423-5p, regulate the expression of TFF1 in RPE
cells in the HG environment, and activate the NF-kB pathway,
aggravating RPE damage (85). This result suggests that the
NFE2/miR-423-5p/TFF1 axis plays a role in HG-induced
apoptosis in RPE. Similarly, miR-217 can downregulate the
expression of SIRT1, aggravate the inflammatory response of
RPE and activate the NF-kB signaling pathway (93). Zhao et al.
found that inhibiting the expression of miR-219-5p can
significantly increase the activity of RPE. The damaging effect
of miR-219-5p on RPE may be caused by the activation of Wnt/
b-catenin by LRH-1 (83), while LRH-1 plays a key role in the
regulation of apoptosis (94).
TABLE 1 | The role of miRNA, lncRNA and circRNA in DR and their mechanisms through vascular endothelial cell and targets.

ncRNA Name Dysregulation Possible signaling pathways Pathogenic functions Reference

circRNA circ_001209 upregulated miR-15b-5p/COL12A1 promote invasion, migration and angiogenesis of HRVECs (52)
circHIPK3 upregulated MiR-30a-3p promote cell viability, proliferation, migration, and tube

formation of HRMECs
(53)

circCOL1A2 upregulated miR-29b/VEGF promote proliferation, migration, angiogenesis and vascular
permeability of HRMECs

(54)

hsa_circ_0002570 upregulated miR-1243/angiomotin promote invasion, migration and angiogenesis of HRMECs (55)
circ001897 upregulated miR-30-3p promote proliferation and migration of HRVECs (56)

lncRNA MALAT1 upregulated miR-203a-3p, GRP78, miR‐200b‐3p/
VEGFA

promote migration and angiogenesis of HRMECs (61–64)

linc00174 upregulated miR-150-5p/VEGFA promote proliferation, migration and angiogenesis of HRMECs (65)
SNHG16 upregulated miR-146a-5p/IRAK1, miR-7-5p/IRS1, NF-

kB, PI3K/AKT
promote the angiogenesis of HRMECs (66, 67)

TPTEP1 downregulated STAT3/VEGFA inhibit viability, migration, and angiogenesis of HRVECs (68)
MEG3 downregulated miR-19b/SOCS6, JAK2/STAT3 inhibit apoptosis and inflammation of HRMECs (69)

miRNA miR-29b-3p upregulated SIRT1, PDGFB, VEGFA promote apoptosis of HRMECs (33, 34)
miR-20a downregulated YAP/HIF1a/VEGFA promote proliferation and angiogenesis of RMECs (35)
miR-199a-3p downregulated VEGF/PI3K/AKT inhibit migration and angiogenesis of HRMECs (36)
miR-203a‐3p downregulated VEGFA and HIF‐1a inhibit proliferation, migration and angiogenesis of HRMECs (37)
miR-15b downregulated VEGFA inhibited proliferation of HRMECs (38)
miR-9 downregulated VEGFA inhibit proliferation and angiogenesis of RMECs (39)
miR-152 downregulated Lin28b/VEGF inhibit angiogenesis of HRMECs (40)
miR-183 upregulated BTG1, PI3K/Akt/VEGF inhibit proliferation and angiogenesis of RMECs (49)
miR-200a downregulated PDLIM1 inhibit viability, apoptosis and migration of HRMECs (41)
miR-148a-3p downregulated TGFb2 and FGF2 inhibit apoptosis and angiogenesis of HRMECs (42)
miR-29a upregulated Col IV promote proliferation and angiogenesis of HRMECs (44)
miR-29a/b downregulated Notch2 inhibit endothelial-mesenchymal transition of HRMECs (45)
miR-590-3p downregulated NLR,NOX4/ROS/TXNIP/NLRP3 inhibit pyroptosis of HRMECs (46)
miR-138-5p downregulated NOVA1 inhibit proliferation of RMECs (47)
miR-384‐3p downregulated HK2 inhibit proliferation and tube formation of RMECs (48)
miR-21-5p upregulated maspin, PI3K/AKT, ERK promote proliferation and angiogenesis of HRMECs (50)
miR-221 upregulated SIRT1/Nrf2 promote apoptosis of HRMECs (51)
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In addition to the abovementioned miRNAs that promote
RPE damage, the expression of some miRNAs will also protect
RPE in the DR state. HG induction downregulates miR-200-3p
in RPE, and further research proves that miR-200-3p can reduce
the inflammatory effect by inhibiting the TGF-b2/Smad signaling
pathway, which provides a new target for DR treatment in the
clinic (87). miR-411 plays a protective role in HG or RPE in a
hypoxic state. It can downregulate the expression of ROBO4 and
reduce the permeability of RPE, thereby improving the survival
rate of RPE (88). Another study showed that ROBO4 in RPE can
be inhibited by miR-125b-5p in the HG state, while ROBO4 in
RPE can be inhibited by miR-146a-5p in the hypoxic state (89). It
is suggested that different stresses in the HG state will lead to the
activation of different signaling pathways in RPE, and miR-411,
Frontiers in Endocrinology | www.frontiersin.org 6
miR-125b-5p, and miR-146a-5p may all target ROBO4 to protect
RPE. A previous article showed that miR-203a-3p targeting
SOCS3 damages PRE, but another study found that SOCS3 is
also the target of miR-455-5p, and overexpression of miR-455-5p
can downregulate SOCS3 to protect RPE (84). Under HG
conditions, the RPE glycolytic pathway is in a disordered state,
and miR-125b can target hexokinase 2 (HK2), reducing the
glycolytic activity of RPE to delay the progression of DR (86).

