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Rationale: Myocardial injury associates significantly and independently with mortality in
COVID-19 patients. However, the pathogenesis of myocardial injury in COVID-19 remains
unclear, and cardiac involvement by SARS-CoV-2 presents a major challenge worldwide.

Objective: This histological and immunohistochemical study sought to clarify the
pathogenesis and propose a mechanism with pathways involved in COVID-19
myocardial injury.

Methods and Results: Postmortem minimally invasive autopsies were performed in six
patients who died from COVID-19, and the myocardium samples were compared to a
control group (n=11). Histological analysis was performed using hematoxylin-eosin and
toluidine blue staining. Immunohistochemical (IHC) staining was performed using
monoclonal antibodies against targets: caspase-1, caspase-9, gasdermin-d, ICAM-1,
IL-1b, IL-4, IL-6, CD163, TNF-a, TGF-b, MMP-9, type 1 and type 3 collagen. The samples
were also assessed for apoptotic cells by TUNEL. Histological analysis showed severe
pericardiocyte interstitial edema and higher mast cells counts per high-power field in all
COVID-19 myocardium samples. The IHC analysis showed increased expression of
caspase-1, ICAM-1, IL-1b, IL-6, MMP-9, TNF-a, and other markers in the hearts of
COVID-19 patients. Expression of caspase-9 did not differ from the controls, while
gasdermin-d expression was less. The TUNEL assay was positive in all the COVID-19
samples supporting endothelial apoptosis.

Conclusions: The pathogenesis of COVID-19 myocardial injury does not seem to relate
to primary myocardiocyte involvement but to local inflammation with associated interstitial
edema. We found heightened TGF-b and interstitial collagen expression in COVID-
affected hearts, a potential harbinger of chronic myocardial fibrosis. These results
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suggest a need for continued clinical surveillance of patients for myocardial dysfunction
and arrythmias after recovery from the acute phase of COVID-19.
Keywords: heart, myocardial injury, COVID-19, SARS-CoV-2, endothelium, immunohistochemistry,
pathology, fibrosis
INTRODUCTION

Since its emergence in December 2019 (1), the coronavirus
disease 2019 (COVID-19) pandemic, caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to
grow despite unprecedented worldwide efforts in the search of
treatments and vaccines. COVID-19 is initially a respiratory
disease, causing viral pneumonia and adult respiratory distress
syndrome. However, cardiovascular manifestations occur
commonly and relate to poor outcomes (2).

Myocardial injury (defined by troponin blood levels above the
99th-percentile upper reference) was observed in 7 to 17% (3) of
patients and associates significantly and independently with
mortality (4). Common cardiac complications among
hospitalized patients with COVID-19 include arrhythmias and
acute heart failure. Heart failure may contribute up to 40% of
deaths, and circulatory failure may cause death even without
respiratory failure (3). A prothrombotic coagulopathy can occur
in 25% of patients resulting in venous and arterial
thromboembolic events (5).

SARS-CoV-2 genome detection in endomyocardial biopsies
(6) and autopsy specimens (7) has localized SARS-CoV-2 in the
heart. However, evidence for infection of cardiocytes themselves
remains controversial and the mechanism of cardiac damage by
SARS-CoV-2 remains incompletely understood. Some autopsies
of patients with COVID-19 revealed accumulation in the
myocardial interstitium of mononuclear inflammatory cells (8)
while others showed no increase in inflammatory cells despite
the presence of the viral genome (7). SARS-CoV-2 particles have
already been observed in myocardial interstitial cells (9) and
endothelial cells (10) by electron microscopy, and it has been
proposed that pyroptosis may have an important role in
endothelial cell injury in patients with COVID-19 (10).
Pyroptosis is a specific type of programmed pro-inflammatory
cell death that culminates in caspase-1 activation, interleukin-6
(IL-6) secretion and endothelial disfunction (11). This could be
the initial pathway for myocardial injury, and could also explain
the involvement of various organs and tissues that has been
described in COVID-19.

