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Abstract: Myelofibrosis (MF) is the most symptomatic form of myeloproliferative neoplasm and
carries the worst outcome. Allogeneic hematopoietic stem cell transplantation is the only therapy
with potential for cure at present, but is limited by significant mortality and morbidity. JAK inhibition
is the mainstay of treatment for intermediate- and high-risk MF. Ruxolitinib is the most widely used
JAK1/2 inhibitor and provides durable effects in controlling symptom burden and spleen volumes.
Nevertheless, ruxolitinib may not adequately address the underlying disease biology. Its effects
on mutant allele burden, bone marrow fibrosis, and the prevention of leukemic transformation are
minimal. Multiple small molecules are being tested in multiple phase 2 and 3 studies as either
monotherapy or in combination with JAK2 inhibitors. In this review, the role of LSD1/KDM1A
inhibition as a potential disease-modification strategy in patients with myelofibrosis is described
and discussed.
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1. Introduction

Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders
sharing mutations that constitutively activate the signal-transduction pathways involved
in hematopoiesis [1]. They are characterized by stem cell-derived clonal myeloproliferation.
The classical Philadelphia (Ph) chromosome-negative MPNs comprise polycythemia vera
(PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), and are associated
with the driver genes JAK2, CALR, and MPL. PMF is characterized by reticulin fibrosis,
abnormal cytokine-mediated systemic symptoms, anemia, hepatosplenomegaly, and a
propensity for progression to AML. Patients with PV and ET may progress to post-PV
(PPV) and post-ET (PET)—myelofibrosis (MF), respectively. The incidence of PV, ET,
and PMF is approximately 0.4 to 2.8, 0.38 to 1.7, and 0.1 to 1.0 per 100,000 persons per
year, respectively [2]. MPNs generally affect the middle-aged, with the median age at
presentation of PV, ET, and PMF being 65, 68, and 70 years, respectively [3]. Patients
with MF carry the worst prognosis [4,5]. Median survival for PV, ET, and PMF is 14, 20,
and 5.7 years respectively [6–8]. Allogeneic hematopoietic stem cell transplantation is the
only therapy with potential for cure at present, but is limited by significant mortality and
morbidity [9]. Thus, JAK inhibition is the cornerstone of treatment for intermediate- and
high-risk MF. Ruxolitinib is the most widely used JAK1/2 inhibitor, provides durable effects
in controlling patient symptoms and spleen volumes, and may prolong survival [10–16].
Nevertheless, the effect of ruxolitinib on mutant allele burden, bone marrow fibrosis, and
the prevention of leukemic transformation has been little observed. Even the three other
JAK2 inhibitors—fedratinib, pacritinib, and momelotinib—may not address all the unmet
needs in patients with MF, especially in the second-line setting and the setting of disease
modification [17–20]. Multiple “non-JAK inhibitor” molecules are being tested in phase
2 and 3 studies, either as monotherapy or in combination with JAK2 inhibitors [20,21].
In this review, the role of LSD1/KDM1A inhibition as a potential disease-modification
strategy in patients with myelofibrosis is appraised.
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2. Mutations in Epigenetic Regulators in Myelofibrosis