CircRNA-Mediated Mechanism
CircRNAs play an important role in the process of RPE lesions
by virtue of their biological properties. CircRNAs can regulate
the function and state of cells through a variety of biological
functions, such as interacting with proteins or serving as
FIGURE 3 | Schematic overview of miRNAs, lncRNAs, and circRNAs affecting RPE and contributing to the pathogenesis of DR.
TABLE 2 | The role of miRNA, lncRNA and circRNA in DR and their mechanisms through retinal pigment epithelial cell and targets.

ncRNA Name Dysregulation Possible signaling
pathways

Pathogenic functions Reference

circRNA circ_0084043 upregulated miR-128-3p/TXNIP, Wnt/b-
Catenin;
miR-140-3p/TGFA

promote viability inhibition, apoptosis promotion, and inflammatory
response of RPEs;
promote cell apoptosis of RPEs

(74, 75)

circ_0000615 upregulated miR-646/YAP1 promote cell apoptosis, inflammation oxidative stress of RPEs (76)
has_circ_0041795 upregulated miR-646/VEGFC promote cell apoptosis of RPEs (9)
circ-ITCH downregulated MMP-2, MMP-9,

miR-22
inhibit the neovascularization and inflammation of RPEs (77)

lncRNA lncRNA HOTAIR upregulated VEGF-A promote oxidative stress and modulating epigenetic of RPEs (78)
LncRNA BDNF-
AS

upregulated BDNF promote apoptosis of RPEs (79)

LncRNA Gas5 downregulated SERCA2 inhibit ER stress, apoptosis and inflammation of RPEs (80)
LncRNA MEG3 downregulated miR-34a/SIRT1;

VEGF
inhibit apoptosis and secretion of inflammation cytokines of RPEs;
inhibit development of diabetic retinopathy of RPEs

(81)

miRNA miR-132 upregulated occludin, JAK/STA T3 promotes regulate cell viability, mobility and permeability of RPEs (82)
miR-219−5p upregulated LRH-1/Wnt/b-Catenin promote apoptosis of RPEs (83)
miR-203a-3p upregulated SOCS3 promote apoptosis of RPEs (84)
miR-423-5p upregulated NFE2/miR-423-5p/TFF1 promote apoptosis of RPEs (84)
miR−217 upregulated SirT1 promote apoptosis of RPEs (85)
miR-125b downregulated HK2 inhibit apoptosis of RPEs (86)
miR-200-3p downregulated TGF-b2/Smad inhibit cell proliferation and reduces apoptosis of RPEs (87)
miR-411 downregulated ROBO4 inhibit apoptosis of RPEs (88)
miR-146a-5p downregulated ROBO4 inhibit decreased cell viability, enhanced permeability, and increased cell

migration of RPEs
(89)

