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Abstract: There have been tens of thousands of RNAs deposited in different databases that contain
sequences of two genes and are coined chimeric RNAs, or chimeras. However, “chimeric RNA” has
never been lucidly defined, partly because “gene” itself is still ill-defined and because the means
of production for many RNAs is unclear. Since the number of putative chimeras is soaring, it is
imperative to establish a pellucid definition for it, in order to differentiate chimeras from regular
RNAs. Otherwise, not only will chimeric RNA studies be misled but also characterization of fusion
genes and unannotated genes will be hindered. We propose that only those RNAs that are formed by
joining two RNA transcripts together without a fusion gene as a genomic basis should be regarded
as authentic chimeras, whereas those RN As transcribed as, and cis-spliced from, single transcripts
should not be deemed as chimeras. Many RNAs containing sequences of two neighboring genes
may be transcribed via a readthrough mechanism, and thus are actually RNAs of unannotated genes
or RNA variants of known genes, but not chimeras. In today’s chimeric RNA research, there are
still several key flaws, technical constraints and understudied tasks, which are also described in this
perspective essay.

Keywords: chimeric RNA; trans-splicing; reverse transcription; polymerase chain reactions;
RNA deep sequencing; expression sequence tag

1. Introduction

Classically, mature RNAs in eukaryotic cells are categorized as ribosomal RNAs (rRNAs),
messenger RNAs (mRNAs) and transfer RNAs (tRNAs), which are synthesized by RNA polymerases I,
II and III, respectively [1]. One of us has recently proposed that noncoding RNAs, which can be
processed from RNAs transcribed by either one of the three RNA polymerases, should be considered as
the fourth category [1]. However, RNAs can also be classified by other criteria. For instance, while each
RNA in any of the abovementioned four categories is derived from a single gene on a chromosome,
there are so-called “chimeric RNAs” (herein “chimeras”), which defines those RNAs containing
sequences of two genes. Actually, it remains possible that there are trimeric or even tetrameric
RNAs, each of which contains sequences from three or four genes, respectively, although until now
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their existence is only suggested by many expression sequence tags (ESTs), but not by conclusive
experimental evidence [2]. As described by some of us before [3-5], there hitherto have been tens of
thousands of chimeric RNAs of human origin deposited in different databases, with a few examples
in the references cited herein [2,6-10], while the entire human genome contains only slightly over
20,000 genes [1,11-14]. Therefore, mature RNAs can also be dichotomized based on whether they are
derived from a single gene or from more than one gene. However, information from chimeric RNA
research greatly baffles us in several aspects, largely because there still is a lack of a pellucid definition
of chimeric RNAs, which in turn is partly because there is no clear answer to the very basic question
“what is a gene?” [15-17]. In this essay, we describe our rumination over chimeric RNA, propose
a new criterion for defining it to lucidly distinguish chimeras from other RNAs, and expound why
we consider that most of the chimeric RNAs reported are inauthentic or should not be esteemed as
chimeras. We also describe some common problems, flaws, technical constraints, and understudied
tasks in today’s chimeric RNA research.

2. Currently, Chimeric RNAs Are Thought to Be Derived from Three Mechanisms

A mature RNA that contains sequences from two genes can be derived from three different
mechanisms known hitherto [2-4]. The first and well-studied mechanism involves various
chromosomal alterations, including DNA insertion, amplification [18], deletion and different types
of rearrangement such as translocation. For instance, chromosomal translocation can cause fusion of
chromosomes or chromosomal parts, resulting in one or two fusion sites and thus one or two fusion
genes, as each fusion site may form a fusion gene. The first and also the best example of the consequence
of translocation is the formation of the so-called Philadelphia chromosome observed in 1959 [19-23],
which involves chromosomes 9 and 22, i.e., t(9;22)(q34;q11), and results in different BCL-ABL fusion
genes [24,25]. There have been about 1,000 fusion genes identified hitherto [26], although ten times
more are thought to exist, mainly in cancer [27]. In very rare situations, fusion genes can occur
in normal human individuals as well, as exemplified by the TFG-GPR128 [28], POTE-actin [29-31],
and PIPSL [32,33] genes. However, this type of fusion gene may actually be regarded as evolutionarily
new genes, but not fusion ones [3]. Transcription of fusion genes can be initiated from alternative sites
and/or terminated at alternative sites to yield different RNA transcripts, and each of these transcripts
can undergo alternative cis-splicing to produce different mature RNAs as well. This means that fusion
genes, once formed, are expressed and regulated just like other genes in eukaryotic cells with little
difference, and therefore it makes more sense to regard their RNAs as regular ones, but not as chimeras.

