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A B S T R A C T   

There is meta-analytic evidence for the efficacy of cognitive training (CT) in Parkinson’s disease (PD). We per-
formed a randomized controlled trial where we found small positive effects of CT on executive function and 
processing speed in individuals with PD (ntotal = 140). In this study, we assessed the effects of CT on brain 
network connectivity and topology in a subsample of the full study population (nmri = 86). Participants were 
randomized into an online multi-domain CT and an active control condition and performed 24 sessions of either 
intervention in eight weeks. Resting-state functional MRI scans were acquired in addition to extensive clinical 
and neuropsychological assessments pre- and post-intervention. In line with our preregistered analysis plan (osf. 
io/3st82), we computed connectivity between ‘cognitive’ resting-state networks and computed topological 
outcomes at the whole-brain and sub-network level. We assessed group differences after the intervention with 
mixed-model analyses adjusting for baseline performance and analyzed the association between network and 
cognitive performance changes with repeated measures correlation analyses. The final analysis sample consisted 
of 71 participants (n CT = 37). After intervention there were no group differences on between-network con-
nectivity and network topological outcomes. No associations between neural network and neuropsychological 
performance change were found. CT increased segregated network topology in a small sub-sample of cognitively 
intact participants. Post-hoc nodal analyses showed post-intervention enhanced connectivity of both the dorsal 
anterior cingulate cortex and dorsolateral prefrontal cortex in the CT group. The results suggest no large-scale 
brain network effects of eight-week computerized CT, but rather localized connectivity changes of key regions 
in cognitive function, that potentially reflect the specific effects of the intervention.   

1. Introduction 

Cognitive impairment is a common and debilitating non-motor 
symptom of Parkinson’s disease (PD; Aarsland et al., 2017; Svennings-
son et al., 2012), which is already present at diagnosis in a quarter of PD 

patients and can ultimately lead to PD dementia in the large majority of 
patients (Aarsland et al., 2017; Muslimovic et al., 2005). In late stages of 
PD, rivastigmine is moderately effective in relieving cognitive impair-
ment related to PD dementia (Meng et al., 2019; Noufi et al., 2019; Seppi 
et al., 2011). To date, there is little evidence for efficacy of treatment of 
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cognitive impairment pre-dementia, although cognitive training (CT) 
has shown promising results (Leung et al., 2015). CT is a relatively cost- 
efficient and easy-to-administer therapy option without the side-effects 
that are often caused by adjuvant medication (Seppi et al., 2011). In an 
earlier report, we showed that eight-week online, multi-domain CT had 
small positive effects on executive function and processing speed in a 
large sample of PD patients (of which current study describes a sub-
sample; van Balkom et al., 2021 (preprint)). These effects were accom-
panied by white matter microstructure alterations suggesting a higher 
incidence of crossing fibers in the anterior limb of the internal capsule 
connecting subcortical structures (Vriend et al., 2021). 

While cognitive impairment in PD is associated with widespread 
cortical atrophy (Laansma et al., 2020; Pereira et al., 2014), altered 
structural and functional connectivity (Fiorenzato et al., 2019; Gal-
antucci et al., 2017; Gorges et al., 2019; Olde Dubbelink et al., 2014b; 
Trujillo et al., 2015b), and disrupted brain networks (Baggio et al., 2015; 
Putcha et al., 2015, 2016; Wolters et al., 2019), to date little is known 
about the impact of CT on these neural alterations. CT is thought to 
induce neuroplastic effects by repeated (challenging) cognitive 
engagement and there is already a plethora of studies that have shown 
effects of cognitive training on brain morphometry, activity and con-
nectivity. In a review on the neural correlates of CT we describe how CT 
counteracts dysfunctional brain network changes that are associated 
with aging and neurodegenerative processes by enhancing compensa-
tory mechanisms (such as increased neural activity during task perfor-
mance) and normalizing functional connectivity (van Balkom et al., 
2020). Specifically, CT seemed to specifically target the configuration of 
intrinsic functional brain networks, i.e. the frontoparietal network 
(FPN), salience network (SN) and default mode network (DMN), whose 
interactions play an important role in mediating cognitive function 
(Menon, 2011; Menon and Uddin, 2010; Spreng et al., 2009). Never-
theless, only one study in PD patients was included in this review (Díez- 
Cirarda et al., 2016). Two earlier, exploratory studies on CT in PD that 
were not included in this review because of the small sample sizes 
showed decreased regional brain activity during executive function 
(Nombela et al., 2011) and increased intrinsic functional activity (i.e., 
during resting-state) in regions of attention-related and frontoparietal 
resting-state networks (Cerasa et al., 2014). 

Rather than focusing on morphometry or connectivity of a single 
brain area, contemporary neuroimaging methods are used to study the 
brain as a complex network: a ‘graph’. Complex networks have 
distinctive properties, such as small-world organization (i.e., an inte-
grated but simultaneously clustered network), a modular structure, and 
a power-law degree distribution (i.e., only a small proportion of network 
nodes has many connections; Kim and Wilhelm, 2008; Rubinov and 
Sporns, 2010; Stam and Reijneveld, 2007). Inter-individual differences 
in the topology of the human neural network are associated with dif-
ferences in cognitive and emotional function (Medaglia et al., 2015). 
Individuals with PD show abnormalities in functional and structural 
network topology such as a progressive decline in local and global ef-
ficiency (Luo et al., 2015; Olde Dubbelink et al., 2014a; Pereira et al., 
2015), decreased clustering (Luo et al., 2015; Olde Dubbelink et al., 
2014a; Vriend et al., 2018), and reorganization of highly connected 
regions (‘hubs’; Baggio et al., 2014; Pereira et al., 2015), but also 
increased modularity and local efficiency which is presumed to be 
compensatory (Baggio et al., 2014). How CT may normalize the topol-
ogy of the neural network is largely unknown and not studied in PD. In 
healthy young subjects, working memory training increased modularity 
(Finc et al., 2020), small-world organization (Langer et al., 2013), and 
modular efficiency and node strength (Roman et al., 2017), while 
cognitive strategy training decreased modularity in individuals with 
traumatic brain injury (Han et al., 2020). Modularity may be of partic-
ular interest as it has repeatedly been recognized as a predictor of 
therapeutic efficacy (Arnemann et al., 2015; Baniqued et al., 2017; 
Gallen et al., 2016). 

