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Abstract

An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and
biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how
species differ in their response of growth to resource availability and individual size. We use a hierarchical Bayesian
approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term
forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical
censuses of canopy density. The hierarchical Bayesian approach allowed accounting for different sources of error, such as
negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at
higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly
all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized
conditions (5 cm dbh, 5% light) varied over a 9-fold range and reflect strong growth-strategy differentiation between the
species. As a consequence, growth rankings of the species at low (2%) and high light (20%) were highly correlated. Rare
species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less
important for growth than light and about half the species were predicted to grow faster in diameter when bigger or
smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth
rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree
growth in the tropics.
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Introduction

Growth rates of tropical tree species vary widely between species

and in response to resource availability (e.g. light, soil moisture,

nutrients) and individual condition (e.g. size, vigor) [1,2]. Tree

growth is an important component of demographic variation

among tropical tree species and its response to biotic and abiotic

factors reflects different life-history strategies of tropical tree

species. An understanding of the drivers of tree growth at the

species level is required to predict likely changes of species’

abundances and hence community composition and biodiversity

[3,4], as well as to apply detailed process-based simulation models

to predict forest dynamics and carbon storage under changing

disturbance regimes such as logging or hurricanes [5,6].

Light availability is widely believed to be one of the most

important environmental factors driving growth of tropical

rainforest trees [7-9]. Tree growth has generally been found to

increase with light or gap size [2,10-14]. Species-specific

differences in the response of growth to light availability may lead

to rank reversals of growth rates along the light gradient and this

light-gradient partitioning is believed to contribute to tree species

richness [7,12,15,16]. However, studies on limited numbers of

tropical tree seedlings have not found evidence of rank reversals

between growth rates of different species [1,17,18].

Quantifying growth response to light across highly diverse

tropical communities is challenging. Many species occur at low

densities [19,20] and measuring the continuous variation in light

availability across large spatial scales is labor-intensive [21,22].

Thus, previous studies have usually focused on a small number of

species [9,23,24] and the seedling or sapling life stage [10,16,25].

Additionally, light availability has been represented indirectly by

competition indices based on the density, basal area and/or

distance of neighboring trees [26], exposed crown area [9,24] or

disturbance indices [2], but rarely growth has been described as a

function of irradiance for tropical tree species (for temperate tree

species see [27–29]).

As trees grow taller, they experience successively brighter

environments [30,31]. This correlation between light availability

and tree size has to be taken into account and the effects of light

and size have to be separated [32]. There are few studies that have
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included measures of tree size and light availability simultaneously

as predictors of tree growth, and they consistently found significant

effects of both variables for the majority of species [2,24,26].

In this study, we aim to disentangle the effects of light

availability and tree size on growth across .90% of the 300 tree

species occurring at Barro Colorado Island (BCI), Panama. Forest

census data from the 50-ha Forest Dynamics Plot at BCI provided

information on the spatial location, size and diameter growth of

nearly 150 000 individual trees of 274 species in two census

intervals (1985–1990, 1990–1995). Yearly canopy census data that

recorded vegetation density in six height layers were used as a

proxy of light availability for each individual tree.

We used a hierarchical Bayesian approach to quantify the

response of growth to light availability and tree size across the

entire community, including rare species. Hierarchical models

address the differences in sample size between the species by

combining probability models for the growth variability within

species and the variation between species [20,33]. In our two-level

hierarchical model, individual growth is a function of light and

size, while species-level parameters are related to a species’

abundance [34]. This allows us to estimate the distribution of

species-specific light and size effects on growth and their

relationship with abundance across the community, properly

discounting information on rare species relative to common. The

Bayesian approach also allows correctly accounting for process

and measurement error, e.g. including negative growth observa-

tions [35].

Here we report (1) the distribution of growth rates at

standardized conditions (5 cm dbh, 5% light), light and size effects

on growth across the community to assess the degree of growth

strategy variation between species. For abundant species ($100

stems) parameter estimates are largely determined by the data on

the given species rather than by the community-level information.

Therefore, (2) we use parameter estimates of abundant species to

evaluate the respective contributions of light availability and tree

size to growth rates, and the scope for light gradient partitioning.