The second mechanism is trans-splicing. While cis-splicing is a biochemical reaction with one RNA
molecule as the substrate and one new RNA molecule as the product (scenarios A and B in Figure 1),
trans-splicing is a biochemical reaction with two RNA molecules as the substrates but only one RNA
molecule as the product (scenario C in Figure 1), which is a chimeric RNA [34]. Obviously, chimeric
RNAs derived from trans-splicing have no genomic DNA basis [3,4]. Trans-splicing occurs often in
unicellular organisms [35]. Some mitochondria and chloroplasts of low eukaryotes and plants also use
trans-splicing to remove discontinuous group II introns [36,37]. Chimeric RNAs have been reported to
occur in human cells and in cells of other animals in a physiological situation [5,38-43], with examples
such as the KLK4 [44], Acy1-CoA and ACAT1 [45,46] RNAs in humans, the Dmyr [47] and Msh4 mRNA
variants [48] in mice, as well as some mdg4 mRNA variants in drosophila [49,50]. The IGH-BCL2 RNA
chimera has been observed in normal spleen [51], whereas IGH-myc chimeric RNA has been found in
mouse B lymphocytes [52] and in the Peyer’s patch follicles [53]. During the human developmental
stage, normal uterine endometrium shows a chimeric RNA formed between the transcript of the
JAZF1 gene on chromosome 7p15 and the transcript of the JJAZI gene at 17q11 [38,40]. Many of these
chimeric RNAs in normal cells are thought to be derived from trans-splicing events [7,46,50,54,55],
which, however, has hardly received unimpeachable experimental evidence, due largely to technical
constraints, as described later. In our opinion, trans-splicing occurs only as rare events in cells of
evolutionarily high animals, and in the physiological situation in humans, the events are probably as
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scarce as hen’s teeth. However, in carcinogenesis, which is an atavistic process [56-58], it may occur
more often.

(A) cis-splicing of single RNA (B) cis-splicing of a new gene’s RNA (C) trans-splicing of two RNAs
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Figure 1. Depiction of how we define different mature RNAs derived from two neighboring genes
within the same genomic locus. (A) Two genes (genes A and B) are transcribed individually to their own
RNA transcripts, each being spliced to a mature RNA. This is a cis-splicing procedure; (B) Transcription
of the upstream gene (gene A) sometimes may not stop at the annotated site but, instead, may go not
only into the possible intergenic region (black box) but also into the downstream gene (gene B) to
produce a much longer RNA transcript that is then cis-spliced to a mature RNA, which is considered
by us as an RNA of a new, previously unannotated gene (gene C) harbored at this genomic locus;
(C) Genes A and B are transcribed to their own transcripts that are trans-spliced to a single mature
RNA, which in our opinion is an unadulterated chimera. (A box with an E and a number inside stands
for an exon).