With the advent of next-generation sequencing and whole-genome analyses in myeloid
malignancies, mutations in DNA methylation genes (TET2, DNMT3A, IDH1/2), histone
modification genes (EZH2, ASXL1), RNA splicing factors (SRSF2, SF3B1, U2AF1, ZRSR2),
and transcription factors (TP53, CUX1, IKZF1, ETV6, RUNX1) have been described in
MPNs [22–24]. Nevertheless, these mutations are not restricted to MPNs, and are also
seen in myelodysplastic syndrome (MDS), AML, and other myeloid malignancies. These
mutations are involved in the phenotypic and disease evolution of MPNs. TET2 (10–20% of
MPNs) and DNMT3A (5–10% of MPNs) have been found to precede JAK2V617F mutations,
and have a central role in self-renewal and disease initiation in MPN hematopoietic stem
cells (HSCs) [25–32]. The role of DNMT3A and TET2 in the progression to MF or secondary
AML is yet to be elucidated. EZH2 mutations are seen in 5% to 10% of PMF and portend
a poor prognosis [33]. In murine MPN models, Ezh2 loss modifies phenotype and is
associated with disease progression [34–36]. Mutations in ASXL are seen in 25% of PMF
and are associated with worse outcomes [37–39]. Loss-of-function mutations in ASXL1 are
associated with a higher risk of leukemic transformation. In murine models, Asxl1 loss
is associated with dysplasia, cytopenia, and defective HSC self-renewal [40,41]. SRSF2
mutations are mostly restricted to ET and PMF and associated with poor outcomes [42].
They are especially enriched in patients with secondary AML from preceding MF. TP53
mutations are uncommon in PMF or other MPNs in the chronic phase. However, they
are found in up to 50% of patients with secondary AML and are often associated with
ASXL1, SRSF2, IDH1/2, CBL, and LNK mutations [43,44]. They are especially common in
secondary AML from preceding post-PV or post-ET MF and are associated with DNMT3A
mutations. Other mutations associated with late events in the clonal progression of MPNs
and secondary AML include RUNX1, FLT3-ITD, NRAS, NF1, IKZF1 and CUX1 [45,46].
Mutations in epigenetic regulators and transcription factors are often associated with
advanced MF and increased risk of progression [27,28,47–49]. Manipulation of these
genetic alterations may offer an additional therapeutic option in patients with an otherwise
dismal outcome, and targeting epigenetic regulators with novel agents may potentially
alter disease biology in MF (Figure 1).Cells 2022, 11, x FOR PEER REVIEW 3 of 12 
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Figure 1. Mechanism of actions of novel agents targeting epigenetic regulators. (A) Removal
of methyl groups by LSD1, inhibiting p53 methylation and abrogating cellular apoptosis. LSD1
inhibitor antagonizes LSD1 to restore tumor-suppressive effects of p53. (B) Anchoring of BET
proteins to acetylated lysine residues to activate NF-κB pathway. BET inhibitors block BET proteins
and the proinflammatory pathway to reduce synthesis of proinflammatory cytokines. (C) Removal
of acetyl groups by HDAC, decreasing tumor-suppressor gene transcription while deacetylating
HSP to aggravate JAK/STAT signaling pathway. This effect can be overcome by HDAC inhibitors.
(D) Aberrant phosphorylation of PRMT5 by JAK2V617F, leading to impaired methylation activity.
Thus, E2F is methylation for cell cycle progression and myeloproliferation. The aberrant activation
can be inhibited by an PRMT5 inhibitor. Me: methylation; Ac: acetylation; LSD1: lysine-specific
demethylase-1; BET: bromodomain and extraterminal domain; NF-κB: nuclear factor kappa-light-
chain enhancer of activated B cells; HDAC: histone deacetylase; TS genes: tumor suppressor genes;
HSP: heat shock protein; JAK: Janus kinase; STAT: signal transducer and activator of transcription;
PRMT5: protein arginine methyltransferase 5; E2F: E2F transcription factor 1.
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3. The Functional Role of LSD1 in Hematopoiesis

LSD1 is an essential gene, the loss of which leads to early embryonic lethality [50,51].
The protein also regulates the balance between self-renewal and proliferation [52]. Condi-
tional in vivo LSD1 knockdown using a doxycycline-inducible short hairpin LSD1 (shLSD1)
established LSD1 as a central regulator of HSPCs [53]. An inducible LSD1 knockdown
resulted in profound but reversible thrombocytopenia, neutropenia, and anemia with
concurrent monocytosis. LSD1 knockdown for 27 days led to an increase in circulating
multipotent progenitors and HSCs with a concomitant downregulation of chemokine
(C-X-C motif) receptor 4 (CXCR4) without affecting the size of the quiescent long-term
hematopoietic stem cell (HSC) pool [53].