Methods

Study area
We analyzed data from a 50-ha forest census plot on BCI,

Panama (9u99N, 79u519W). BCI is a 1567-ha island in the Panama

Canal covered with tropical lowland moist forest. The plot consists

of 48 ha of undisturbed old-growth forest and 2 ha of secondary

forest about 100 years old [36]. The climate on BCI is warm

throughout the year, but rainfall is seasonal with most of the 2500

mm falling during the wet season from April to November [37,38].

Elevation of the plot is 120–155 m asl [39]. Detailed descriptions

of flora, fauna, geology and climate can be found in [40–42].

Barro Colorado Island is managed exclusively for field research by

the Smithsonian Tropical Research Institute (STRI), which has

been granted long-term custodianship over the island by Panama’s

Environmental Authority. STRI gave permission to establish the

50-ha plot as a permanent census in 1980.

Growth data
All free-standing woody stems $1 cm diameter at breast height

(dbh) were mapped, identified to species and measured in 1981–

1983, 1985, and every 5 years thereafter (www.ctfs.si.edu; [39,43]).

Here we use the census intervals from 1985–1990 and 1990–1995

and determined annual dbh growth rate (mm/yr). We discarded

cases where a tree survived but its stem was measured at a different

height, or where one stem broke so a resprouted stem of the same

tree was measured. We also excluded outliers: stems which grew

.75 mm/yr or shrunk .25% of their initial dbh. Smaller

negative growth observations due to dbh measurement error were

included (see Estimation of measurement error). Due to their lack

of secondary growth, we excluded palm species. Because dbh

values were rounded down to the nearest mm for all stems

,55 mm in 1985 but not in 1990, it was necessary to round 1990

dbh values below 55 mm down as well before calculating growth

rates. Rounding down may bias growth estimates of small stems.

However, we found that the bias introduced by rounding down is

minimal. On average, growth is underestimated by 0.03 mm/yr

(cf. [44]). Growth rates for the second census interval are based on

dbh measurements with 1 mm accuracy. To avoid edge effects of

the light availability calculation, we excluded all individuals within

20 m of any edge of the plot. In total, 144 967 individuals of 265

species and 148 989 individuals of 270 species were included in the

analysis in the first and second census interval, respectively.

Estimation of measurement error
To estimate the error of dbh measurements, 1562 randomly

chosen trees were measured twice within 30 days. Assuming that

trees did not grow between these measurements, we applied a

Bayesian model to estimate true dbh for each tree and fit the

differences between measured dbh and true dbh with a sum of two

normal distributions [45]. The first describes small errors that are

proportional to the dbh of the tree and has a s.d. of SD1 =

sda+sdb6dbh. The second is independent of tree dbh and describes

larger errors, e.g. due to errors in decimal places or recording dbh

for the wrong tree and has s.d. SD2. Errors were best fit with sda =

0.927 mm (s.d. of the posterior distribution was 0.024 mm), sdb =

0.0038 (s.d. = 0.00036), SD2 = 25.6 mm (s.d. = 2.49 mm), with a

fraction (f) of 2.76% (s.d. = 0.39%) of the trees being subject to the

larger error. Growth calculations involve two dbh measurements,

thus the variance of growth error is twice the variance of

measurement error. The posterior distributions of error parame-

ters sda, sdb, SD2 and f enter as fixed priors in the hierarchical

Bayesian model.

Estimation of light availability
We used annual canopy census data to produce an index of the

amount of light reaching any point in the forest. The censuses

were conducted from 1983 to 1996, except for 1994. Thereafter,

the canopy census was omitted for several years and then

continued applying a different method. Thus, consistent canopy

census data are only available for the two census intervals 1985–

1990 and 1990–1995, and we restricted our analysis to these two

intervals. The canopy census recorded the presence of vegetation

in six height intervals, 0–2, 2–5, 5–10, 10–20, 20–30 and $30 m

every 5-m across the 50 ha. For each tree, we calculated a shade

index as a weighted sum of vegetation located above the tree and

,20 m away.

Light measurements were not available for any tree in the study

area, i.e. we could not calibrate the shade index directly. Instead,

we used 396 direct measurements of relative irradiance at a nearby

site on BCI in 1993 [46] and converted the shade index to an

estimate of relative irradiance by fitting a nonlinear regression

through the 5th, 25th, 50th, 75th and 95th percentiles of the two

distributions. This approach made it impossible to estimate the

measurement error for the light index. However, the light index

performed well in predicting recruit numbers across 263 species at

BCI [47]. Details about its calculation are given in [47,48]. Even

though dbh and the light estimate are strongly correlated

(cor = 0.8), there are many observations of small trees receiving

high light and of larger trees receiving low light (Fig. S1). This

allows us to separate the effects of the two variables.