The third mechanism is for those chimeras formed by two neighboring genes on the same
chromosome, which is the largest category of chimeric RNAs reported so far but, in our opinion,
is also the most debatable one. The ENCODE (the Encyclopedia Of DNA Elements) project once
estimated that transcripts from 65% (about two-thirds) of the human genes might be involved in
forming chimeric RNAs, but the vast majority of these chimeras involve two neighboring genes on the
same chromosome [34,59]. The ENCODE project did not provide mechanistic detail about how the
two-neighboring-genes-containing chimeras were formed. However, some studies suggest that at least
some of them may be derived from a mechanism of transcriptional readthough [60], i.e., transcription
from the upstream gene to the downstream one [3,59], which is illustrated herein as scenario B in
Figure 1, such as the SLC45A3-ELK4 RNA that is present in normal prostate and in prostate cancer [61].
In the database of the National Center for Biotechnology Information (NCBI) of the United States,
such RNAs are indicated by using a hyphen to connect the two neighboring genes, as exemplified by
the eight noncoding RNAs that are alternatively-splicing products of the TSNAX-DISCI transcript
(Figure 2 in [62]).

5’ partner gene 3’ partner gene 5’ partner gene 3’ partner gene 5’ partner gene 3’ partner gene
[ [SHS] ] [ I ] [ [GAR] ]

(1) (2) (3)

Figure 2. Three different types of chimeric RNAs classified based on the relationship between the two
partner sequences. SHS, short homologous sequence; GAP, an unmatchable sequence.

3. Most RNAs from Two Neighboring Genes Should Not Be Deemed as Chimeras

An RNA transcribed via the aforementioned readthrough mechanism can actually be regarded
in three different ways: (1) it can be considered as an RNA variant of the upstream gene, dubbed
herein as gene A, transcription of which does not stop at the annotated site but, instead, reads
into and stops at the downstream gene, designated herein as gene B; (2) it can be considered as an
RNA variant of gene B, transcription of which is initiated from an alternative site upstream of the
annotated one; and (3) it can be deemed as an RNA transcript of an unannotated gene harbored
at this genomic locus, herein referred to as gene C. We favor the third scenario, since it has been
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a well-accepted notion that “one gene may contain one or more other genes” with many examples
in the NCBI database (some example illustrations are copied from the NCBI and shown in [1,62]).
However, we have no objection to the first two scenarios that are actually the situations of alternative
initiation and alternative termination, respectively, of transcription, mechanisms of which have
all been well articulated in the literature for many genes. In any of these three scenarios, RNA
transcripts may undergo regular cis-splicing, showing no any obvious difference from transcripts from
already-annotated genes [63,64]. We favor the third scenario because these unannotated, i.e., newly
discovered genes have no difference from, and should be studied like, already-annotated genes at
all levels, including the levels of transcription, post-transcription, translation, post-translation, and
protein transportation, although some of these genes may be noncoding and are not regulated at
some of these levels, such as the TSNAX-DISC1 gene (Figure 2 in [62]). We strongly argue against
the currently dominant concept in the chimeric RNA research that esteems the cis-splicing-derived
mature RNAs from these unannotated genes as chimeras. This is because considering these RNAs
as chimeras implies that these genes are different from the vast majority of already-annotated ones,
thus misleading and encumbering their characterization at some of these levels, although it sounds
more novel and more easily brings us grant supports and publications. On the other hand, considering
most of these with two neighboring genes as individual unannotated ones also implies that are many
more human genes than just approximately 20,000 genes as we currently thought [11-14], thus making
more sense.

Theoretically, two neighboring genes may be transcribed separately to produce their own RNA
transcripts in the regular way, but the two transcripts are then trans-spliced to an RNA, which is
an unadulterated chimera (scenario C in Figure 1). The problem is that, although there have been many
mature RNAs known to contain sequences of two adjacent genes, few, if any, studies provide cogent
mechanistic detail about whether these RNAs are formed via cis-splicing of a single RNA transcribed
via a readthrough mechanism or are formed via a trans-splicing of two RNA transcripts. In some
studies that claim the occurrence of a trans-splicing event, little mechanistic detail and experimental
evidence about such event per se have actually been given. Therefore, there is no way of knowing
which of these reported two-neighboring genes-containing RNAs are authentic chimeras and which
others are just cis-splicing-derived regular RNAs of unannotated genes, mainly because there is no
feasible technique to determine RNA transcripts before splicing. Splicing occurs immediately after
transcription is initiated [65], and is finished almost at the same time of transcription termination [66],
leaving us only a small window of time to sift out the product RNAs from the substrate RNAs during
a splicing procedure, especially for many genes in a high throughput manner.