LSD1 is a key regulator of the progression from pluripotency to terminal differentiation
and balancing self-renewal and proliferation [52,54]. LSD1 is recruited to promoters and
enhancers of genes essential for normal development by the transcription factors octamer-
binding transcription factor 4 (OCT4), SRY (sex determining region Y)-box 2 (SOX2), Nanog,
and the coactivator mediator. LSD1 maintains the pluripotency program allowing embry-
onic stem cells (ESCs) to differentiate. LSD1 is also essential for the complete shutdown
of ESC gene expression, as cells undergo transition to more differentiated cell states [54].
LSD1 plays a similar role during myelopoiesis, allowing commitment of progenitors to
specific myeloid lineages [55]. Enhancers essential for terminal myeloid differentiation
in lineage-specific progenitor cells are activated by the placement of H3K4me1 marks.
As progenitors commit to differentiation, LSD1 is significantly downregulated, allowing
enhancers and promoters to be gradually activated with progressive addition of methyl or
acetyl groups to H3K4 and H3K27, respectively [55].

4. LSD1 as an Epigenetic Regulator

Lysine methyltransferases and demethylases are able to catalyze N-methylation and
N-demthylation of histone (H) lysines (K) [56,57]. LSD1, or KDM1A, is an enzyme that
removes mono- and dimethyl groups from the histone H3 at the critical lysines K4 and
K9 [58]. Methylation of histone H3K4 and H3K9 is a posttranslational modification that
results in conformational change of chromatins [59,60]. Chromatins are a constellation of
nuclear macromolecules and comprise DNA, protein scaffolding, and enzymes that drive
RNA transcription and synthesis [61]. The DNA and its protein scaffold of histones form the
nucleosome. Each nucleosome comprises two copies of each of the four histone proteins—
H2A, H2B, H3, and H4—forming an octamer around which DNA is wrapped. The rates of
gene transcription are heavily influenced by the accessibility of transcription factors and
RNA polymerase complexes to template DNA at promoters and enhancers [59,60].

Histone and nucleic acid modifications provide binding sites for proteins and compo-
nents of the transcriptional machinery that affect transcriptional gene silencing or activation.
Histone modifications include acetylation (Ac), methylation (Me), phosphorylation (Ph),
and ubiquitination (Ub). LSD1 acts as an epigenetic regulator of gene expression by altering
the local state of the chromatin. Inhibition of LSD1 results in alteration of gene expression
and inhibits the maturation of JAK-STAT activated megakaryocytes and myeloid cells from
their progenitors. This also results in the inhibition of self-renewal potential of HSPCs
harboring the pathogenic driver mutations [62–64].

LSD also regulates nonhistone substrates [65]. LSD1 is localized to specific sites in
the genome through various transcription factors that bind DNA [54,66]. Transcription
activators, such as V-Myb avian myeloblastosis viral oncogene homolog (MYB) and steroid
hormone receptors, as well as repressors, such as growth factor independence 1 transcrip-
tion repressor (GFI1) and RE-1 silencing transcription factor (REST), recruit LSD1 to specific
locations on the genome [67,68]. LSD1 is part of a larger protein complex, containing
Co-RE-1 silencing transcription factor (CoREST), nucleosome remodeling and histone
deacetylase (NuRD), or other factors that determine cell- and site-specific chromatin re-
modeling [51,69]. These complexes may also include DNA methyltransferase 1 (DNMT1)
and histone deacetylases 1, 2, and 3 (HDAC1, 2, and 3) activities, all of which contribute to
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maintaining or modifying the epigenetic state at that genomic site [70,71]. Therefore, an
important property of LSD1 is its function as a scaffold for other proteins and epigenetic
enzymes that are corecruited to genomic sites. LSD1 bound to specific sites precludes the
binding of other factors that may influence transcription.