Interstitial myocardial fibrosis has been described as a
possible consequence of myocardial injury (6, 12) by the
expression of the pro-fibrotic mediator TGF-b, which can
stimulate interstitial collagen production (13). Myocardial
fibrosis may predispose to both systolic and diastolic
dysfunction, as well as arrhythmias (14).

Given that the cardiac manifestations play a major role in
adverse outcomes and discordant pathological studies regarding
the mechanism of myocardial injury in COVID-19, we
investigated myocardium samples in a histological and
immunohistochemical study to help clarify its pathogenesis in
org 2
lethal cases. Our findings provide new insight into the
mechanisms involved in COVID-19-related myocardial injury.
METHODS

Postmortem minimally invasive autopsies were performed in six
patients who died from COVID-19 in Marcelino Champagnat
Hospital, Brazil. All patients were symptomatic and tested
positive for SARS-CoV-2 on nasopharyngeal swabs (RT-PCR)
and had the chest computed tomography at admission
compatible with pulmonary infection by COVID-19. This study
was approved by the National Research Ethics Committee
(CONEP), protocol number 3.944.734/2020. Patients’ families
authorized the autopsies and provided informed consent form
before the procedures. All methods were carried out following
relevant guidelines and regulations. Clinical data were obtained
from medical records during hospitalization in the Intensive Care
Unit (ICU).

Myocardial tissue was collected within 4 hours after death by
left anterior mini thoracotomy for direct access to the left
ventricle. The pericardium was sectioned and a fragment of
myocardial tissue approximately 2 x 2 cm was obtained. The
tissues from the myocardial biopsies were fixed in neutral
buffered formalin for over 24 hours, and then processed under
conventional histological technique. The myocardium biopsies
of patients with COVID-19 were then independently compared
to myocardium samples from control patients 6 hours after death
from other. All the results were analyzed and integrated to the
previous pathological knowledge.

Histological and Immunohistochemical
Analysis
The formalin fixed paraffin embedded (FFPE) sections were
subjected to hematoxylin-eosin (H&E) and toluidine blue (TB)
staining. Histological features (H&E) were observed and
described by using Olympus BX40. Mast cells (only nucleated
cells with granules) were scored (TB) by counting cells per high-
power field (HPF – 40x objective – 0.26mm2) by screening 20
randomized HPFs (total area of 5.2mm2 per case).

Immunohistochemical (IHC) staining was performed in the
myocardium samples using monoclonal and polyclonal antibodies
against the following targets: caspase-1, caspase-9, gasdermin-dand
interleukin-1b (IL-1b) to detect pyroptosis; intercellular adhesion
molecule-1 (ICAM-1), tumor necrosis factor alpha (TNF-a),
interleukin-4 (IL-4), interleukin-6 (IL-6), CD163 (macrophage-
specific protein) and matrix metalloproteinase-9 (MMP-9) to
detect inflammatory activation and response pathways;
transforming growth factor (TGF-b), type 1 and type 3 collagen
t o d e t e c t myoc a rd i a l fib ro s i s . Th e t a b l e i n t h e
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Supplementary Material summarizes the specifications of the
antibodies used to investigate the FFPE myocardial tissues. In
order to detect apoptosis, the samples were also subjected to a
TUNEL assay (Terminal deoxynucleotidyl transferase dUTP nick
end labeling), using the ‘In Situ Cell Death Detection Kit, POD’
by Roche.

Scores of biomarker expression according to the IHC staining
were given by an experienced pathologist and confirmed by two
trained technicians. Biomarkers were analyzed using Allred
scoring system (15, 16): score 0-5 depending on the proportion
of cells which are stained (proportion score [PS]: score 0 = none
stained cells, score 1 = 1%, score 2 = 1-10%, score 3 = 11-33%,
score 4 = 34-66% and score 5 = 66-100%) and score 0-3
depending on the intensity of staining (intensity score [IS]:
score 0 = none stained cells, score 1 = weak, score 2 =
moderate, score 3 = strong). The semiquantitative analysis was
obtained by summing the two scores (proportion and intensity of
positivity), ranging from 0 to 8.