4. There Are Different Ways to Catalog Chimeric RNAs

Chimeric RNAs can be sorted to different subgroups by different criteria, as recounted before [2—4].
Besides the criteria delineated above, a further criterion is the relationship between the two gene
elements, herein referred to as two partners, of a chimera [2,8]. Based on this relationship, chimeras
can be sorted to three groups, as illustrated in Figure 2. One group contains those in which the two
partner sequences are reversely complementary to each other at a region called “short homologous
sequence (SHS)”. Another group includes those in which the 5" and 3’ partner sequences are directly
connected. The third group includes those in which there is a sequence inserted between the two
partners that cannot be matched to any genomic region and is thus called a “gap”. Actually, for the
putative trimeric or tetrameric RNAs, the relationship between any two neighboring genes’ sequences
should also be one of the three situations [2].

5. RT or PCR Creates Many Artifacts that Fabricate “Trans-Splicing”

Most known DNA polymerases require a DNA or RNA oligo as a primer to initiate the DNA
synthesis, although some others use a protein to prime [67,68]. DNA polymerases are widely used
in nucleic acid research. For instance, reverse transcriptases (RTases), such as those derived from
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the Avian myeloblastosis virus (AMV) [69] and the Moloney murine leukemia virus (MMLV) [70,71],
as one type of DNA polymerase use tRNA as the primer in the parental retroviruses but can also use
DNA primers in reverse transcription (RT) in vitro. On the other hand, Taq DNA polymerase is often
used in polymerase chain reactions (PCR) with DNA primers, which often follows RT in molecular
cloning procedure.

Lerat et al. [72] and Tuiskunen et al. [73] have once surmised that artifacts may occur in the
following situations during an RT-PCR procedure: (1) RTase may be carried over from the RT system
to the PCR tube wherein it allows RT to continue with the PCR primers as the primers and with the
first strand of cDNA as the template; (2) when RNAs are carried over from the RT system to the PCR
tube, Taq may have an RT activity and convert RNA to cDNA; and (3) the 3’ end of the first cDNA
strand can loop back to form a hairpin structure and prime the synthesis of the second cDNA strand
during the PCR. The first scenario would actually be consecutive RT reactions, as one of us phrased
previously [3], for one of two basic reasons: First, if the first cDNA strand has its last several nucleotides
(Nts) reversely complementary to the end of another RNA or cDNA, these Nts can anneal to this RNA
or cDNA and use it as the template for the RT to proceed (scenario 1 in Figure 3). Since all DNA or
RNA sequences are formed by only four bases, a several-Nt homolog (in a reversely complementary
manner) should be common in the 3’ ends of numerous DNA or RNA shreds in a reaction tube. This is
why usually in vitro RT does not really require the presence of random hexamers or even a poly-dT
primer, because the RNA sample contains numerous RNA or DNA shards as endogenous random
primers [3,69,70,74-80]. Second, most, if not all, DNA polymerases can append one or several Nts at
the end of the newly synthesized DNA in a non-template manner [81-86], as one of us summarized
before [3]. MMLYV RTase as the most commonly used enzyme in RT more often appends GGG or
CCC at the cDNA end [87-92], which can anneal to any RNA or DNA sequence ending with CCC or
GGG to allow the RT to elongate (scenario 2 in Figure 3). If it is an RNA that anneals to the cDNA,
an RNA—cDNA chimera is created as the first strand but then the second strand is a DNA chimera,
synthesized in the first cycle of the ensuing PCR either by Taq or by the carried-over RTase [3].