miR-455-5p downregulated SOCS3 inhibit oxidative stress of RPEs (84)
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translation templates. However, current evidence has shown that
amid the regulation of RPE pathological changes, circRNAs are
mainly used as miRNA sponges to regulate the expression level
of downstream proteins, thereby utilizing the regulatory network
in the process. circ-ITCH was found to be circRNA that was
abnormally downregulated in RPE in DR rats (77). circ-ITCH
can reduce the expression of miR-22 through sponging miR-22,
inhibiting important regulators of angiogenesis, such as matrix
metalloproteinases-2 (MMP-2) andMMP-9, and the expression of
tumor necrosis factor a (TNF-a) together with other
inflammatory factors, alleviating the pathological trend of DR.
Qiang et al. (76) discovered a stable circRNA with increased
expression under the induction of HG—circ_0000615 that has a
miR-646 binding site, which can downregulate the expression level
of miR-646 in a targeted manner. After knocking out the
circ_0000615 gene, Bcl-2 increased, the activity of Bax and C-
caspase3 decreased, the viability of HG-induced RPE cells was
restored, the inflammatory response was weakened, and the
expression of proinflammatory cytokines decreased (TNF-a, IL-
1b, and IL-6). YAP1 is a key effector of the Hippo pathway, and it
plays an important role in regulating cell survival (95). Studies
have found that YAP1 is a downstream targeted regulatory protein
of miR-646. Upregulation of miR-646 can antagonize the
inhibition of YAP1 expression after overexpression of
circ_0000615, promoting the repair of endothelial cells. Another
study on circRNA (9) found that miR-646 has different signal
transduction pathways in HG-treated RPE. In this study, miR-646
could be sponged by hsa_circ_0041795 to downregulate the
expression, and miR-646 could interact with VEGFC to
downregulate the expression of VEGFC. In HG-induced RPE,
the overexpression of hsa_circ_0041795 increased VEGFC by
downregulating miR-646, which ultimately promoted RPE
apoptosis, accelerating the progression of DR. Different
circRNAs can regulate the pathological process of RPE through
common miRNA, and the same circRNA can also play a role in
DR through different miRNAs. Li et al. found (74) that the activity
of circRNA_0084043 was significantly upregulated under HG
induction and promoted ARPE-19 cell proliferation, HG-
induced apoptosis, oxidative stress and inflammatory reactions.
Further experiments proved that circRNA_0084043 can target
miR-140-3p, which indirectly regulates the expression level of
transforming growth factor-A (TGF-A). In the study of Zhang
et al. (75), after RPE was treated with HG, the activity of
circ_0084043 was upregulated, and the expression of miR-128-
3p was inhibited by sponging. TXNIP proved to be a downstream
regulator of miR-128-3p. In addition, circRNA_0084043 regulates
the Wnt/b-catenin signaling pathway through the miR-128-3p/
TXNIP axis. TheWnt/b-catenin signaling pathway is related to the
promotion of inflammation and vascular exudation and is
involved in the progression of DR (96).

LncRNA-Mediated Mechanism
Many lncRNAs have been shown to aggravate RPE damage in
the HG environment, suggesting that they play an important role
in the development of DR. VEGF is a key factor in the formation
of new blood vessels during the development of DR, plays an
important role in diabetic macular edema and is currently one of
Frontiers in Endocrinology | www.frontiersin.org 7
the targets of DR treatment (97). Some lncRNAs in RPE can act
on VEGF in different ways to regulate the progression of DR.
Research (78) discovered that under HG conditions, the
expression of lncRNA HOTAIR in the cytoplasm and nucleus
of RPE increased. After inhibiting its expression, the expression
of a variety of transcripts related to angiogenesis (VEGF-A, ET-1,
ANGPTL4, PGF, HIF-1a) and epigenetic regulation (EZH2,
SUZ12, DNMT1, DNMT3A, DNMT3B, CTCF, P300) was
downregulated, which improved cell survival. In addition,
HOTAIR can dynamically regulate the levels of RNA
polymerase II and acetylation factor (P300) in the distal and
proximal promoter regions of its downstream target VEGF-A by
interacting with histone-modifying enzymes, which promotes
the epigenetic activation of VEGF-A, leading to the
overexpression of VEGF-A and the formation of new blood
vessels. Moreover, HOTAIR is also related to vascular
permeability in DR, suggesting that lncRNAs may function in
the nonproliferative stage. Another study showed that there was
a decrease in the expression level of lncRNA MEG3 in the serum
of DR patients, and the serum VEGF level was significantly
higher than the normal level. Cell experiments have found that
the overexpression of MEG3 has a negative regulatory effect on
the expression level of VEGF, but the specific form of VEGF
regulation has not been clearly studied (81). SERCA is a key
molecule for the cytoplasm and endoplasmic reticulum to carry
out Ca2+ transfer and maintain Ca2+ homeostasis (98), and it can
regulate Ca2+-related signaling pathways. The lncRNA Gas5/
SERCA axis was proven to regulate endoplasmic reticulum
stress, the inflammatory response, and apoptosis of RPE cells
treated with HG, and both Gas5 and SERCA were expressed at
low levels in RPE cells treated with HG (80), suggesting that these
signaling pathways may act as a protective factor for RPE to
inhibit the progression of DR. Brain-derived neurotrophic factor
(BDNF) is a type of nerve growth factor that is abundantly
expressed in the brain and peripheral system and plays a role in
promoting DR (79, 99). LncRNA BDNF-AS is highly expressed
in HG-induced RPE and acts on BDNF mRNA to inhibit BDNF
expression and promote cell apoptosis (79). In summary, these
lncRNAs that play a role in RPE lesions induced by HGmay have
potential therapeutic effects. Reversing its expression level may
delay the damage process of RPE.
miRNAs AND lncRNAs AFFECT THE
DEVELOPMENT OF DR THROUGH
RETINAL NERVE CELLS