Statistical Analysis
Clinical data and biomarkers score expression were evaluated
independently in COVID-19 patients and controls. The
comparison of the quantitative variables of the two groups was
performed using the non-parametric Mann-Whitney test and the
comparison of the proportions between groups was performed
with Chi-Square. Values of p < 0.05 indicated statistical
significance. The data were analyzed using the GraphPad
Prism v9.0.2 software.
RESULTS

Patient Clinical Data
Clinical data from the baseline of COVID-19 patients (n=6) and
control group (n=11) are presented in Table 1. Our sample was
mainly male, with median age of 73.5 years, hypertensive,
diabetic, with history of coronary artery disease and with no
significant difference between groups (p>0.05 for all). Causes of
death in the control group include bronchopneumonia (n=3),
pulmonary thromboembolism (n=3), mesenteric ischemia (n=2),
myocardial infarction (n=1), aortic dissection (n=1) and upper
gastrointestinal bleeding (n=1).
Frontiers in Immunology | www.frontiersin.org 3
All the COVID-19 patients had symptoms of dyspnea with
progressive worsening and had the chest computed tomography
at admission suggestive of viral pulmonary infection for COVID-
19. They were all admitted into the ICU and developed
respiratory failure requiring mechanical ventilation. The
median duration of mechanical ventilation was 12 days.
During hospitalization, three patients developed acute kidney
failure and patient 1 had pre-existing dialysis-dependent chronic
kidney disease; two patients had incident acute atrial fibrillation;
and one patient had an acute pulmonary embolism. Laboratory
evaluation showed high levels of D-dimer and troponin in all
COVID-19 patients. Transthoracic echocardiographic findings
were heterogeneous as described in the Supplementary
Material. Patients 2 and 5 had normal echocardiographic
results with normal ejection fraction.

Histological Analysis
The sample tissues from the COVID-19 patients were compared
to the control group samples and histological assessment showed
severe pericellular interstitial edema surrounding each
cardiomyocyte in all of the COVID-19 patients. Histological
analysis also showed neutrophilic myocarditis according to the
Dallas criteria (17) in patient 1. All the other COVID-19 samples
showed neither massive inflammatory cellular infiltration nor
necrosis, indicating the absence of typical histological
myocarditis. In contrast, toluidine blue staining revealed a
higher interstitial and perivascular mast cell score in all
COVID-19 myocardium samples compared to control
(p=0.0023). Most mast cells appeared to be degranulating.
Lipofuscin pigment and mild signs of cardiomyocyte
hypertrophy were seen in COVID-19 and control patients.

Immunohistochemical Analysis
Images of H&E, TB and IHC staining for COVID-19 patients
and controls are shown in Figures 1A, B. The full scores of
biomarker expression according to the IHC analysis are shown in
the Supplementary Material.

The IHC analysis showed increased expression for caspase-1
(p=0.0010), ICAM (p<0.0001), CD163 (p=0.0021), IL-1b
(p<0.0001), IL-4 (p<0.0001), IL-6 (p<0.0001), MMP-9
(p=0.0002), TNF-a (p<0.0001), TGF-b (p=0.0063), type 1
collagen (p<0.0001) and type 3 collagen (p<0.0001) in the
COVID-19 patients compared to the control. The expression
for gadesmin-d, on the other hand, was decreased (p=0.0419).
The graphical representation of these analyses are shown in
Figure 2. No substantial differences from the control were
observed in expression of caspase-9 (p>0.9999).