5’ RNA
1st RTIl
RNA

3/ NNNN<@m mm mmm mmm  cDNA

2nd RT@

(scenario 1) (scenario 2)
5 NNNN3 ’ 5’ GGG3'’ Another RNA
<= = N G ——— = == mm CCCm == = Chimeric cDNA

Figure 3. Depiction of artificial chimeric cDNA created by hypothetical “consecutive RTs”. In RT
(1st RT), an RNA is converted to the first strand of cDNA with its last several Nts coined as “NNNN”".
An RNA of another gene may have its first several Nts reversely complementary to these NNNN
and thus can anneal to the cDNA end, which allows RT to continue (2nd RT), resulting in an artificial
chimeric cDNA (scenario 1). Most RTases append additional Nt or Nts in a non-template manner.
For instance, MMLV RTase usually appends CCC or GGG, allowing any RNA with the first Nts being
GGG or CCC to anneal to the cDNA end to create a chimeric RNA in the 2nd RT (scenario 2). For detail,
see Reference [3]. Arrows point to the 5'-to-3' direction.

Artifacts can also occur in PCR with production of many single-stranded DNA oligos or
double-stranded DNA fragments that are shorter than the anticipated amplicon, due to aborted
DNA polymerization. The last several Nts of these shorter DNA oligos or fragments may anneal to
another gene’s cDNA and serve as the template for the DNA synthesis to continue, yielding a chimeric
DNA fragment [93]. This first-strand of chimeric DNA may be elongated to a much longer sequence in
the subsequent cycles of PCR.
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16S rRNA, which is commonly used in molecular surveys of bacterial and archaeal
diversity [94-98], has been well known to engender many chimeric cDNAs during cDNA library
construction and the ensuing deep sequencing [93,99-108], which serve as good examples of fakes.
A few 16S-rRNA-containing chimeras have also been reported in human and mouse cells [109-117],
which are repeatedly detected and well-studied but in our opinion are technical artifacts [4]. They are
frequently detected partly because in human and mouse cells the 16S rRNA is encoded by the
mitochondrial genome that not only has hundreds or even thousands of copies in a single cell but also
contains many reversely complementary regions [4]. These regions allow an RNA to loop back to form
a hairpin structure, which allows the RT to elongate with the 5’ sequence as the template, creating
a cDNA that looks like a product of trans-splicing of the sense and antisense transcripts (Figure 4).
This sequence property of many 16S-rRNA-containing chimeras suggests to us that, if in a chimera
one of the two partners has its sequence at the junction reversely complementary to a 5 region of
its parental RNA, it should alert us about the possibility of the self-priming derived spuriousness,
as elucidated in more detail previously [4]. Transcription of 16S rRNA has been reported to be
terminated at many sites [118,119], and these many ends of the RNAs create many opportunities for
the scenarios illustrated in Figures 3 and 4 to occur [4].

5’ e CAT G CA e TGCATG3

5’ e CATGCA
* - - GTACGT>
Figure 4. Possible formation of spurious “trans-splicing” of sense and antisense transcripts. If an RNA
or DNA end has several Nts (say, TGCATG) reversely complementary to a 5 region (say, CATGCA),
it may loop back to anneal to this region and allow RT to continue with the 5’ region as the template.

As a result, the cDNA contains not only the sense sequence but also the antisense (in dash arrow)
sequence, thus becoming a spurious chimera. Examples can be found in Reference [4].