In this study, we elaborated on the clinical findings reported 

elsewhere (van Balkom et al., 2021), showing small positive effects of CT 
on speed of processing during executive function tasks. We assessed the 
effect of eight-week online multi-domain CT relative to an active control 
condition on neural network connectivity and topology in a large sample 
of individuals with PD. We investigated the effect of CT on whole-brain 
network properties using graph indices and also assessed the effect on 
the FPN, SN and DMN. We hypothesized that, on a global level, CT in-
creases neural efficiency, modularity and participation coefficient (i.e., 
ratio between connections within and between modules). For the 
intrinsic functional networks, we hypothesized that 1) CT increases 
segregation of neurocognitive networks, i.e. a higher anti-correlation 
between the DMN, and the FPN and SN, and 2) CT increases effi-
ciency, centrality and clustering of the FPN, SN and DMN. Lastly, we 
hypothesized that CT-related neural network changes are related to 
changes in cognitive performance. 

2. Materials and methods 

2.1. Participants 

This study was part of the randomized controlled clinical trial 
‘COGTIPS’ (COGnitive Training In Parkinson Study; ClinicalTrials.gov 
registration NCT02920632). For a detailed overview of the methodology 
we refer to the protocol article (van Balkom et al., 2019) and results on 
the primary clinical outcomes are reported here (van Balkom et al., 2021 
(preprint)). The analysis plan of the current fMRI study was preregis-
tered at the Open Science Framework (registration: osf.io/3st82). 

From the full sample of COGTIPS, a sub-sample underwent an MRI 
scan. General inclusion criteria for participation were 1) mildly to 
moderately advanced idiopathic PD (Hoehn & Yahr stage < 4; Hoehn 
and Yahr, 1967) diagnosed by a neurologist, 2) significant subjective 
cognitive complaints (PD-Cognitive Functional Rating Scale score > 3; 
Kulisevsky et al., 2013), and 3) home access to and proficiency in using a 
computer or tablet with internet. General exclusion criteria were 1) a 
Montreal Cognitive Assessment score < 22 (Dalrymple-Alford et al., 
2010; Nasreddine et al., 2005), 2) indications of current drug- or alcohol 
abuse (CAGE AID-interview score > 1; Brown and Rounds, 1995; Ewing, 
1984), 3) moderate to severe depressive symptoms (Beck Depression 
Inventory score > 18; Beck et al., 1961), 4) an impulse control disorder 
(positive screening by diagnostic criteria), 5) psychotic symptoms 
except for benign hallucinations (positive screening by the Schedule for 
Assessment of Positive Symptoms – PD; Voss et al., 2013), or 6) a history 
of traumatic brain injury. Exclusion criteria for participation in the MRI 
study were 1) presence of metal in the body (e.g., a neurostimulator), 2) 
pregnancy, or 3) difficulty with or shortness of breath during 60 min of 
lying still, and 4) after baseline scan a space occupying lesion and/or 
significant vascular abnormalities (Fazekas > 1). 

All procedures were performed according to the declaration of Hel-
sinki and all participants gave written informed consent to participate. 
The study was approved by the VU University Medical Center medical 
ethical committee. 

2.2. Procedure and randomization 

After eligibility screening, participants underwent an extensive 
baseline assessment that entailed neuropsychological testing (see Ap-
pendix A.6), questionnaires and MR imaging. An overview of outcomes 
for this study is listed below and described previously in detail (van 
Balkom et al., 2019). After baseline assessment, participants were ran-
domized, stratified according to education level (low/average versus 
high), in 1:1 fashion to the experimental cognitive training group (CT) or 
the active control group (AC) using random number sequence generated 
randomization lists. Participants remained blind to their allocated con-
dition throughout the entire study and outcome assessors were blinded 
for the full duration of their role as assessor. Participants performed 
their respective intervention at home, from their personal computer or 
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tablet via internet. After the intervention, approximately nine weeks 
after baseline assessment, participants performed a second assessment 
that entailed neuropsychological testing (using parallel tests if avail-
able), questionnaires and MR imaging. 

2.3. Interventions 

Both interventions entailed 24 online, home-based sessions with a 
duration of approximately 45 min. Participants were instructed to 
perform their respective intervention three times a week; we did not 
specify training days to enhance feasibility. Participants were able to 
pause the intervention session if, for example, they were interrupted or 
in ‘wearing-off’ state, limiting task execution. The CT, adapted from the 
‘BrainGymmer’ platform, consisted of thirteen adaptive training games 
that aimed to improve executive function, working memory, processing 
speed and attention (www.braingymmer.com, a product by Dezzel 
Media). The AC consisted of three non-adaptive games without an ex-
pected training effect (i.e., solitaire, hangman and trivia questions) and 
was used to correct for non-specific cognitive activity. 

2.4. Measurements 

In this study, we only considered the neuropsychological assessments 
that improved after CT in the full study sample. We measured change in 
the processing speed/executive function domain with 1) the reaction 
time on a computerized version of the Tower of London (ToL) task; a 
planning/executive function task where the participant has to count the 
number of bead moves needed to reach a solution configuration from a 
start configuration, ranging from 1 to 5 moves (i.e., difficulty loads S1- 
S5), and 2) the Stroop Color-Word Test (SCWT); an interference control/ 
processing speed task that consists of word-reading (SCWT-I), color- 
naming (SCWT-II) and color-word interference (SCWT-III) compo-
nents. Accuracy on the ToL (i.e., percentage correctly answered trials) 
was additionally assessed as this was the primary outcome of the clinical 
trial. Importantly, these tasks were not part of the CT and any im-
provements would therefore not simply be due to a learning effect. 