Growth Strategies of Tropical Tree Species
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Variable selection
Because the hierarchical Bayesian model requires long computa-

tion times, we first performed independent regressions of log(growth)

as a function of dbh and light to select the best functional relationship.

Stems with negative growth were excluded from this analysis. We

applied a step-wise procedure to determine the best predictors of

log(growth) for 98 species with .100 individuals and used AIC [49]

to compare models of different complexity. Log(light) was the best

predictor of growth, significantly improving the model (|DAIC|.2)

compared to a constant model for 76 species. Including log(dbh)

significantly improved the model further for 64 species. Including dbh

or an interaction between log(light) and log(dbh) improved the model

significantly for 50 species and 43 species, respectively. However,

these more flexible models predicted artificially low or high growth at

large dbh in some species, and we decided to adhere to the simpler

model only including log(light) and log(dbh) as predictors. Including

dbh or an interaction term did not alter the conclusions of this study.

Hierarchical Bayesian model
To assess the light and size dependence of growth across tree

species at BCI, we used a hierarchical Bayesian framework [33,50]

which allows including different sources of error [35]. At the core

of the model is the functional relationship predicting growth of

individual i (predi) of species j as a power function (linear log-log

relationship) given light availability and dbh,

log (predi)~ajzbj| log (lighti)zcj| log (dbhi)

where parameters aj, bj and cj describe the mean growth rate, the

light and size dependence of growth of species j, respectively.

Variation of growth at a given light availability and dbh is

modeled using a lognormal distribution (process error)

truei~ln N(predi,sp,j)

where truei is the estimated true growth rate of tree i. The process

error (sp) is estimated for each species. Using a lognormal

distribution, the process error automatically scales with predicted

growth [51].

Data enter our model as the observed annual dbh growth of

individual i (obsi, mm/yr) and is assumed to be subject to

measurement error as described above

obsi~ (1{f )|N(truei,
SD1

inti

)zf |N(truei,
SD2

inti

)

with SD1 describing the size-dependent error component and SD2

the size-independent error component affecting f = 2.7% of the

observations. Standard deviations have to be adjusted to the time

period elapsed between the two dbh measurements of the tree (inti)

from which the annual growth rate has been calculated.

Preliminary analyses indicated that aj, bj, and cj varied slightly

but systematically with abundance across the community.

Therefore, we included abundance (abunj) as species-level predictor

of parameters of the growth model. Abundance is measured as the

number of individuals $1 cm dbh in the 50-ha plot that survived

the given census interval. Non-hierarchical model runs also

revealed that all model parameters were approximately normally

distributed at a given abundance. Thus,

aj ~N(a0za1| log 10(abunj),sa)

bj ~N(b0zb1| log 10(abunj),sb)

cj ~N(c0zc1| log 10(abunj),sc)

The standard deviations sa, sb, and sc measure the between-

species variation. As we did not have prior knowledge, we used

non-informative uniform priors for these hyperparameters:

a0,a1,b0,b1,c0,c1~U({10,10)

sa,sb,sc~U(0,2)

The process error (sp) was assumed to vary lognormally across the

community with hyperparameters mh and sh. Priors for both

parameters were

mh,sh~U(0:001,100)

The model assumes no correlation between parameters.

Model implementation and diagnostics
Posterior distributions of the species-specific parameters of the

growth model, true growth of each individual tree, error components

and hyperparameters were obtained using a Markov chain Monte

Carlo (MCMC) method that is a hybrid of the Metropolis–Hastings

algorithm and the Gibbs sampler [20,52]. Parameter values are

sequentially updated as in the Gibbs sampler, but acceptance depends

on the likelihood ratios as in the Metropolis–Hastings algorithm [53].

The proposal distribution is a normal distribution centered on the

current value of the given parameter. The step width for each

parameter, i.e. the standard deviation of the proposal distribution, is

constantly adjusted during the burn-in period in such a way that

acceptance rate is kept around 0.25 [53].