5. The Biological Role of LSD1 and the Effect of LSD1 Inhibitors in Murine Models
of MPNs

Overexpression of LSD1 messenger RNA (mRNA) and excess LSD1 protein have been
observed in various malignancies, including neuroblastoma, squamous-cell carcinoma,
Ewing sarcoma, AML, neuroendocrine tumors, breast cancer, prostate cancer, bladder
cancer, small-cell lung cancer, and colorectal cancer [63,64,67,72–74]. In MPNs, LSD1 is
overexpressed, mainly in the megakaryocytes, erythroid precursors, and to a certain extent
in in the early myeloid series [75]. Treatment of various malignant cell types in vitro with
LSD1 inhibitors suppresses tumor growth, reduces their invasiveness, reduces clonogenic
potential, eliminates cancer stem cells, induces markers of differentiation appropriate to the
cell lineage, and induces apoptosis [76–78]. In various models of mouse leukemia, treatment
with LSD1 inhibitors induced monocytic markers of differentiation, reduced clonogenic
potential of leukemia-initiating cells (LICs), and induced apoptosis [78]. LSD1 is expressed
in a high proportion of leukemic myeloblasts [79,80]. LSD1 gene expression is among the
highest in the malignant myeloid stem and progenitor cell population [77,78]. LSD1 plays
a direct role in regulating pathogenic JAK-STAT signaling pathways. The key MPN driver
genes JAK2V617F, CALR, and MPL activate JAK-STAT signaling via phosphorylation of
STAT3, STAT5, and transcription factors, which activate specific genes with pleiotropic
effects [81]. STAT3 activity is modulated by methylation on lysine (K140) and is one of the
substrates for LSD1 [82]. Proof-of-concept studies have been performed on well-established,
preclinical mouse models of MPNs (JAK2V617F, MplW515L). LSD1 inhibition in MplW515L

mice markedly suppressed myeloproliferation, reducing leukocyte and platelet counts.
Spleens in animals treated with LSDi showed a dose-proportional decrease in weight.
Histologically, a marked reduction in myeloid proliferation was demonstrated in the bone
marrow and the spleen alongside a reversal of extramedullary hematopoiesis (EMH).
Intriguingly, there was marked reduction in the degree of bone marrow reticulin fibrosis
with LSD1 inhibition. LSD1 inhibition also significantly reduced serum inflammatory
cytokine concentrations, in particular the plasma concentration of the chemokine (C-X-C
motif) ligand 5 (Cxcl5 or IL-8 in humans), a key mediator of the inflammatory state seen in
MPNs. In these mouse models, a reduction in mutant allele burden of driver mutations
was also demonstrated. The observation of reduction in the degree of marrow fibrosis and
the mutant allele burden of driver genes support the proposition that targeting LSD1 may
induce disease modification in MPNs.

6. Clinical Data of LSD1 Inhibitors in Myelofibrosis

Given the important roles that LSD1 plays in carcinogenesis, various LSD1 inhibitors
have been evaluated in clinical trials. Some of the reported LSD1 inhibitors include tranyl-
cypromine (TCP or PCPA), ORY-1001 (iadademstat), GSK-2879552, IMG-7289 (bomedem-
stat), INCB059872, CC-90011, and ORY-2001 (vafidemstat). Bomedemstat (IMG-7289, Imago
Biosciences, San Francisco, CA) is the most extensively evaluated LSD1 inhibitor in myelo-
proliferative neoplasms. In JAK2V617F-postive MPN mice, daily dosing improved blood
counts, reduced spleen volumes, reduced marrow reticulin fibrosis, and reduced mutant
allele frequencies [83].