We compared cognitive function of our study population with pre- 
existing – in part Dutch – healthy norm group data (Campo and Mo-
rales, 2003; Kessels et al., 2016; Nicholas et al., 1989; Schmand et al., 
2012) and classified cognitive function as either cognitively normal (PD- 
NC), cognitive deficits associated with PD-MCI according to level II 
Movement Disorder Society (MDS) criteria (Litvan et al., 2012), or 
cognitive deficits associated with probable PD-D (Emre et al., 2007). We 
additionally assessed motor symptoms (Unified PD Rating Scale – III; 
Fahn et al., 1987), disease stage (Hoehn and Yahr), and medication use 
(levodopa equivalent daily dose; Olde Dubbelink et al., 2013). Subjec-
tive cognitive complaints were assessed with the PD-Cognitive Func-
tional Rating Scale and we used additional questionnaires to assess 
psychiatric symptoms and participants’ expectation of the intervention 
outcome. 

2.5. Image acquisition 

At both time-points, we performed MRI on a GE Signa HDxT 3 T MRI 
scanner (General Electric, Milwaukee, U.S.). We equipped the 32-chan-
nel head coil with foam pads to maximally immobilize the head and 
thereby reduce head motion. Resting-state functional MRI (rs-fMRI) was 
acquired using a 10-minute gradient echo-planar imaging (EPI) 
sequence (TR = 2200 ms; TE = 28 ms; 64 × 64 matrix; field of view =
21.1 cm; flip angle = 80◦) with 40 ascending slices per volume (3.3 ×
3.3 mm in-plane resolution; slice thickness = 3.0 mm; interslice gap =
0.3 mm), which provided whole-brain coverage. Participants were 
instructed to keep their eyes closed, not think about anything in 
particular, and not fall asleep. Anatomical MRI was acquired using a 3D 
T1-weighted structural magnetization-prepared rapid acquisition 
gradient-echo with scan parameters according to the ADNI-3 protocol 

(TR = 6.9 ms, TI = 900 ms, TE = 3.0 ms, matrix size 256 × 256, 1 mm3 

isotropic voxels, 168 sections) (Weiner et al., 2017). 

2.6. Image preprocessing 

We corrected for susceptibility induced distortions in the functional 
image by acquiring scans with a reversed phase-encoding direction and 
applying topup (Andersson et al., 2003) from the FMRIB Software Li-
brary (FSL) software suite (Smith et al., 2004). Anatomical and func-
tional images were subsequently preprocessed using fmriprep (v1.4.0; 
see Appendix A.1 for the full boilerplate; Esteban et al., 2019). Briefly, 
an average robust template was created from the T1-weighted structural 
images at either time point using FreeSurfer 6.0.1 (Reuter et al., 2012). 
Using this robust template, brain surfaces were reconstructed and par-
cellated according to an atlas (see below). We visually inspected the 
brain surfaces for any defects. Rs-fMRI images from both time points 
were skull-stripped, realigned and slice-time corrected, and co- 
registered to the robust template. Noise regressors were extracted per 
subject for further denoising of the preprocessed functional time-series. 
Noise-regressors included global signals within the ventricles (CSF) and 
white matter (WM) and automatically identified motion-related com-
ponents based on their high-frequency content and correlation with 
motion parameters using automatic removal of motion artifacts using 
independent component analysis (ICA-AROMA; Pruim et al., 2015). We 
removed the first three non-steady state volumes from the fMRI and 
spatially smoothed the remaining images with a 6 mm full-width half- 
maximum isotropic, Gaussian kernel. Simultaneous nuisance regression 
and temporal filtering (0.009 – 0.13 Hz) was performed using Denoiser 
(github.com/arielletambini/denoiser). Following the benchmark test 
from Parkes and colleagues (Parkes et al., 2018) we regressed out all 
motion-related components identified by ICA-AROMA and eight tissue- 
averaged physiological regressors: averaged signal in the WM and CSF, 
along with their temporal derivatives, squares and derivatives squared. 
No global signal regression was applied. We assessed framewise 
displacement (FD), computed with fmriprep, as a measure for motion 
and excluded patients with a liberal motion cut-off of FDmean > 0.5 mm. 
We additionally assessed differences in image quality metrics calculated 
with MRIqc (DVARS, entropy-focus criterion, full-width half maximum 
smoothness and temporal signal-to-noise ratio; Esteban et al., 2017) 
across groups and time-points (see Appendix A.2). 

2.7. Timeseries extraction 

To extract brain region specific timeseries, we parcellated cortical 
brain areas into 300 regions according to the Schaefer atlas, which has 
specifically been developed to match a widely-used seven-network 
human resting-state network parcellation (Schaefer et al., 2018). The 
cortical brain areas were derived from registering the Schaefer atlas to 
FreeSurfer space and we added 14 subcortical areas segmented using 
FreeSurfer (Fischl et al., 2002) leading to a total of 314 brain areas. This 
parcellation was registered to the preprocessed and denoised functional 
images in T1-weighted space using AFNI’s 3Dresample. Quality of the 
registration was visually inspected. Because EPI distortions around air- 
tissue boundaries can lead to signal drop-out, we applied a mask to 
the functional image (Meijer et al., 2017) and excluded brain regions 
with < 4 active voxels in any participant, prior to timeseries extraction 
(Vriend et al., 2020). Fourteen brain areas were excluded due to signal 
drop-out leading to a total of 300 brain regions common across subjects 
and time points (Appendix A.3). 