To speed up the convergence of the Gibbs sampler, we

weakened the correlation of a with b and c by centering the light

and dbh data on approximately median or mean values across all

individuals

log (predi)~ajzbj|( log (lighti){ log (0:05))

zcj|( log (dbhi){ log (50mm))

Median light is 0.045 and mean dbh is 45 mm. Thus, aj represents

the log of predicted annual growth of a tree with 5 cm dbh that

receives 5% light.

Growth Strategies of Tropical Tree Species
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We monitored convergence by running two chains with

different initial values and used the Gelman and Rubin’s

convergence diagnostics and a value of 1.1 to detect convergence

[52,54]. Post-hoc analyses showed that the correlation between

model parameters was ,|0.57| for all parameter combinations.

These correlations were not strong enough to prevent the chains

from mixing well and convergence required 100 to 2900 iterations.

We used a burn-in period of 5 000 iterations and additional 5 000

iterations were used for analysis. We computed posterior

parameter distributions given observed growth, light availability

and dbh of each individual. All analyses were carried out using the

software package R version 2.11.1 [55] and simulations were run

on parallel computers.

Analysis
From the posterior distributions, we computed the mean, s.d.

and 95% credible intervals (CI) of all model parameters.

Significance of coefficients was assessed by a 95% CI that did

not include zero. For abundant species with .100 individuals,

model parameters and CIs are largely determined by the data

available for the given species. For less abundant species,

parameter estimates are increasingly determined by the species-

level prediction based on abundance and CIs are constrained by

the between-species variation (sa, sb, sc).

To report predicted annual mean growth rate at 5 cm dbh and

5% light, we back-transformed aj to arithmetic units: eajz

s2
p,j
2 .

Likewise, to compare model predictions with data, we back-

transformed predicted growth rates on the logarithmic scale (predi,l)

to the arithmetic scale (predi,a),

predi,a~e
predi,lz

s2
p, j
2

and plotted observed and predicted growth rates for each

individual tree as well as mean observed and predicted growth

rates in different size and light classes, respectively. For species

with ,25 individuals, all individuals were pooled.

To evaluate between-species variation of growth rates of rare

and abundant species at different light levels, we calculated the

probability density of median annual growth rate

ln N(m~a0za1| log 10(abundance)z(b0z

b1| log 10(abundance))|( log (light){ log (0:05)),

s2~s2
az( log (light){ log (0:05))2|s2

b

z2|( log (light){ log (0:05))|Cov(a,b))

from the hyperparameters of a and b at low (N = 10) and high

(N = 1000) abundance, and low (5%) and high (20%) light,

respectively. For these calculations we used hyperparameters

estimated for the census interval 1985–1990. The covariance

between a and b was 0.033 and 0.025 for rare and abundant

species, respectively.

To visualize the effect of light on growth, we calculated mean

observed and predicted growth rates in ten light classes

corresponding to deciles of light observations. Predicted mean

growth rates were calculated at mean observed light level and

mean dbh of the individuals in the respective light class. To

visualize the effect of dbh on growth, we calculated mean observed

and predicted growth rates in different size classes. The number of

size classes depended on the abundance of the species. Predicted

growth rates were calculated at mean observed light level and

mean dbh of the individuals in the respective size class.

The percentage of explained variance (R2) was evaluated as

R2~1{
E(Var(e))

E(Var(y))

[50]. This measure can be negative when the model predicts the

data so poorly that residual variance is larger than the variance of

the data.

To (visually) assess the conservation of growth rankings among

species at different light conditions, we computed average growth

for species with $100 individuals over the range of most

commonly observed light conditions (2–20%) from the parameters

estimated for the respective census interval. Average tree dbh at

the different light levels was determined from a nonlinear

regression predicting log(dbh) using log(light) and light as

predictors across all individuals (Fig. S1). We also computed

Spearman’s rank correlation (rho) for growth rates at 2% and 20%

light.

For species with $100 individuals, we calculated contributions

of light and dbh to growth by comparing growth rates at

standardized conditions. For saplings, we calculated the difference

between predicted growth at baseline conditions defined as 1 cm

dbh and average light availability at 1 cm dbh (2%) and growth

when light and dbh are doubled, i.e. 2 cm dbh and 4% light. In

this analysis, only species with maximum dbh $2 cm were

included. For larger trees (only for species with maximum dbh

$10 cm), we performed similar comparisons using growth at

10 cm dbh and average light availability (18%) as a baseline and

comparing it to growth at doubled dbh (20 cm) and doubled light

(32%).