The TUNEL assay in COVID-19 myocardium samples
indicated endothelial cell apoptosis, distinct from the control
samples, which tested negative. Cardiomyocytes did not display
this marker of apoptosis. Other morphologic findings merit
noting. First, caspase-1 and IL-6 were present in the
cytoplasm, whereas ICAM-1 localized on the membrane of
endothelial cells. Secondly, MMP-9 and both types of collagen
were observed in large quantities in the interstitial and
perivascular spaces. Our proposed mechanism of COVID-19
myocardial injury is shown in Figure 3.
TABLE 1 | Clinical data from the baseline of COVID-19 and control patients.

COVID-19
(n = 6)

Controls
(n = 11)

Sex (male) 5 7
Age (median) 74 73
Former smoker 1 6
Hypertension 5 10
Diabetes mellitus 5 8
Coronary artery disease 5 9
Heart failure 3 6
Cancer 0 2
Chronic pulmonary disease 1 6
Chronic kidney disease 1 3
Length of stay on Mechanical Ventilation
(median)

12 days –
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DISCUSSION

Our main findings from the myocardial postmortem biopsies of
COVID-19 patients show myocardial interstitial edema, mast cell
accumulation, and increased indicators of inflammation, apoptosis,
and fibrosis compared to controls. The increased expression of
ICAM-1 and IL-6 indicates inflammatory activation (18), which
alongwithhighermast cell scores canexplain the increasedcapillary
permeability, microvascular leakage and the consequent formation
of myocardial interstitial edema (19, 20). The increased expression
of MMP-9, CD163, IL-4 and IL-6 demonstrates the presence of
Frontiers in Immunology | www.frontiersin.org 4
myocardial inflammatory response in the myocardial tissue (18,
21). More specifically, CD163 indicates macrophage recruitment
(21) and MMP-9 promotes Th2 cell recruitment and matrix
remodeling (22). The Th2 cytokine IL-4 and TGF-b can drive
myocardial fibrosis (23) and provide a mechanism of elevated
interstitial collagens type 1 and type 3 (24–27).

The TUNEL positivity in all the COVID-19 samples shows that
this disease promotes endothelial cell apoptosis (programmed cell
death). The probable mechanism is by pyroptosis, a specific
inflammatory form of apoptosis that occurs most frequently upon
infection by intracellular pathogens (like SARS-CoV-2) and
A