2.8. Resting-state fMRI outcome measures 

2.8.1. Between-network connectivity measures 
To assess connectivity between the FPN, DMN, and SN, we computed 

the average Fisher r-to-z transformed Pearson correlation of the resting- 
state fMRI time-series between the nodes that belonged to these resting- 
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state networks, based on the network parcellation by Yeo and colleagues 
(2011). We designated the ventral attention network from the Yeo et al 
parcellation as SN. We used Pearson correlations to replicate earlier 
functional connectivity studies (as opposed to wavelet coherence, see 
below). We did not use the absolute value of the correlations, to main-
tain valuable information about potential between-network anti-corre-
lations. As indicated in the preregistration, we assessed connectivity 
between other resting-state networks, i.e., the dorsal attention, limbic, 
motor and visual networks as exploratory outcomes but do not present 
these findings here due to space limitations. 

2.8.2. Graph measures 
Weighted, fully connected (i.e., non-thresholded) connectivity 

matrices for the calculation of graph indices were computed using a 
wavelet coherence method in the frequency range f = [0.009, 0.08] 
(Grinsted et al., 2004). This method and frequency range are less 
contaminated by head motion compared to Pearson correlation con-
nectivity matrices, while the test–retest reliability is better compared 
with partial correlation coefficient connectivity matrices (Mahadevan 
et al., 2020). 

We assessed global network integration, segregation and connec-
tivity between modules using the following respective measures: a) 
global efficiency (GE): the inverse of the mean shortest (characteristic) 
path length in the network (Rubinov and Sporns, 2010), b) modularity 
(Q): the degree to which a network can be divided in sub-communities 
(i.e., modules), using modularity maximization with a generalized 
Louvain method for community detection (Lucas et al., 2011-2019), c) 
average participation coefficient (PC): the degree to which a node is 
connected with other communities than its own. For the FPN, DMN and 
SN, we additionally computed a) efficiency (E, as described above), b) 
clustering coefficient (CC): the fraction of a node’s neighbors that are 
also neighbors of each other, and c) normalized betweenness centrality 
(BC): the average sub-network fraction of shortest paths in a network 
that pass through a node, normalized by the size of the network. We 
performed exploratory analyses on the absolute Fisher r-to-z trans-
formed Pearson correlation connectivity matrices using the same graph 
indices to assess reliability of the results and enhance comparability 
with previous research. We additionally assessed the effects of CT on 
rich club (Alstott et al., 2014) and diverse club coefficients (Bertolero 
et al., 2017), see Supplemental material 4 for methodological details. 

2.9. Analyses 

We enrolled 140 participants in the overall clinical trial to detect 
effects at the behavioral level (van Balkom et al., 2019). Based on earlier 
studies that showed changes in functional activity and connectivity 
preceding cognitive decline in PD (de Bondt et al., 2016; Gerrits et al., 
2015; Trujillo et al., 2015a), neuroimaging indices seem more sensitive 
to change compared with (global) cognitive tests – and effect sizes are 
likely larger. Therefore, we enrolled a subgroup consisting of 86 par-
ticipants for the MRI sub-study. 

We performed analyses on the intention-to-treat population (all 
correctly enrolled and randomized participants). Group differences in 
demographic and clinical variables were analyzed with the appropriate 
tests, i.e., Student’s t-tests, Mann-Whitney U tests or Fisher’s exact tests. 

For analysis of the abovementioned neuroimaging indices, we used 
univariate mixed-model analyses to assess the effect of CT relative to AC. 
We used the after training outcome (T1) as dependent variable, the 
group (CT vs. AC) as independent variable and the baseline outcome 
(T0) as covariate. We additionally performed these analyses correcting 
for age, years of education and sex. For analysis of global graph mea-
sures, we considered a significance level of α = 0.05 significant. To 
correct for multiple comparisons in sub-network analyses we used a D/ 
AP-Sidak adjustment that takes into account the mutual correlation 
between outcome measures (computed using https://www.quantitative 
skills.com/sisa/calculations/bonhlp.htm; Sankoh et al., 1997). For 

between-network connectivity analyses, we computed an α corrected for 
three comparisons, adjusted for the correlation r = 0.544 between the 
three indices after training (αBN = 0.031). For sub-network graph ana-
lyses, we computed a separate α for each graph measure adjusted for the 
correlation between the respective sub-network measures at baseline 
(rFPN = 0.387, αFPN = 0.026; rDMN = 0.408, αDMN = 0.026; rSN = 0.413, 
αSN = 0.027). We replicated the frequentist analyses using a Bayesian 
approach to quantify strength of evidence for either hypothesis (H0 or 
H1) using linear models with Monte Carlo integration (500,000 itera-
tions) from the BayesFactor R package. We considered a Bayes Factor B 
> 3 as substantial evidence for H1 and conversely B < 1/3 as substantial 
evidence for H0 (Dienes, 2014). We additionally performed sub-group 
analyses based on the cognitive status of participants, i.e., PD-NC, PD- 
MCI or PD-D, by adding an additional covariate with relevant contrasts 
to the analyses described above. Lastly, we performed post-hoc analyses 
to assess functional connectivity and graph properties of key regions of 
the studied brain networks. The evaluated key regions were based on 
previous literature (Menon, 2011; Seeley et al., 2007; Uddin et al., 
2009). Only those regions that showed a significant correlation across 
groups with neuropsychological outcomes at baseline were considered 
in the analyses on the effects of cognitive training (see Appendix A.11). 
We additionally examined connectivity of these nodes with subcortical 
areas, specifically the caudate nucleus, thalamus and hippocampus, as 
impaired cortico-subcortical connections are implicated in PD and these 
subcortical areas are particularly implicated in cognitive function (see 
Appendix A.11; Ekman et al., 2012; Kandiah et al., 2014; Owen, 2004). 

Multivariate (ToL) and univariate (SCWT) linear mixed-model ana-
lyses were used to assess differences between groups on the neuropsy-
chological outcomes, as discussed in detail elsewhere (van Balkom et al., 
2019). Participants were excluded from ToL data analysis if they showed 
poor understanding of the task, operationalized as load 1 score < 75%. 