Bomedemstat is the only LSD1 inhibitor clinically evaluated in patients with advanced
myelofibrosis. In an ongoing phase 2 study in 89 patients with advanced MF, the efficacy
and safety of bomedemstat was confirmed [84,85]. Eighty-three percent of the patients had
a history of treatment failure with ruxolitinib, with 70% also receiving a second treatment
with an unfavorable experience. Thirty-seven percent of patients had received at least one
red cell transfusion prior to dosing. The most frequently reported adverse event was throm-
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bocytopenia, an expected observation, given that dosing to grade 3 thrombocytopenia was
allowed. The commonest nonhematological toxicity was dysgeusia, reported in 33%, with
one discontinuation. Other serious adverse events (SAEs) were reported in 49% of the
patients. The most common SAEs, regardless of causality, were cellulitis, diverticulitis,
and pneumonia. There were no deaths related to the study drug. The efficacy endpoints
were reduction in spleen volume and reduction in total symptom scores (TSS) using the
MPN symptom assessment form (SAF). At 24 weeks, 64% of patients had a decrease in
spleen volume, with 6% of patients having more than 35% reduction. In patients with a
high symptom burden (TSS > 20), 65% had a decrease in TSS, and for 19% of patients, the
decrease in TSS was greater than 50%. By week 12, 44% of patients had an increase in
hemoglobin of 1 g/dL or more and 46% had stable hemoglobin. At the data cutoff point, of
21 patients, three had become transfusion-independent. The improvement in hemoglobin
is an intriguing observation and is likely to address the issue of anemia associated with
ruxolitinib. A possible explanation for this observation is that the modulation of transcrip-
tion by LSD1 is lineage-specific or that expression of the γ-globin gene is altered with LSD1
inhibition [86,87]. Eighty-five percent of patients had stable or improved fibrosis score of at
least one grade. Patients with an elevated inflammatory chemokine, such as chemokine
ligand 5 (CCL5), had a measurable decrease into normal concentrations. The mutant allele
frequencies (MAF) of driver and nondriver mutations among the 261 genes were serially
sequenced. Fifty-two percent of patients had a decrease in MAF, with ASXL1 being the
most sensitive to bomedemstat. No patient progressed to secondary AML in this study.

7. Conclusions and Future Perspectives

As we progress to the era of novel therapies that could alter disease biology, there is a
need to utilize end points that inform us how these novel agents could alter the disease
trajectory (Table 1). The current data available from clinical studies support the definition
of disease modification that comprises clinically meaningful improvement in survival,
reduction in the risk of leukemic transformation, restoration of normal hematopoiesis,
significant reduction in bone marrow fibrosis, and reduction in the clonal burden of the
disease. Achieving disease modification will ultimately lead to beneficial effects in tradi-
tional outcome measures, such as symptom improvement and control of splenomegaly.
In spite of the limited disease-modifying effect of JAK inhibitors, the JAK-STAT pathway
remains pivotal. This is supported by the modest effect of single-agent bomedemstat on
spleen volume. Treatment strategies combining JAK inhibitors and novel agents, such as
bomedemstat, will provide synergic effects in improving outcomes and altering disease
biology. The selection of JAK inhibitors to be used with bomedemstat should take into
account the disease characteristics and clinical needs, such as the presence of anemia (where
fedratinib or momelotinib could be considered) or thrombocytopenia (where pacritinib
could be considered). Based on the effect of LSD1 inhibition on erythropoiesis, it will also
be intriguing to observe if bomedemstat can circumvent anemia caused by ruxolitinib.
In addition, the impressive responses seen with bomedemstat in patients with essential
thrombocythemia [88] suggest that LSD1 inhibitors could potentially be beneficial when
used earlier in MF, such as in prefibrotic or early PMF, an area that is yet to be explored.

Table 1. Selected novel agents showing improvement in surrogate markers for disease modification
in myelofibrosis, either as single agent or in combination with ruxolitinib.