The retinal tissue is composed of blood vessel tissue, neurons,
and supporting glial cells. These cells interact to form a structure
called the neurovascular unit (NVU) (100). DR has two
interrelated components: diabetic retinal neurodegeneration
(DRN) and diabetic retinal vascular disease (DRV) (101).
Nerve cell apoptosis of ganglion, amacrine and Müller cells
and activation of microglia occur in DRN (102). Diabetic
patients with early DR, or even before the occurrence of DR,
have neurodegeneration such as thinning of the ganglion cell
November 2021 | Volume 12 | Article 771552
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layer (GCL) and retinal nerve fiber layer (RNFL) (103, 104).
Previous studies have shown that miRNAs, lncRNAs, and
circRNAs can affect the progression of neuropathy in the
process of DR (Figure 4). We summarized these related
research results to provide new ideas for the study and
treatment of DR from the perspective of neuropathy.

Previous studies have shown that miRNAs may be involved in
the degeneration of Müller cells caused by DR. For example,
upregulating the expression of miR-486-3P can protect Müller
cells from oxidative stress, inflammation and apoptosis in the
HG state and inhibit the TLR4/NF-kB axis (105). Aquaporin-4
(AQP4) can promote the diffusion of water in the cell membrane,
and miR-320a can promote the internalization of AQP4,
alleviating the edema of Müller cells under hypoxic stress, and
may be a potential therapeutic target (106). miR-29a/bs, which
are affected by Gli1 and downregulated in the HG state, all target
FOXO4 and bind to FOXO4 mRNA to negatively regulate its
expression, aggravating the damage to retinal Müller cells (107).
The gliosis of Müller cells is positively correlated with the
expression of miR-365. In the HG state, miR-365 can
downregulate the expression of TIMP3 to promote retinal
oxidative stress and gliosis and aggravate DR disease (108).
Zhang et al. explored the role of miRNA in retinal ganglion
cells and found that miR-495 is involved in ganglion cell
apoptosis in the HG state. From a mechanistic point of view, it
may be that miR-495 affects the transmission of PTEN/Akt
Frontiers in Endocrinology | www.frontiersin.org 8
signaling by targeting Notch1, aggravating the damage to
ganglion cells (109). S100A12 is a member of the calcium
binding protein family. The level of plasma S100A12 relates to
the presence of DR, which can activate the inflammatory
response of immune cells (110). S100A12 can inhibit the
expression of miR-30a, and miR-30a activates retinal microglia
in an NLRP3-dependent manner and promotes the progression
of DR (111).

Recently, the role of lncRNAs in Müller cells was studied
(Table 3). OGRU is a type of lncRNA that is highly expressed in
Müller cells in the DR state and aggravates the oxidative stress of
Müller cells. Exploration of this mechanism has found that OGRU
can regulate the expression of USP14 by downregulating miR-320.
USP14 directly prevents the ubiquitination and degradation of
transforming growth factor-b1 receptors (113). c-myc is the factor
that regulates inflammatory mediators (115). In Müller cells, the
promoter of lncRNA MIAT can be activated by c-myc. The
overexpression of TXNIP caused by upregulated MIAT further
activates inflammatory factors (IL-1b, TNF-a and IL-6),
aggravating Müller cell damage induced by HG (112). However,
another study found that MIAT has a highly homologous target
sequence with miR-29b, which can negatively regulate the level of
miR-29b and regulate Müller cell apoptosis in DR through the
miR-29b/Sp1 axis (116). In addition to the damaging effect,
lncRNAs also play a protective role in the nerve cells of DR. For
example, upregulating the expression of NEAT1 in Müller cells in
FIGURE 4 | Schematic diagram of the mechanism by which miRNAs and lncRNAs affect Müller cells and participate in the development of DR.
TABLE 3 | The role of miRNA ln and lncRNA in DR and their mechanisms through müller cell and targets.