The association between change in resting-state functional connec-
tivity and change in cognitive function was analyzed with repeated- 
measures correlation analyses using the R package ‘rmcorr’ (Bakdash 
and Marusich, 2017). We assessed the repeated-measures correlation 
between the neuroimaging outcomes (15 in total) and cognitive out-
comes. We analyzed the average ToL reaction time over S1-S5 and the 
SCWT card I-III separately. Associations with ToL accuracy change were 
analyzed in an exploratory fashion as this was the primary outcome of 
the trial. We used an α corrected for multiple comparisons per cognitive 
test, adjusted for the baseline association between the neuroimaging 
indices analyzed (similar to described above). 

3. Results 

3.1. Participants 

In COGTIPS, we enrolled and randomized 86 participants in the fMRI 
study (out of the full sample of 140 participants). The fMRI sub-sample 
was representative of the full sample concerning demographic charac-
teristics but had a shorter disease duration; for a comparison see Ap-
pendix A.5. The participants were evenly distributed across both 
conditions. A total of thirteen participants (AC n = 8, CT n = 5) were 
excluded from the analyses due to discontinuation of the intervention, 
excessive in-scanner motion or fMRI scan failure (see Fig. 1). Of the 
remaining participants, the groups were evenly matched on de-
mographic and clinical characteristics except for baseline subjective 
cognitive complaints (see Table 1). Both groups performed similarly on 
neuropsychological tests. For the entire sample, the cognitive perfor-
mance on attention and processing speed tasks was, on average, below 
norm scores, but participants still scored within normal range for other 
cognitive domains (see Appendix A.6). Inspection of fMRI data quality 
showed no group differences in motion, but did show, independent of 
time, a higher temporal derivative of root mean square variance over 
voxels (DVARS) and entropy-focus criterion (EFC), indicating better 
average image quality, in the CT group (Appendix A.2). 
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Behavioral training effects in the fMRI sample were different 
compared with the effects in the full study sample. There were no sig-
nificant positive training effects on the ToL reaction time and SCWT in 
the current subsample, in contrast with the full study sample. In the 
current subsample there were trend-significant to significant group 
differences on the ToL accuracy in favor of the AC, while these were not 
present in the full study sample (see Appendix A.7). 

3.2. Preregistered analyses 

3.2.1. Main outcomes: Functional connectivity and network topology 
differences 

Univariate mixed-model analyses of connectivity between the SN, 
FPN and DMN did not reveal significant group differences after training 
(Fig. 2a-c). Analysis of global efficiency, modularity and participation 
coefficient at the global network level showed no group differences after 
training (Fig. 2d-f). Efficiency, clustering coefficient and betweenness 
centrality at sub-network level did also not differ between groups after 
training. Bayes factors indicated effects generally in favor of the null 
hypothesis. All statistics are reported in Table 2. For replicability we 
performed the same analyses using graph outcomes calculated with 
Pearson correlation-based connectivity matrices; these analyses resulted 
in similar findings and results are provided in Appendix A.8. 

3.2.2. Exploratory outcomes 
To assess the association between functional connectivity or network 

topology change and change on the ToL or SCWT, we performed group- 
wise repeated-measures correlation analyses. In both groups, no signif-
icant associations were present between change on ToL accuracy or 
reaction time, or SCWT performance, and functional connectivity or 
network topology when correcting for multiple comparisons (α = 0.007; 
see Appendix A.9). 

We performed sub-group training effect analyses, distinguishing ef-
fects between patients with PD-NC (n = 19), PD-MCI (n = 41) or PD-D (n 
= 11). Only in the PD-NC sub-sample there was a post-intervention 
difference between groups, showing higher modularity (B[SE]: 0.008 
[0.004], p = .033) and lower participation coefficient (B[SE]: -0.042 
[0.015], p = .007) in the CT group, suggesting a more segregated 
network topology. These effects were, however, not associated with 
change in neuropsychological test performance. At sub-network level, 
an isolated between-group difference in the PD-D sub-sample was found 
showing higher post-training betweenness centrality in the CT versus the 
AC group, that did not survive correction for multiple comparisons. Note 
that the subsample sizes were small, particularly for the PD-D subgroup, 
which limits the reliability of these results. No between-network func-
tional connectivity differences were present (see Appendix A.10). 

There were no group differences in the normalized clubness 

coefficients after intervention, adjusted for baseline values – rich club 
coefficient: B[SE]: -0.006 [0.019], p = .767, diverse club coefficient: B 
[SE]: -0.030 [0.031], p = .336. 

3.3. Post-hoc analyses (not preregistered) 

Post-hoc, we performed nodal analyses on the functional 

Fig. 1. Flowchart of participants.  

Table 1 
Demographic and clinical characteristics of the intention-to-treat population.   

Active 
control (n ¼
34) 

Cognitive 
training (n ¼
37) 

Group 
comparison 

Sex (N (%))   p = .227‡

Male 23 (68%) 19 (51%)  
Female 11 (32%) 18 (49%)  
Age (years) 63.8 (6.1) 63.2 (8.3) t = 0.345, p =

.731 
Education (years) 16.7 (4.3) 15.5 (3.6) t = 1.257, p =

.213 
Education classification 

(N (%))y
U = 575, p =
.514 

3 0 (0%) 1 (2.7%)  
4 2 (5.9%) 3 (8.1%)  
5 7 (20.6%) 10 (27.0%)  
6 15 (44.1%) 12 (32.4%)  
7 10 (29.4%) 11 (29.7%)  
Disease duration (years, 

median [range]) 
4 [1–16] 4 [0–13] U = 597, p =

.710 
UPDRS-III 19.4 (9.2) 20.6 (9.2) t = -0.555, p =

.581 
Hoehn & Yahr stage (N 

(%))   
U = 581, p =
.557 

1 2 (5.9%) 3 (8.1%)  
1.5 1 (2.9%) 4 (10.8%)  
2 17 (50.0%) 15 (40.5%)  
2.5 9 (26.5%) 11 (29.7%)  
3 5 (14.7%) 4 (10.8%)  
LEDD (median [range]) 795 [0–1790] 630 [80–1665] U = 538.5, p =

