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Introduction

Congenital hypothyroidism (CH) is the most 
common congenital endocrine disorder, affecting 1 
in approximately 2,000–3,000 newborns worldwide 
(1). Systematic genetic studies have revealed that 
about 20% of CH patients have single-gene mutations 
(2–4). Each genetic defect differs in inheritance 
patterns, complications, and clinical courses. For 
example, thyroid hypoplasia due to PAX8 and NKX2-
1 mutations exhibit dominant inheritance, whereas 
thyroid dyshormonogenesis, such as DUOX2 and TG 
mutations, exhibits recessive inheritance (5). Central 
hypothyroidism is more common among boys than 
among girls because IGSF, the most frequently mutated 
gene, is located on the X chromosome (i.e., X-linked 
inheritance) (6).

Recently, genetic analysis has become a widely 
used method for making an etiologic diagnosis of CH 
at the molecular level. As a result, many rare genetic 
variants are being detected in the clinical setting. For 
some variants including common mutations, nonsense 
variants, frameshift variants, and variants in essential 
splice sites, it is easy for clinicians to interpret their 
pathogenicity. In contrast, assessing the pathogenicity 
of missense variants could be difficult if the variants are 
novel, and the effect of amino acid alteration is vague. To 
solve this difficulty, a number of in silico bioinformatic 
tools have been developed. They are based on amino acid 
sequence homology, machine learning, or integration 
of the results of multiple bioinformatic tools (7). Tools 
based on sequence homology use the information of 
amino acid sequence conservation for prediction, e.g., 
PolyPhen-2 performs a BLAST search of mutated and 
non-mutated sequences in the UniRef100 database and 

calculates the profile score based on multiple alignment 
results. Tools based on machine learning use various 
types of variant information, such as allele frequency 
in the publicly available variant databases and the 
nature of the affected amino acid, and are trained by 
supervised machine learning with datasets of disease-
causing variants, e.g., Human Gene Mutation Database 
(HGMD), and common polymorphisms. For example, 
VEST3 uses 86 quantitative features available through 
the SNVBox database. Tools that integrate results of 
multiple bioinformatic tools, also referred to as the 
ensemble method, are trained similarly to those based 
on machine learning. For example, CADD incorporates 
scores of three tools (Grantham, SIFT, and PolyPhen-2) 
to calculate the CADD score.

The effectiveness of each tool depends on the gene 
being analyzed due, in part, to the different datasets 
used for training the tools. Therefore, using the best 
tool to analyze the gene of interest would contribute 
to more reliable interpretations of obtained results. In 
this study, the performance of 13 currently available in 
silico tools were tested to discriminate disease-causing 
and non-causing variants in NKX2-1 and IGSF1, two 
genes associated with CH (8, 9).

Materials and Methods

Selection of genes

Examining the performance of in silico tools 
requires a wealth of “gold standard” data of both 
disease-causing and non-disease-causing variants. For 
disease-causing variants, databases of human genetic 
disorders, such as HGMD, can be used, while databases 
for non-disease-causing variants are more problematic. 
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Publicly available population databases, such as the 
1000 Genomes Project and the genome aggregation 
database (gnomAD), can provide lists of non-disease-
causing variants. However, the use of these population-
derived data requires caution because disease-causing 
variants in genes with autosomal recessive inheritance 
can be included in such databases. For example, TSHR 
p.Arg450His, a common genetic mutation in Japanese 
individuals (2), is registered in gnomAD v2.1.1 (https://
gnomad.broadinstitute.org/) with allele frequency 
48 in 19,952 East Asians. Considering the possible 
“contamination” of truly pathogenic mutations in the 
population databases, only CH-related genes with 
dominant or X-linked inheritance were evaluated in 
this study. There were five candidate genes: PAX8 
(dominant), NKX2-1 (dominant), IGSF1 (X-linked), 
TBL1X (X-linked), and IRS4 (X-linked). However, owing 
to their limited numbers of disease-causing variants 
(TBL1X and IRS4) or non-disease-causing variants 
(PAX8), these three genes were omitted. Therefore, 
NKX2-1 and IGSF1 were selected for analysis.