Results

Community-level patterns of growth
All species grew faster at higher light (b.0; Fig. 1). This effect

was significant for the majority of species; 98% and 93% in the

two census intervals, respectively. However, between-species

variation in light response was limited. All but two species’

parameter estimates and most of the CIs were between 0 and 1,

indicating a decelerating increase of growth with light (Fig. 1;

Table S1). A significant portion of between-species variation in

light response was explained by a species’ abundance, with

abundant species responding less strongly to changes in light

availability (Table 1; Fig. 1).

Growth rate also varied with tree size (c), but increases were as

common as decreases (Fig. 1; Table S1). Only few of the species’

parameter estimates were significantly positive (12% in both

census intervals) or negative (12% in the first and 8% in the second

census interval; Fig. 1; Table S1). Abundant species showed

growth increases with size more often than rare species, but this

relationship was only significant in the first census interval

(Table 1).

The intercept of the growth model (a) was weakly but

significantly related to abundance, with rare species tending to

grow faster than abundant species (Table 1; Fig. 1). Back-

transformed to the arithmetic scale, average growth rates at

standardized conditions (5 cm dbh and 5% light) varied widely

between species and ranged from 0.2 to 6.7 mm/yr (Fig. 2).

Average growth (at standardized conditions) was 1.6 mm/yr in the

first census interval and 1.2 mm/yr in the second interval.

Median annual growth rates of 95% of the species are expected

to be 0.22–2.0 mm/yr for rare species (N = 10) at low light (5%)

Growth Strategies of Tropical Tree Species
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(Fig. 3). This is a 9-fold variation. For abundant species (N = 1000)

at low light, this range is 0.17–1.5 mm/yr (9-fold variation). Under

high light (20%), the predicted ranges are 0.43–6.8 mm/yr (16-

fold variation) and 0.22–3.3 mm/yr (15-fold variation) for rare

and abundant species, respectively. Thus, the range of median

growth rates is almost twice as large under high light (20%)

compared to low light (5%). This difference is entirely due to the

slightly larger s.d. at higher light.

Observed versus predicted growth
We illustrate different combinations of growth response to light

and dbh (Fig. 4). Note that x-axes are on log scale and thus, growth

increases that are slower than linear (0,b,1 or 0,c,1) appear

exaggerated. The shade-tolerant understory tree Faramea occidentalis

grew slowly and neither light nor dbh explained much of the

variation in growth rates. Growth of the shade-tolerant midstory

tree Virola sebifera responded strongly to light, whereas the effect of

dbh was insignificant. For Prioria copaifera, a shade-tolerant canopy

tree, dbh had a large positive impact on growth, while it responded

only moderately to light. Growth of the light-demanding pioneer

tree Cecropia insignis increased strongly at higher light, and at the

same time strongly decreased with dbh. Growth of Protium

panamense, a shade-tolerant midstory tree, decreased with dbh

and the apparent slight increase of growth at larger dbh was due to

the strong positive effect of light. Model fits for the other species

are provided as supporting information (Table S2; Figs. S2, S3).

Conservations of growth rankings
Combining the estimated parameters, we predicted average tree

growth for 115 and 114 species with $100 individuals in the two

census intervals, respectively, across the most common light

conditions (2–20%; Fig. 5). Average growth curves ran largely in

parallel and growth rankings were preserved to a large degree

among the species. Rank correlations (Spearman’s rho) between

Figure 1. Parameter estimates of the growth model. Means (points) and 95% credible intervals (lines) of the species-specific parameters of the
growth model. Left panels: log(light) dependence (b), middle panels: log(dbh) dependence (c), and right panels: intercept (a) for 265 tree species in
the census interval 1985–1990 (upper panels) and 270 species in the census interval 1990–1995 (bottom panels) at BCI, Panama. Sensitivity of growth
to light (b) and growth at standardized conditions (a) decrease significantly with abundance. Abundance is slightly jittered to reduce overlap of rare
species.
doi:10.1371/journal.pone.0025330.g001

Table 1. Parameters of the species-level model of tree growth. Means (s.d.) of parameter estimates from the species-level model.
Coefficient estimates that are significantly different from zero (based on 95% credible intervals) are highlighted in bold.