The above described self-priming by looping back often occurs in retroviruses [120],
retroplasmids [121] and some bacteria [122]. The stem part of the hairpin structure formed via
looping-back, which serves as the primer, should be short, because the reversely complementary region
at the 3’ end of an RNA or DNA is usually short. A question is thus raised as to how short an RNA
or DNA oligo can be a functional primer to initiate DNA synthesis. Unfortunately, this question has
received much less attention so far and has not yet had a clear answer, but it may vary among different
situations and depend on the DNA polymerase. RTases of the AMV and MMLYV origins have been
reported to use 15-18 Nts of a tRNA as a primer, and RTases from other retroviruses, such as the
human immunodeficiency virus (HIV), also use similar numbers of Nts in tRNA as primers [123-127].
However, it is possible that the HIV RTase may only need a primer of 9 Nts [128], and it has also been
reported that AMV RTase only requires a 3-Nt or 4-Nt DNA primer to prime DNA synthesis [129].
It has been reported that Taq requires a primer of, or longer than, 9-Nts, and for this reason some peers
consider that Taq should not be able to act as an RTase in PCR even if some random hexamers are carried
over from the RT system to the PCR tube [130]. One of us recently showed that a 4-Nt homolog might
be able to prime DNA synthesis with an MMLV RTase and a Taq in a common RT-PCR procedure [4].
It is clear that random hexamers are sufficient to prime RT in vitro, as it is a routine lab practice.
Of course, the efficiency of a primer depends not only on the length of the oligo but also on which
bases that are in the primer and on the temperature provided for the annealing, which usually varies
among different PCR procedures. Moreover, it is worth mentioning that unlike DNA polymerases,
some RNA polymerases can initiate de novo RNA synthesis in a primer-independent manner, besides
the back-priming like DNA polymerases [131], but whether this property may also create artifacts
remains unknown.
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6. There Are Other Artifacts with Unknown Mechanisms

While those chimeric RNAs in which one partner sequence is directly linked to the other without
an SHS or a gap, i.e., those type 2 chimeras in Figure 2, may be artifacts created by a ligase during
construction of cDNA libraries, the reason for the appearance of many cDNAs that contain a gap,
as seen in many ESTs [2], is completely unknown. Trans-splicing should not be able to create such gap
sequences that are completely unmatchable to the genomic DNA of any known organism deposited
in the NCBI database [2]. Actually, there are many cDNA sequences, especially seen in RNA deep
sequencing results, which cannot be matched to any organism’s genome in the NCBI database either.
It is possible that these unmatchable sequences occur as artifacts in RT or PCR and may contribute to
formation of artificial chimeric RNAs, although this hypothetic thinking still lacks convincing evidence.
The gap sequences, which can be over one kilo-base pairs in many chimeric ESTs [2], may be good
examples for the possible existence of unknown mechanisms for creating artifacts.

7. Currently, cDNA Protection Assay Is the Best Approach for Verification of Chimeric RNAs

Most of the tens of thousands of chimeric RNAs deposited in different databases have not yet
been verified with any bench technique. Nevertheless, a small portion of reported chimeras have
been verified using RT-PCR with or without confirmation by sequencing the cDNA, while an even
smaller number of them have been authenticated using RNA protection assay, Northern blotting
and/or in-situ hybridization. However, although these latter techniques have their merits and are
more reliable than RT-PCR, none of them are authoritative enough to corroborate the true existence
of a chimeric RNA. RNA protection assay does not involve RT or PCR amplification and thus will
not create those RT- or PCR-related artifacts narrated above. However, because it does not involve
amplification, its sensitivity is low and it can only detect those chimeras that are highly expressed.
Moreover, the sequence of the probe used needs to be carefully designed or otherwise it can lead to
data misinterpretation. The biggest weakness of RNA protection assay is that it does not provide
sequence information of the protected RNA and thus cannot confirm that both partner sequences
of a chimera have been protected. Actually, it is highly possible that only one of the two partner
sequences is protected (Figure 5). Northern blotting has the same weaknesses as RNA protection assay
and is less sensitive. In-situ hybridization assay has the same weakness as well, especially because
it lacks sequence data to prove that the hybrid contains both, but not just one of the two, partner
sequences (Figure 5).