Dataset

Two types of datasets were retrieved from 
publicly or commercially available variant databases. 
For disease-causing variants, HGMD Professional 
Version_2019.4 (Qiagen, Hilden, Germany) was used, 
and there were 153 NKX2-1 and 44 IGSF1 distinct 
variants in the original dataset, including missense and 
other variants (e.g., nonsense, frameshift, and splice site 
variants). Variants other than the 38 NKX2-1 and 15 
IGSF1 missense variants were excluded as this study 
aimed to evaluate the pathogenicity of only missense 
variants. Then the flag “disease” was referred, and five 
variants labeled as “neuroendocrine cell hyperplasia 
of infancy”, “Hirschsprung disease”, “multinodular 
goiter and papillary thyroid carcinoma”, or “pituitary 
stalk interruption syndrome” were excluded because 
these phenotypes could be irrelevant to CH. As a result, 
35 NKX2-1 and 14 IGSF1 disease-causing missense 
variants remained and were subject for in silico analyses.

For non-disease-causing variants, data were 
obtained from the gnomAD database v2.1.1. In the 
original dataset, there were 185 NKX2-1 and 493 IGSF1 
variants, including missense and other variants. First, 
162 NKX2-1 and 453 IGSF1 variants with observed 
allele number ≤ 4 were excluded. In the gnomAD 
database, each variant has been sequenced in more 
than 100,000 individuals. Thus, “allele number of five 
or more” corresponds to > 1/20,000 frequency of the 
variant carriers. This threshold was set based on the 
frequency of the most common genetic form of CH, the 
DUOX2 defect, with about 1/20,000 frequency (10), 
considering that the NKX2-1 defect and the IGSF1 
defect are less frequent than the DUOX2 defect. For the 
IGSF (X-linked inheritance), male-limited allele count 
data were referred. After the exclusion of one NKX2-1 
in-frame deletion variant, 22 NKX2-1 and 40 IGSF1 

non-disease-causing missense variants were selected 
for analyses.

In silico analyses

A total of 57 NKX2-1 variants (35 disease-causing; 
22 non-disease-causing) and 54 IGSF1 variants (14 
disease-causing; 40 non-disease-causing) were subject 
to analyses with 13 in silico bioinformatic tools, 
including CADD (https://cadd.gs.washington.edu/), 
DANN (https://omictools.com/dann-tool), FATHMM 
(http://fathmm.biocompute.org.uk/), FATHMM-MKL 
(http://fathmm.biocompute.org.uk/fathmmMKL.htm), 
GenoCanyon (https://omictools.com/genocanyon-tool), 
MetaLR (https://m.ensembl.org/info/genome/variation/
prediction/protein_function.html), MetaSVM (https://
omictools.com/meta-svm-tool), MutationTaster (http://
www.mutationtaster.org/), REVEL (https://sites.google.
com/site/revelgenomics/), PolyPhen-2 (http://genetics.
bwh.harvard.edu/pph2/), PROVEAN (http://provean.
jcvi.org/), SIFT (https://sift.bii.a-star.edu.sg/), and 
VEST3 (https://karchinlab.org/apps/appVest.html). 
These were classified into three categories based on 
the principal methods for development: (i) sequence 
homology (FATHMM, FATHMM-MKL, MutationTaster, 
PolyPhen-2, PROVEAN, and SIFT), (ii) machine learning 
(DANN, GenoCanyon, and VEST3), and (iii) ensemble 
(CADD, MetaLR, MetaSVM, and REVEL).

To quantitatively measure the performance of the 
13 tools, Receiver Operating Characteristic (ROC) curve 
analyses were performed under the hypothesis that the 
HGMD missense variant dataset included true disease-
causing variants, and the gnomAD missense variant 
dataset included true non-disease-causing variants.

Results

ROC curve analyses of the 13 in silico tools revealed 
that their performance was not uniform (Fig. 1). Area 
under the curve (AUC) values of the ROC curve varied, 
ranging from less than 0.6 to more than 0.9. The average 
values of AUC were 0.79 and 0.81 for NKX2-1 variants 
and IGSF1 variants, respectively (Fig. 2A).