ncRNA Name Dysregulation Possible signaling pathways Pathogenic functions in Müller cells Reference

lncRNA MIAT upregulated TXNIP, miR-29b/Sp1 promote inflammation and apoptosis (112)
OGRU upregulated miR-320/USP14 promote oxidative stress and inflammation (113)
NEAT1 downregulated miR-497/BDNF inhibit apoptosis (114)

miRNA miR-486-3p downregulated TLR4/NF-kB inhibit oxidative stress, inflammation, apoptosis and angiogenesis (105)
miR-320a downregulated AQP4 inhibit hypoxia injury (106)
miR-29a/b downregulated FOXO4 decreased the glutamate level (107)
miR-365 upregulated Timp3 promote oxidative stress (108)
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the HG state can downregulate miR-497 and increase the
expression of BDNF, hindering the damaging effect of HG on
Müller cells (114). Some lncRNAs can directly change the
morphology of photoreceptors, such as MALAT1, which is
upregulated through DR induction, which makes cones appear
sparsely arranged and assumes the form of relatively short outer
segments. This specific signaling pathway, however, has not been
explored (117).

The abnormal expression of circRNA has been shown to be an
intermediatephase ina varietyof signalingpathways involved in the
process of diabetic peripheral neuropathy, especially peripheral
nerve pain (118). For example, knocking out circHIPK3 can restore
the expressionofmiR-124, inhibit neuroinflammation and alleviate
neuralgia in diabetic rats (119). However, the role of circRNA in
nerve cell damage caused byDRhas not been verified, and itmay be
a new research direction.
CONCLUSION

DR is a complicationof diabetes causedbymultiple risk factors, and
its pathogenesis is complex. A thorough understanding of the
molecular mechanism of DR will help determine new and
effective diagnostic and therapeutic targets. In recent years,
researchers have discovered that miRNAs, circRNAs, and
lncRNAs play an important role in many fields, such as tumors,
chronic diseases and related complications. This article reviews
some RNAs and their molecular mechanisms that play an
important role in the DR progression process of retinal
microvascular endothelial cells, retinal pigment epithelial cells
and retinal nerve cells. The vast majority of circRNAs and
lncRNAs are used as upstream regulators of miRNAs to
downregulate the expression of miRNAs, which in turn affects the
pathological process of different cells. VEGF is the intersection of
many RNAs in DR-related signaling pathways and has an
important influence on the DR process. Although a variety of
miRNAs, circRNAs, and lncRNAs have been found to be
involved in DR disease, such as oxidative stress and endothelial
dysfunction, the mechanism of action of many ncRNAs is still
unclear, and the same ncRNA may play different roles in different
models. Therefore, it is necessary to further study their mode of
action in the etiology and pathology of the disease to clarify their
role in the pathogenesis of DR. However, a standard for estimating
ncRNAactivityhas not beenestablished, andwhich specificncRNA
plays a dominant role in regulation needs to be further studied. The
ultimate goal of basic research is to solve the problems encountered
in clinical work. A deep understanding of these three ncRNAs will
help develop new strategies to effectively treat this disease and
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reduce the chance of blindness due to the progression of
retinopathy. The goal of molecular therapy targeting retinal
pigment epithelial cells and nerve cells is to inhibit their
apoptosis, and for microvascular endothelial cells, the proportion
of their apoptosis and regeneration must be controlled. Excessive
apoptosis and regeneration will aggravate the progression of DR.

There are some shortcomings in the current research on these
three types of RNA. First, DR is a chronic disease. In the process
of HG-induced cell modeling, it is impossible to simulate the
actual situation of the retinal microcirculation of diabetic
patients. Optimizing existing experimental methods to simulate
HG-induced lesions as much as possible may be more helpful for
clinical treatment. Studies on the early stage of DR are not as
comprehensive as those on PDR. Second, there are few studies on
circRNAs in DR, especially on the mechanism in retinal
neuropathy, and the functions of circRNAs, other than miRNA
sponges, have not been explored in DR. Finally, most of the
exploration targeting RNAs in retinal neuropathy is focused on
Müller cells, while there are few studies on rods, cones, bipolar
cells, and ganglion cells. Given that neuropathy exists in the early
stages of DR, it may emerge as a relatively influential therapeutic
target. In summary, the deficiencies of current research may offer
directions for future exploration and contribute to the
improvement of the understanding of the pathogenesis of DR.
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