Targeted chimeric RNA Probe

5 CSSSNNNNCO— L7777 7777 —

U

(1) (2) (3)
SEESSESSSTuSS— 3 5ESRSSNNNNY3 5 — 3’

3'{"////////1 15’ S'QZZZZZZZZJ Y ] —

Figure 5. Illustration of how RNA protection assay, in situ hybridization or Northern blotting may
produce a false signal by detecting only one of the two partner sequences. One chimeric RNA contains
two-partner-genes’ sequences indicated by a striped bar and a black bar, respectively. In an RNA
protection assay, in situ hybridization or Northern blotting, an RNA probe that contains sequences
reversely complementary to the two partner-genes’ sequences is used to hybridize with the target
chimeric RNA (scenario 1), followed by use of an enzyme to digest away single-stranded excessive
probe and irrelevant RNAs. However, in the cells one or both of the two partner genes may also be
expressed to RNAs that can also hybridize to part of the probe (scenarios 2 or 3) to form an unwanted
hybrid, which is a noise. Since these techniques do not provide sequence information of the hybrid to
confirm its identity, there is no way of knowing whether the resultant hybrids belong to the scenario 1,
2 or 3 or to some combination of the three.
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Attempting to correct the weaknesses of the abovementioned methods, we have modified the
RNA protection assay to a cDNA protection assay in which it is the cDNA, but not the parental RNA,
that is protected [79]. In this assay, an aliquot of RNA is reversely transcribed to the first strand of
cDNA. If an MMLV RTase, but not its mutant (MMLV-M), is used, inactivation of its RNase H activity
ensues. The cDNA is then used as the probe to hybridize with another aliquot of the original RNA to
form a RNA-cDNA hybrid. With its RN Aase H activity inactivated, the carried-over RTase should
not be able to digest the RNAs. After an S1 endonuclease is used to digest away irrelevant RNAs and
all the excessive single-stranded cDNA probe, the RNA-cDNA hybrid is amplified using PCR with
Taq, followed by DNA sequencing to confirm the identity of the protected cDNA. Compared with its
parental RNA protection assay, this cDNA protection assay has two advantages, i.e., offering PCR
amplification and DNA sequencing. Although this method involves RT that will likely create some
bogus cDNA chimeras, the fakes will not be protected by unadulterated chimeric RNAs and will thus
be chopped up by the S1.

8. We Propose New Criteria to Classify Chimeric RNAs

We propose to use “fusion RNA” to describe those RNAs transcribed from fusion genes, and to use
“chimeric RNA” to describe those RN As that are authentic chimeras derived from amalgamation of two
RNA transcripts, via trans-splicing of two RNA molecules or via other currently unknown mechanisms,
such as the hypothetical “transcriptional jump” and “chromosomal interaction” [132]. For those RNAs
containing sequences of two adjacent genes on the same chromosome but sans a knowledge of how
they are formed, we can temporarily put them under the umbrella of “readthrough RNA”. Of these
RNAs, those that are later confirmed to be transcribed from unannotated genes via a readthrough
mechanism should be excluded from this “readthrough RNA” category and deemed as RNAs of newly
discovered regular genes that await annotation (scenario 2 in Figure 1). Since readthrough genes
in the NCBI are indicated with a hyphen to join two neighboring genes together, as exemplified by
the TSNAX-DISC1 (Figure 2 in [62]), the simplest way to annotate them is to follow this way of the
NCBI. Those that are later confirmed to be products of trans-splicing of two individual transcripts
(scenario 3 in Figure 1), or are formed via a currently unknown mechanism that joins two RNAs
together, should also be removed from the “readthrough RNA” category but put into the authentic
chimera family. In a nutshell, only those RNAs that lack a fusion gene as a genomic basis and are
derived from two individual RNA molecules should be considered veritable chimeras, whereas fusion
genes and unannotated genes are actually expressed and regulated in the same way as classically
annotated genes, and thus there is no reason to consider them special.