Model coefficient

Intercept
a0, b0, c0

Abundance
a1, b1, c1

Standard deviation
sa, sb, sc

1985–1990 1990–1995 1985–1990 1990–1995 1985–1990 1990–1995

Intercept (a) 20.261 (0.128) 20.437 (0.095) 20.139 (0.053) 20.162 (0.041) 0.558 (0.034) 0.565 (0.033)

Log(light) (b) 0.812 (0.100) 0.756 (0.058) 20.145 (0.037) 20.143 (0.023) 0.184 (0.015) 0.226 (0.018)

Log(dbh) (c) 20.255 (0.095) 20.102 (0.083) 0.091 (0.036) 0.048 (0.033) 0.234 (0.019) 0.301 (0.020)

doi:10.1371/journal.pone.0025330.t001

Growth Strategies of Tropical Tree Species
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predicted growth rates at 2% and 20% light were 0.69 and 0.66 in

the two census intervals, respectively.

Contributions of light and size to growth
Doubling the light level for small trees of 1 cm dbh led to an

increase of growth that was ,1 mm/yr for the majority of species

with $100 individuals (Fig. 6). Doubling the dbh, either led to

faster or slower growth, but the effect was small (,0.5 mm/yr).

Doubling light and dbh, most trees grew up to 1 mm/yr faster. For

larger trees (10 cm dbh), effects were larger because baseline

growth rates were larger. Doubling the light level led to an

increase of growth that was ,3 mm/yr for the majority of

abundant species. Doubling the dbh, growth either increased or

decreased by up to 2 mm/yr. Doubling light and dbh, the

majority of species grew up to 4 mm/yr faster.

Uncertainty and explained variance
The process error (sp, j) varied little across species and between

census intervals; mh was 1.28 in the first census interval and 1.15 in

the second, sh was 0.09 and 0.16 in the two census intervals,

respectively. Thus, at predicted growth of 1 mm/yr, the

probability of true growth being between 0 and 2 mm/yr was

71%. When predicted growth was 5 mm/yr, the probability that

true growth was between 3 and 7 mm/yr was 26%.

Dbh and light explained a low proportion of the variation in

growth rates. R2 was ,0.5 for the majority of species and reached

12% and 13% on average in the two census intervals, respectively.

For 94 and 92 species in the two census intervals, R2 was negative

indicating that the model predicted the data so poorly that residual

variance was larger than the variance of the data. The majority of

these species had ,30 individuals.

Discussion

Light effect on growth and light gradient partitioning
For the first time it was possible to disentangle light and size

effects on growth across a diverse community of tropical tree

species. All species grew faster at higher light availability. This

effect was significant for .90% of the species. This result confirms

that light is effectively an important limiting resource for woody

species in natural forests, not only at the seedling and sapling life

stage (cf. [56] for temperate trees). However, the low proportion of

variation of growth rates that is explained suggests that other

factors considerably contribute to shaping tree growth in the

tropics. We attribute the larger proportion of significant results –

as compared to previous studies [2,24,57] – to the larger sample

sizes and the higher precision of the light index derived from the

small-scale canopy census in capturing actual light availability.

However, we found little evidence for light gradient partitioning

in terms of growth rates among species. The majority of species

showed a decelerating increase of growth with light (0,b,1).

Moreover, correlations of growth ranks at 2% and 20% light were

high (Spearman’s rho , 0.7). The consistency in the response of

growth to light across species suggests that reversals in rank order

do not have a strong impact on the outcome of competition among

species. Largely consistent growth rankings are also reported for

seedlings of small numbers of tropical tree species across different

light [1,17,58] or soil/water treatments [18] or both [59]. Studies

that suggest the possibility of light gradient partitioning are often

based on very few species [11,60].

On the other hand, growth rates vary twice as much among the

species at high light (16-fold) as compared to low light (9-fold).

These large differences in growth rates certainly offer opportuni-

ties for differentiation of life-history strategies. Fully understanding

the importance of differences in growth rates and light response for

coexistence, however, requires the application of simulation

models that combine information on the response of all

demographic rates (recruitment, growth and mortality) to changes

in light availability. The parameters we have estimated here

provide the basis for such modeling studies.