B

FIGURE 1 | (A) Photomicrographs demonstrating histochemical (A1/2 - Toluidine Blue) and immunohistochemical (B = CD163; C = Casp-1; D = Casp-9; E =
GSDM-D; F = ICAM-1) reactions of both groups: cases of COVID-19 (B1-F1) and cases of their respective controls (B2-F2). A1 (COVID-19) and A2 (control) show a
mast cell in the perivascular space (arrows): in A1 the mast cell is degranulated, whereas in A2, the mast cell is intact. B1 (COVID-19) shows CD163-immunostained
macrophages (arrows) in the myocardial interstitium, whereas in B2 (control) these CD163 macrophages (arrow) are less numerous. C1 (COVID-19) shows
endothelial cells (arrow) with strong expression of Casp-1, whereas in C2 (control), Casp-1 expression in endothelial cells (arrow) is much more discrete. D1 (COVID-
19) shows a weak expression of Casp-9 in the myocardium (asterisk), whereas in D2 (control), this expression is strong (asterisk). E1 (COVID-19) shows a weak
expression of GSDM-D in the myocardium (asterisk), with E2 (control) showing a strong expression (asterisk). F1 (COVID-19) shows a strong expression of ICAM-1 in
endothelial cells (arrow), whereas, in F2 (control), this expression is discrete (arrow). (B) Photomicrographs demonstrating immunohistochemical reactions (A = TNF-
a; B = MMP-9; C = IL-4; D = IL-6; E = IL-1b; F = TGF-b; G = collagen 3; H = TUNEL) from both groups: cases of COVID-19 (A1-H1) and their respective controls
(A2-H2). A1 (COVID-19) shows myocardial interstitium expressing TNF-a (asterisk), whereas, in A2 (control), we can observe that this expression is discrete
(asterisk). B1(COVID-19) shows myocardial interstitium expressing MMP-9 (asterisk), whereas, in B2 (control), this expression is discrete (asterisk). C1 (COVID-19)
shows interstitial macrophages (arrow) and endothelial cells (asterisk) with strong expression of IL-4, whereas in C2 (control), the expression of IL-4 in interstitial
macrophages (arrow) and endothelial cells (asterisk) is discrete. D1 (COVID-19) shows a strong expression of IL-6 in the interstitium (asterisk), whereas, in D2
(control), this expression is discrete (asterisk). E1 (COVID-19) shows moderate expression of IL-1b in the myocardial interstitium (asterisk), and E2 (control) has a
more discrete expression (asterisk). F1 (COVID-19) shows a strong expression of TGF-b in the interstitium of the myocardium (asterisk), whereas, in F2 (control), this
expression is much more discrete or absent (asterisk). G1 (COVID-19) shows a strong expression of collagen 3 in the interstitium of the myocardium (asterisk), and
this expression is much more delicate (asterisk) in G2 (control). H1 (COVID-19) demonstrates elevated DNA fragmentation in the TUNEL assay (arrow) compared to
H2 (control), where few nuclei (arrow) are labeled.
November 2021 | Volume 12 | Article 748417
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requires the enzyme caspase-1 (28). Caspase-1 is activated as part of
amultiprotein signaling platform, the inflammasome complex, and
subsequently mediates the activation and secretion of interleukins,
including IL-1b, as well as the rupture of the cell membrane (29).
The lack of change in caspase-9 expression and the decrease in
gasdermin-d expression corroborate the inflammasome complex,
since gasdermin-d is activated and cleaved in this pathway, which
has interaction with caspase-1 but usually no interaction with
caspase-9 (30–32).

We also observed higher levels of caspase-1 adjacent to
endothelial cells in the COVID-19 samples demonstrating
endothelial infection, pyroptosis and injury in these patients.
Moreover, SARS-CoV-2 particles have been described in
endothelial cells by electron microscopy (10) and the caspase-1
identification is in accordance with Varga et al. (10), who
suggested that pyroptosis might have an important role in
endothelial cell injury in patients with COVID-19. These
findings are also in line with previous biopsy studies which
had already shown that the inflammatory process in cardiac
tissue permeates the vascular wall (6, 11). SARS-CoV-2
potentially causes endotheliitis (10), which is determinant of
microvascular dysfunction by shifting the vascular equilibrium
towards more vasoconstriction with subsequent organ ischemia,
Frontiers in Immunology | www.frontiersin.org 5
inflammation with associated tissue edema, and a procoagulant
state (33).

The expression of IL-6 and ICAM-1 increased in the
endothelial cells and indicates endothelial activation as well as
immune cell recruitment and response. Activated endothelial
cells translocate NF-kB p50/p65 dimers to the nucleus and
induce the expression of IL-6, TNF-a, and adhesion molecules
such as ICAM-1. These molecules recruit leukocytes to the
infected region of COVID-19 myocardial injury and propagate
inflammation (18).