Class Drug Study
Population Design SVR35 at

24 Weeks
TSS50 at
24 Weeks

Anemia
Response

VAF
Reduction

BM Fibrosis
Reduction

LSD1 inhibitor Bomedemstat
[84,85]

Ruxolitinib
exposed: 83%

(74/89)
N = 89

Phase 2
(ongoing)

Single-agent
bomedemstat

6% (3/50) 19% (5/26)

In TD patients:
52% (11/21)
had stable or

reduced
transfusion
burden; 14%

(3/21)
became TI

VAF reduction
52% (36/69),

most
frequently in

JAK2V617F

and/or ASXL1

31% (16/52)
improved by

1 grade
50% (26/52)

stable
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Table 1. Cont.

Class Drug Study
Population Design SVR35 at

24 Weeks
TSS50 at
24 Weeks

Anemia
Response

VAF
Reduction

BM Fibrosis
Reduction

BET inhibitor
Pelabresib

(MANIFEST)
[89,90]

Both JAKi
exposed and
JAKi naïve,

N = 271

Phase 1/2
(ongoing)

Arm 1:
JAKi exposed
(pelabresib)
Arm 2: JAKi

exposed
(pelabrasib +
ruxolitinib)

Arm 3:
JAKi naïve

(pelabresib +
ruxolitinib)

Arm 1: 11%
(7/64)

Arm 2: 20%
(16/81)

Arm 3: 68%
(57/84)

Arm 1: 28%
(18/64)

Arm 2: 37%
(30/81)

Arm 3: 56%
(46/82)

Arm 1: In TD
patients, 16%

(4/25)
became TI

Arm 2: In TD
patients, 36%

(13/36)
became TI
Arm 3: In

patients with
Hb < 10 g/dL;
Hb improved

by 1 g/dL

Not reported

Arm 1: 23%
(7/30)

improved at
24 weeks

Arm 2: 25%
(9/36)

improved at
24 weeks

Arm 3: 31%
(16/52)

improved at
24 weeks

Telomerase
inhibitor

Imetelstat
(IMBark) [91]

JAKi exposed
N = 59

Phase 2
(complete)

Single-agent
imetelstat

10.2% (6/59) 32.2% (19/59)

In TD patients,
25% (3/12)

became
transfusion-
independent

42% had ≥25%
reduction

in VAF

41% (15/37)
had reduction
in BM fibrosis

BH3 mimetic;
Bcl-2/Bcl-XL

inhibitor

Navitoclax
(REFINE) [92]

Ruxolitinib
exposed
N = 174

Phase 2
(ongoing)

Navitoclax
+/−

ruxolitinib

27% (9/34) 30% (9/34)

In TD
patients or

patients with
Hb < 10 g/dL;
TI or ≥ 2 g/dL
in 64% (7/11)

46% (12/26)
had >10%
reduction

in VAF

21% (7/34)
had BM
fibrosis

reduction at
24 weeks

MDM2
inhibitor

Navtemadlin
(BOREAS) [93]

JAKi exposed
N = 113

Phase 2
(ongoing)

Single-agent
navtemadlin

Not reported Not reported Not reported
34% had ≥20%

reduction
in VAF

27% ≥ 1 grade
reduction in
BM fibrosis

Hypomethylating
agent Azacitidine [94] JAKi naïve

N = 60

Phase 2
Ruxolitinib +
azacitidine

NR 54% (25/46)
In TD patients,

20% (1/5)
became TI

81% (13/16)
had reduction
in JAK2V617F

VAF at
24 weeks

57% (8/14)
had reduction
in BM fibrosis

at 24 weeks

SVR35: ≥35% reduction in spleen volume from baseline to 24 weeks; TSS50: ≥50% reduction in total symp-
tom score from baseline to 24 weeks; VAF: variant allele frequency; BM: bone marrow; LSD1: lysine-specific
demethylase 1; BET: bromodomain and extraterminal; Bcl-2: B-cell lymphoma 2; MDM2: murine double minute 2;
TD: transfusion-dependent; TI: transfusion-independent; JAKi: JAK inhibitor; Hb: hemoglobin; NR: not reported.
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