9. There Are Other Flaws, Constraints and Understudied Tasks in Chimeric RNA Research

Most reported chimeras are “identified” using high-throughput sequencing or a bioinformatic
analysis of ESTs, or coalescence of the two, and are dubbed by us as “putative chimeras” because
they have not yet been verified. Besides those already described in the above sections, in our
meditation today’s chimeric RNA research still has several other major flaws, technical constraints and
understudied tasks:

1. There are still thousands of putative chimeric RNAs that contain sequences of two genes on two
different chromosomes [27]. For most of them, it is still unclear whether they have a fusion gene
as the genomic basis, and thus it is still unclear whether they are genuine chimeric RNAs by
our definition.

2. Many RNAs are claimed to be derived from a readthrough mechanism but actually lack concrete
experimental evidence proving the readthrough, since detection of a long pre-RNA transcript is
one thing but causally-linking it to the mature RNA that contains two-gene sequences is another
thing. Therefore, the possibility for them to be derived from a trans-splicing mechanism and thus
to be genuine chimeric RNAs still exists, which needs to be ruled in or out.
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3. Some chimeric RNAs have been reported to be recurrent, usually in cancer. However, often it is
not clear whether the “recurrence” means that it is exactly the same chimeric sequence that
appears repeatedly, or it means that the same two genes produce chimeric RNAs that are
highly similar but still differ slightly in sequence. This question is raised because we sometimes
have inquired of peers about the “recurrent” chimeric RNAs they observed and knew that the
repeatedly detected chimeras differed slightly among each other in sequence. The reason for the
small difference in sequence should be determined.

4. Technical detail is insufficiently discussed in many published studies of chimeric RNAs, especially
about how possible it is that the chimeras are spurious. In our opinion, when describing a new
chimeric RNA, more-than-usual technical detail needs to be furnished and, moreover, it needs to
address: (1) whether it has a fusion gene as a genomic basis; and (2) whether it contains an SHS
or a gap sequence that highly indicates an artifact.

5. Some chimeras encode proteins that share part of the sequence with the proteins produced
from one or both of the parental genes. Determining whether these chimeras have protein
products is technically difficult in most cases, due to the lack of fusion-protein specific primary
antibodies, which in turn is due to a technical constraint in raising such antibodies. Antibodies
raised via a traditional approach will likely recognize proteins from one or both parental genes.
Theoretically, antibodies for the proteins from one of the two parental genes may be available and
be used in western blotting to distinguish fusion-proteins from the proteins of the parental genes
by their difference in molecular weight. However, since most genes produce multiple protein
isoforms [62], as one of us has shown for protein products of many genes [133-138], in practice
it is difficult to use these antibodies to corroborate the true existence of protein product(s) of
a chimeric RNA, especially with an immunohistochemical staining approach that does not allow
us to distinguish one protein from the others by their molecular weights.

10. Concluding Remarks

The overarching theme of this perspective essay is that chimeric RNA is still ill-defined and
many of those chimeras deposited in various databases are likely to be technical artifacts or should
not be regarded as chimeras, which may sound provocative to some peers. We propose that only
those mature RNAs formed by joining two RNA molecules together via frans-splicing or some
currently-unknown mechanisms without a fusion gene as a genomic basis should be authentic. Many of
those containing two adjacent genes’ sequences are probably mature RNAs of newly discovered genes
awaiting annotation, or are RNA variants of one of the two parental genes, but are not chimeric RNAs.
Since there have already been tens of thousands of putative chimeric RNAs reported and the number is
still soaring in the literature, it is imperative to clearly define chimeric RNAs and vigorously verify them.
Otherwise, such a larger number of putative ones will not only mislead the chimeric RNA fraternity but
will also hamper cloning and characterization of those fusion genes and those newly discovered genes.
Actually, most fusion genes have not yet been fully characterized to such a detail as for the BCL-ABL
fusion genes on the Philadelphia chromosome, while most two-neighboring-genes-containing RNAs
have not yet been fully studied at the transcription and other steps. On the other hand, at present,
trans-splicing is the only known mechanism for formation of authentic chimeras, but it may not be
commonly used in human cells, meaning that either genuine chimeras in human cells are many fewer
than many peers think or other unknown but commonly used mechanisms exist and await unearthing.
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