Endothelial cell functions regulate local vascular permeability
and blood flow (19, 33). At rest, the endothelium is highly
impermeable to large molecules. However, acute changes in
vascular permeability result in loss of fluid and plasma proteins
from the intravascular space into the interstitium, leading to
edema (19, 20, 33). The abundance of mast cells rich in histamine
suggests a mechanism for vascular leakage and interstitial
myocardial edema observed here in specimens from COVID-
19 patients. In addition to histamine, mast cell release TNF-a
and proteases, which contribute to increased vascular
permeability and local inflammation (19, 20). Mast cell
activation occurs not only in the context of allergy, but also in
viral infection (34).
FIGURE 2 | Graphical representation of the immunohistochemical analysis according to the biomarker expression (Toluidine Blue; CD-163; Casp-1; Casp-9; GSDM-
D; ICAM-1; TNF-a; MMP-9; IL-4; IL-6; IL-1b; TGF-b; Collagen 1 and 3) in COVID 19 cases and controls. Biomarkers were analyzed using Allred scoring system:
score 0-5 depending on the proportion of cells which are stained (proportion score [PS]: score 0 = none stained cells, score 1 = 1%, score 2 = 1-10%, score 3 =
11-33%, score 4 = 34-66% and score 5 = 66-100%) and score 0-3 depending on the intensity of staining (intensity score [IS]: score 0 = none stained cells, score
1 = weak, score 2 = moderate, score 3 = strong). The semiquantitative analysis was obtained by summing the two scores (proportion and intensity of positivity),
ranging from 0 to 8.
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A previous autopsy study showed that the presence of SARS-
CoV-2 genome in the myocardial tissue was not associated with
increased infiltration of mononuclear cells compared with the
virus negative group (7). Although most of our COVID-19
myocardium samples also showed neither inflammatory
cellular infiltration nor necrosis, which would be expected in
typical histological myocarditis, the high levels of MMP-9,
CD163, IL-4 and IL-6 demonstrate the presence of myocardial
inflammatory response in this tissue.

We observed elevated type 1 and type 3 collagen in the
interstitial and perivascular spaces in the COVID-19 samples,
suggesting myocardial fibrosis, since synthesis of both types of
collagen is markedly increased in the remodeling fibrotic heart,
regardless of the etiology of fibrosis (23). TGF-b has major roles
in cardiac fibrogenesis (23, 27, 35) and acts by activating
SMAD2/3 pathways. IL-6 and IL-4 are also profibrotic
cytokines, as they induce MMP-9 expression and collagen
synthesis through gene transcription modulation (24–26). Mast
cell degranulation may also be involved in fibrogenesis (23), since
mast cell tryptase can directly induce fibroblast activation,
myofibroblast differentiation and collagen synthesis
independently of TGF-b (34)

Taken together our findings indicate that the microvascular
dysfunction may lead to thrombosis and underscores the need
for rigorous randomized evaluation of anticoagulant and anti-
aggregating therapies in various stages of COVID-19 (36).
Frontiers in Immunology | www.frontiersin.org 6
The myocardial interstitial edema observed here may
contribute to the high prevalence of cardiac arrhythmia in
COVID-19 patients by loss of structure of the syncytium (19).
Furthermore, our findings suggest that COVID-19 myocardial
injury may cause myocardial fibrosis in the long term. Therapies
which act on cardiac remodeling, such as angiotensin-converting
enzyme inhibitors or mineralocorticoid receptor antagonists
merit evaluation for myocardial protection in patients with or
recovered from the acute phase of COVID-19 (37, 38).

Some limitations should be considered in our study. Our
sample size was limited, since ethical issues, labor shortages and
hospital overcrowding, among many other reasons, prevented
larger samples of postmortem myocardial biopsies from being
collected in the COVID-19 Intensive Care Units. Therefore, it is
important to interpret our findings with caution and validate
them in other samples to replicate our results. Additionally,
interpretation of our findings should take into account that data
based on FFPE postmortem samples only provides information
at the time of death, and cannot reconstruct the entire
disease process.

In conclusion, our observations provide new insight into the
multifactorial mechanisms that provoke myocardial injury in
COVID-19 including interstitial edema associated with mast
cells, local inflammation, and fibrogenesis. These findings help
to understand the acute cardiac complications of COVID-19,
and also raise concerns about possible chronic cardiac sequelae
FIGURE 3 | The proposed mechanisms of myocardial injury based on an IHC study of COVID-19 cases and controls.
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of SARS-CoV-2 infection which will require further study in
survivors of this pandemic illness.
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