.297 
Medication change 

during study (N (%)) 
8 (7.2%) 7 (7.8%) p = .773‡

LEDD T1 (median 
[range]) 

787 [0–1790] 630 [80–1530] U = 537, p =
.289 

MoCA 26.2 (2.5) 26.6 (1.7) t = -0.777, p =
.440 

Global cognitive 
function classification 
(N (%))   

p = .379‡

Normal cognition 8 (23.5%) 11 (29.7%)  
Single-domain MCI 5 (14.7%) 6 (16.2%)  
Multi-domain MCI 13 (38.2%) 17 (45.9%)  
PD dementia 8 (23.5%) 3 (8.1%)  
BDI 8.4 (3.8) 8.0 (4.3) t = 0.395, p =

.694 
QUIP-RS (N ¼ 70) 20.5 (12.7) 16.1 (13.1) t = 1.411, p =

.163 
PAS 11.6 (7.4) 9.2 (6.2) t = 1.471, p =

.146 
AS 14.2 (4.3) 12.9 (4.3) t = 1.250, p =

.216 
Credibility-Expectancy 

(N ¼ 70) 
31.3 (6.4) 33.1 (6.7) t = -1.168, p =

.247 
PD-CFRS (median 

[range]) 
10 [4–22] 7 [3–18] U ¼ 422, p ¼

.017 
Compliance (%, median 

[range]) 
100 [71–100] 100 [92–100] U = 642.5, p =

.864 
T0-to-T1 interval (days) 64.7 (7.3) 63.8 (5.0) t = 0.608, p =

.545 
Data are mean (SD) unless otherwise specified. †According to Verhage education 

classification.29 ‡Fisher’s exact test.Abbreviations: AS = Apathy Scale; BDI = Beck 
Depression Inventory; PAS = Parkinson Anxiety Scale; PD-CFRS = Parkinson’s 
Disease – Cognitive Functional Rating Scale; LEDD = Levodopa equivalent daily 
dosage; MCI = mild cognitive impairment; MoCA = Montreal Cognitive Assessment; 
QUIP-RS = Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s 
Disease – Rating Scale; UPDRS = Unified Parkinson’s Disease Rating Scale.  
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connectivity and topology of sub-network key regions (see Appendix 
A.11), as averaging across network nodes could potentially obscure 
more localized effects. We found group differences indicative of 
increased connectivity in the CT group between the right dorsal anterior 
cingulate cortex (dACC) and the FPN, and of the left dorsolateral pre-
frontal cortex (dlPFC) within the FPN, that did, however, not survive 
correction for multiple comparisons (Fig. 3a-b). Because the dACC and 
dlPFC are implicated in associative cortico-striato-thalamo-cortical cir-
cuits we further inspected connectivity of these nodes with subcortical 
areas. Results suggested group connectivity differences of both nodes 
predominantly with the right caudate nucleus, indicative of stable/ 
increased connectivity in the CT group versus decreased/stable con-
nectivity in the AC group (see Fig. 3c-d). Analysis of key region nodal 

participation coefficient, clustering coefficient and betweenness cen-
trality showed no group differences after training. 

4. Discussion 

There is an increasing need for treatment options for cognitive 
impairment in PD as a large majority of individuals with PD ultimately 
develops dementia. CT has been proposed as a non-pharmacological 
treatment option and earlier meta-analyses have suggested positive ef-
fects on executive functions, but the neural correlates remain largely 
unknown. In this study, we assessed the effect of eight-week online 
multi-domain CT on the functional brain network by studying large- 
scale brain networks in the largest sample of PD patients to date. Our 

Fig. 2. No between-group differences on between-network connectivity (panels A-C) and global network topology (panels D-F).  

Table 2 
Group differences, corrected for baseline value, on primary neuroimaging outcomes.    

Between-network connectivity   
Crude models Adjusted models†

B [SE] 95% CI p-value Bayes Factor B [SE] 95% CI p-value Bayes Factor 

SN – FPN 0.017 [0.014] − 0.011 to 0.046 0.227 0.453 ± 0.12% 0.019 [0.014] − 0.010 to 0.048 0.197 0.494 ± 0.25% 
SN – DMN 0.004 [0.015] − 0.025 to 0.033 0.791 0.267 ± 0.12% 0.006 [0.014] − 0.023 to 0.034 0.695 0.284 ± 0.21% 
FPN – DMN 0.004 [0.014] − 0.024 to 0.032 0.771 0.254 ± 0.13% 0.000 [0.014] − 0.028 to 0.029 0.981 0.251 ± 0.27%  

Graph outcomes    
Crude models Adjusted models†

B [SE] 95% CI p-value Bayes Factor B [SE] 95% CI p-value Bayes Factor 
Global GE 0.002 [0.003] − 0.005 to 0.008 0.624 0.277 ± 0.14% 0.002 [0.003] − 0.005 to 0.008 0.622 0.286 ± 0.3% 

Q 0.001 [0.002] − 0.003 to 0.006 0.568 0.279 ± 0.12% 0.000 [0.002] − 0.004 to 0.004 0.911 0.253 ± 0.19% 
PC − 0.010 [0.009] − 0.028 to 0.007 0.249 0.410 ± 0.11% − 0.007 [0.009] − 0.025 to 0.011 0.435 0.322 ± 0.22% 