When the AUC values were compared between 
NKX2-1 and IGSF1 variants, there was no significant 
correlation of AUC values between the two (Fig. 2B). 
Four tools (MetaLR, PROVEAN, REVEL, and VEST3) 
showed AUC values of more than 0.85 for both gene 
variants. No tool had AUC values less than 0.7 for both 
gene variants. There was no correlation between the 
performance (AUC for the two gene variants) and the 
types of tools (sequence homology, machine learning, 
or ensemble).

Discussion

In the present study, 13 publicly available in silico 
tools were tested for the discrimination of disease-
causing and non-disease-causing variants in NKX2-1 
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and IGSF1. Interestingly, tool performance did not 
correlate between NKX2-1 and IGSF1 variants. This 
illustrates the existence of “tool preference” for genes. 
Comparisons of multiple in silico tools have been 
attempted with the use of various variant datasets. 
Mahmood K et al. compared the accuracy of eight in 
silico tools (GERP++, fitCons, SIFT, PolyPhen-2, CADD, 

Condel, REVEL, and FATHMM) for the prediction 
of seven deleterious/benign variant datasets and 
reported that their accuracy was highly variable (7). 
Excluding the nature of tools themselves, there are two 
explanations for their performance variability. First, 
for tools based on machine learning and the ensemble 
method, their training datasets included a subset of 

Fig. 1. Receiver Operating Characteristic (ROC) curve analyses of 13 in silico bioinformatic tools. The 13 tools were 
classified into three groups (sequence homology, machine learning and ensemble) according to the principal method 
of development. Each ROC curve is shown in the three groups.

Fig. 2. Comparison of the 13 in silico tools. A) Values of area under the curve (AUC) of the ROC curves for the two genes 
(NKX2-1 and IGSF1) are shown. Bars indicate 95% confidence intervals. B) A scatter plot showing the relationship 
between AUC of ROC for NKX2-1 variants (horizontal axis) and IGSF1 variants (vertical axis). No significant 
correlation was observed between AUC values for NKX2-1 and ones for IGSF1.
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erroneously classified variants because the curation of 
disease-causing variants requires the consideration of 
many factors (e.g., frequencies in the patient cohort and 
general population, mode of inheritance and presumed 
functional impact), and thus these tools were prone 
to human error. Second, the variant datasets used 
to measure performance accuracy could also include 
erroneously classified variants due to the same reason. 
At present, there seems to be no rational approach to 
avoid the contamination of the variant databases. In 
this study, datasets for disease-causing variants and 
non-causing variants were carefully selected mainly by 
restricting genes to ones with autosomal dominant or 
X-linked inheritance. In silico tool users should be aware 
that no tool is optimal for all genes. Notably, results of 
in silico tools will not increase the evidence levels of 
variants regardless of how many tools are used.

Causative genes for autosomal dominant disorders 
are known to be depleted for loss of function variants 
compared with causative genes for autosomal recessive 
disorders. This situation makes the finding of non-disease-
causing variants for genes associated with autosomal 
dominant genetic disorders feasible. However, finding 
those for genes associated with autosomal recessive 
disorders is more complicated because of true disease-
causing variants with relatively high allele frequency 
(e.g., 1 in 200–1,000) can be found among the general 
population. Creating high-quality datasets of disease-
causing and non-causing variants in these autosomal 
recessive genes is currently virtually impossible without 
performing functional assays.

In this study, the best tools that predicted the 

pathogenicity of variants in NKX2-1 and IGSF1 were 
MetaLR (ensemble method), PROVEAN (sequence 
homology method), REVEL (ensemble method), and 
VEST3 (machine learning method). Results on the 
diversity of development methods suggest that the 
performance of in silico tools might be determined 
by complex factors, including datasets of protein 
sequence used, datasets of human genome variants 
used, combinations of tools in the ensemble method, 
and computational methods (e.g., logistic regression 
and machine learning). This finding also indicates the 
difficulty in predicting which tool works satisfactorily 
for analyzing the gene of interest.

Conclusion

The performance of 13 currently available in 
silico bioinformatic tools was tested using real-world 
variant data, and their performance varied depending 
on the gene analyzed. For NKX2-1 and IGSF1 variants, 
the MetaLR, PROVEAN, REVEL, and VEST3 tools 
performed best. Further studies are needed to evaluate 
the performance of these tools on genes associated with 
autosomal recessive diseases.
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