FPN GE − 0.003 [0.007] − 0.017 to 0.012 0.710 0.264 ± 0.14% − 0.003 [0.007] − 0.018 to 0.012 0.682 0.263 ± 0.3% 
CC‡ 0.124 [3.364] − 6.584 to 6.832 0.971 0.246 ± 0.14% 0.973 [3.396] − 5.798 to 7.744 0.775 0.256 ± 0.3% 
BC‡ 0.050 [0.078] − 0.106 to 0.205 0.526 0.287 ± 0.12% 0.062 [0.078] − 0.094 to 0.217 0.430 0.308 ± 0.24% 

DMN GE − 0.002 [0.007] − 0.016 to 0.012 0.759 0.245 ± 0.14% − 0.003 [0.007] − 0.017 to 0.010 0.638 0.253 ± 0.25% 
CC‡ 0.444 [3.342] − 6.221 to 7.108 0.895 0.252 ± 0.14% 0.651 [3.404] − 6.137 to 7.439 0.849 0.259 ± 0.33% 
BC‡ 0.005 [0.059] − 0.112 to 0.123 0.931 0.245 ± 0.12% − 0.016 [0.056] − 0.128 to 0.097 0.778 0.256 ± 0.19% 

SN GE − 0.006 [0.011] − 0.027 to 0.016 0.606 0.729 ± 0.13% − 0.010 [0.011] − 0.031 to 0.012 0.381 0.563 ± 0.28% 
CC‡ − 1.593 [3.535] − 8.640 to 5.455 0.654 0.266 ± 0.13% − 1.969 [3.571] − 9.090 to 5.152 0.583 0.272 ± 0.28% 
BC‡ − 0.001 [0.095] − 0.190 to 0.188 0.994 0.245 ± 0.14% − 0.036 [0.095] − 0.226 to 0.154 0.707 0.260 ± 0.28% 

†Corrected for age, sex, education in years and, for between-network connectivity analyses, framewise displacement. ‡Statistics multiplied by 103 because of small values. 
Abbreviations: BC – Betweenness centrality; CC – Clustering coefficient; DMN – Default mode network; FPN – Frontoparietal network; GE – Global efficiency; PC – Participation 
coefficient; Q – Modularity; SN – Salience network.  
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results do not support the hypothesis that CT enhances the functional 
neural system on a global level; rather, Bayes factors showed effects in 
favor of no group difference on global outcomes (i.e., null hypothesis). 
Post-hoc analyses, however, suggested that CT may improve specific 
functional connections, notably in cortico-cortical and cortico- 
subcortical circuits that are prominently implicated in PD. 

In this study, we used functional connectivity and graph theoretical 
measures to map functional brain network alterations after CT. While 
earlier studies in multiple sclerosis and Alzheimer’s disease that applied 
a multi-domain CT of similar length (4–12 weeks) showed that func-
tional connectivity within networks increased (Bonavita et al., 2015; De 
Marco et al., 2018; Filippi et al., 2012), our intervention did not affect 
global and sub-network brain topology. Two of these studies also used 
active comparators, albeit potentially less engaging control conditions 
(i.e., news-paper reading and social interaction) compared with ours. 
One study in individuals with amnestic mild cognitive impairment that 
studied a 26-week multi-domain CT relative to a documentary-watching 
control condition showed enhanced segregation between task-positive 
and task-negative networks (Suo et al., 2016). In contrast to earlier 
studies, we used an empirically-based, widely-used network parcellation 
(Yeo et al., 2011), instead of independent component analysis to over-
come potential replicability limitations of data-driven methods. 

The subtle positive CT effects on executive speed of processing in our 
full study sample did not reach significance in this sub-sample, poten-
tially due to the smaller size of the fMRI sub-sample as effect estimates 
were comparable. The lack of robust behavioral CT effects may in the 
first place explain the absence of brain network alterations, especially at 
the large-scale network and connectome level. On the other hand, our 
regional post-hoc findings may reflect a subtle, but still relevant CT ef-
fect. That is, functional MRI may be more sensitive in measuring subtle 
cognitive change than traditional neuropsychological tasks, based on 
our previous studies that identified functional activity and connectivity 
changes that preceded decline on neuropsychological test performance 
in de novo PD patients (Gerrits et al., 2015; Trujillo et al., 2015a). 
Importantly, these results additionally fit the localized CT-induced 
changes in structural connectivity in this COGTIPS sample, that was 

additionally correlated with CT-related acceleration of mental process-
ing (Vriend et al., 2021). 

To our knowledge, this is the first study on the effect of CT on brain 
network topology in PD patients. Although there is ample evidence for 
the existence of network topological alterations already early in PD, 
therapeutic effects on these alterations are still relatively unexplored in 
PD – as it is in CT literature. Earlier studies – although mainly in healthy 
young subjects – have confirmed that CT is able to alter network to-
pology (Finc et al., 2020; Han et al., 2020; Langer et al., 2013; Roman 
et al., 2017), and modularity may be an important predictor of thera-
peutic success (Arnemann et al., 2015; Baniqued et al., 2017; Gallen 
et al., 2016). When we added contrasts to assess CT effects per cognitive 
status, cognitive training did seem to decrease participation coefficient 
while modularity increased in cognitively normal individuals – although 
the latter result did not survive correction for multiple comparisons. 
These effects, indicating a more segregated network, are associated with 
more healthy brain topology (Bertolero et al., 2018). The subgroup was 
very small, however. These results should therefore be considered 
exploratory to possibly direct future studies to focus on a (larger) sub-
group of exclusively PD-NC, PD-MCI or PD-D patients. 

To ensure that potential effects were not levelled out by our method 
of averaging connectivity strength across network nodes, we analyzed 
connectivity of specific network nodes that previously have been re-
ported to play a key role in the respective networks. The results of these 
analyses did replicate the findings from earlier studies and revealed 
localized changes in cortico-cortical and cortico-subcortical connections 
of the dorsal ACC and dlPFC, key regions of the SN and FPN, respec-
tively. First, it should be noted that these analyses were performed post- 
hoc and replication of these findings is needed. Our results support 
multiple earlier findings in neurodegenerative diseases and healthy 
aging that showed CT-induced connectivity alterations of the ACC 
(Parisi et al., 2014; Ross et al., 2018; Suo et al., 2016) and dlPFC (Cao 
et al., 2016; Díez-Cirarda et al., 2016; Ross et al., 2018) using seed-based 
analysis methods. These structures are critically involved in cognition, 
especially executive function and this pattern of results thus fits the 
focus of our experimental intervention on executive functions, mental 
speed and attention. 

In the dACC and dlPFC, CT induced increased average connectivity 
with FPN nodes. These connectivity changes may indicate that executive 
function and cognitive control networks alter on a more localized level: 
first, the dACC is a large structure with monitoring, controlling and 
evaluating functions and its connections to frontal and parietal areas are 
important for cognition and – specifically – executive control (Harding 
et al., 2015; Heilbronner and Hayden, 2016). Second, increased con-
nectivity of the left dlPFC with FPN nodes may exhibit enhanced 
intrinsic connectivity of this control network that is primarily associated 
with cognitive control and working memory and exerts top-down con-
trol of attention (Dosenbach et al., 2007; Harding et al., 2015). After CT, 
functional connectivity of the right dlPFC and dorsal ACC with the 
ipsilateral caudate nucleus was additionally higher compared with the 
AC group. These cortico-subcortical connections belong to the highly 
dopamine-dependent cortico-striato-thalamo-cortical circuits involved 
in executive function (Groenewegen and Uylings, 2010; Owen, 2004) 
and cognitive control (Peters et al., 2016). Our data showed that func-
tional connectivity with the caudate nucleus was higher post-training in 
the CT group, with stable or increased connectivity in the CT group 
relative to a decrease in the AC group connectivity. These post-hoc 
findings were similar to our diffusion weighted imaging analyses that 
showed no CT-induced changes in the structural connectome, but did 
suggest changes in the white matter microstructure in the anterior limb 
of the internal capsule connecting subcortical structures (Vriend et al., 
2021). Taken together, these findings cautiously suggest that CT may 
influence local rather than global connectivity, specifically those con-
nections that are generally impaired in PD. 

Despite the fact that the cortico-cortical and cortico-subcortical 
connectivity changes and the network topological changes in de PD- 

Fig. 3. Group differences in connectivity between the dorsal anterior cingulate 
cortex (dACC) and frontoparietal network (FPN, panel A) and right caudate 
nucleus (panel C) and the dorsolateral prefrontal cortex (dlPFC) and the FPN 
(panel B) and right caudate nucleus (panel D). P-values mark difference at post- 
training corrected for baseline value. 
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NC group fit the existing literature, these results need to be taken with 
caution as these were post-hoc analyses with no significant association 
with training-induced change in cognitive performance. The clinical 
relevance of these changes remains therefore speculative. Additionally, 
although our earlier systematic review of neural correlates of CT showed 
that it induced diffuse functional connectivity alterations across the 
cortex rather than targeted at specific brain areas (van Balkom et al., 
2020), the small behavioral effects in our sample retrospectively make 
the existence of such large-scale effects on brain topology and connec-
tivity inconceivable. It is conceivable, however, that these effects may 
generalize to large-scale network connectivity and topology if CT is 
more efficacious and its durability enhanced, e.g., with extended 
training duration, addition of booster sessions or adjuvant neuro-
stimulation such as repetitive transcranial magnetic stimulation. 

This is the largest study yet on the neuroimaging effects of CT in PD. 
The comprehensive set of clinical, neuropsychological and imaging data 
provide a complete picture of the potential changes induced by CT. 
Additionally, in our study we used – as far as available – best practice 
methods to map neuropsychological test performance (Litvan et al., 
2012), preprocessing pipelines (Esteban et al., 2019), definition of the 
connectivity matrix (Mahadevan et al., 2020), and resting-state network 
parcellation (Yeo et al., 2011). We additionally used a wavelet coher-
ence method to compute connectivity matrices, with the advantage of 
being less susceptible to in-scanner head movement, but most earlier 
studies applying graph theory used Pearson correlational methods 
which may induce (small) differences in results. Our proof-of-concept 
analyses using graph outcomes calculated with Pearson correlation 
connectivity matrices did, however, not provide substantively different 
results. 

A limitation of our study was the prevalence of a small number of 
participants with possible PD-D on the basis of the full diagnostic criteria 
(Emre et al., 2007), despite our aim to exclude individuals with severe 
cognitive impairment by using previously reported optimal diagnostic 
screening criteria for PD-D on the basis of Montreal Cognitive Assess-
ment score (Dalrymple-Alford et al., 2010). Second, we a-priori assumed 
the effects of the AC to be non-specific, but this intervention might have 
induced behavioral or neuroplastic effects that we were not able to 
identify without a waiting-list control group. Third, the groups were 
slightly unbalanced on subjective cognitive complaints. Image quality 
was higher in the CT group which may have affected the validity of the 
AC group fMRI indices, but it is important to note that these image 
quality measures are calculated before preprocessing, and nuisance 
regression and ICA-AROMA has been shown to be a robust method to 
reduce motion-related artefacts. Lastly, our participants moved consid-
erably during the fMRI scan; we excluded the participants with extreme 
movement, but for pragmatic reasons our cut-off was quite liberal 
(Parkes et al., 2018). 

In conclusion, we studied the effect of eight-week online multi- 
domain CT on functional connectivity and brain network topology in 
individuals with PD. We did not find evidence for alterations in con-
nectivity between large-scale networks or brain network topology. 
Analogous to effects on cognitive performance, CT effects on network 
function were small, at the most targeting regional connectivity in 
fronto-striatal circuits. Post-hoc results hinted at increased segregation 
of global network topology specifically in cognitively intact PD patients, 
but replication in larger, homogeneous samples is needed. 
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