The fact that an interaction between light and size improved the

model only in 43 species (16%) suggests that species respond in a

similar way to changes in light availability across all sizes. This

conclusion is corroborated by separate analyses for trees smaller

and larger than 5 cm dbh where the estimated distribution of light

response was very similar (results not shown). This is in contrast to

a study on Nothofagus solandri var. cliffortioides, where only small trees

,10 cm dbh were sensitive to changes in above-ground

competition [61].

Size effect
While species responded consistently to light, changes of diameter

growth with tree size were very variable among species with about

Figure 2. Growth rates at standardized conditions. Predicted
annual growth rate (mm/yr) at 5 cm dbh and 5% light for 265 tree
species in the census interval 1985–1990 and 270 species in the census
interval 1990–1995 at BCI, Panama.
doi:10.1371/journal.pone.0025330.g002

Figure 3. Distribution of median growth rates for rare and
abundant species under different light conditions. The proba-
bility distribution of median growth rate (mm/yr) at 5 cm dbh for rare
(N = 10) and abundant (N = 1000) species at low (5%) and high (20%)
light is calculated from the hyperparameters of a and b for the census
interval 1985–1990.
doi:10.1371/journal.pone.0025330.g003
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half the species growing faster when taller and the other half of the

species growing faster when small. Likewise, significant responses

were as frequently positive (12%) as negative (8%–12%). However,

we caution against a physiological interpretation of size dependence

of diameter growth rates. If diameter growth scales with diameter as

dg , dc and biomass scales with diameter as b , d8/3 [62] then

biomass growth scales with diameter as bg , d5/3+c. Constant

biomass growth is achieved when c = 25/3. When c.25/3, biomass

growth increases with diameter, despite possibly decreasing diameter

growth. Parameter estimates and credible intervals of c indicate that

no species is expected to have c,25/3. This suggests that tropical

trees continue accumulating carbon at increasingly faster rates as they

grow [4,63].

For the vast majority of species, growth rates were well

approximated by the power function which only allows for a

monotonic increase or decrease of growth with diameter. Many

other studies have allowed for a hump-shaped response of growth

to diameter [2,24,26,64–66]. However, we found little evidence

for a peak of growth rates at intermediate diameters. It is only a

small proportion of species which show this phenomenon

including Cordia alliodora, C. bicolor, Hirtella triandra, Jacaranda copaia,

Protium tenuifolium, and Zanthoxylum ekmanii.

In other species, the model did not capture the saturation of

growth rates at large diameters (e.g. Alseis blackiana, Dipteryx

oleifera, Inga marginata, Ocotea oblonga, O. whitei, Pouteria

reticulata, Prioria copaifera, Quararibea asterolepis, Simarouba

Figure 4. Observed and predicted growth rates against light availability and stem size. Light (b) and dbh dependence (c) of growth rates
for five species in the census interval 1990–1995. Observed (dark grey) and predicted (light grey) growth rates of individuals, mean observed (filled
circles) and predicted (diamonds) growth in different light and dbh classes. Species’ parameters are given in the panels. Species are Faramea
occidentalis (N = 20 110), Virola sebifera (N = 1469), Prioria copaifera (N = 979), Cecropia insignis (N = 164) and Protium panamense (N = 2227).
doi:10.1371/journal.pone.0025330.g004

Figure 5. Visual assessment of the scope for light gradient partitioning. Predicted average growth rates (mm/yr) in (A) 1985–1990 and (B)
1990–1995 across most common light conditions (2–20%) for species with $100 individuals. Twelve randomly selected species are highlighted in
black. Intersections of lines represent reversals of growth rankings between species.
doi:10.1371/journal.pone.0025330.g005
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amara). This is a result of the unbalanced data sets dominated by

the many small individuals. Nevertheless, the model fits show that

for the vast majority of species, growth rates were well

approximated and deviations only affected the largest size classes.

To account for unbalanced data sets and unknown functional

relationships between predictor variables and growth, semi- or

nonparametric approaches could be used. However, semi- or

nonparametric approaches are not suitable for our study because

they prevent a straightforward comparison among many species.

Uncertainty and unexplained variance
Generally, a large variation of growth rates is observed that is

not explained by tree size or light availability [4]. In our analysis,

the two factors explained on average across species 12–13% and at

most 64% of the variance of growth rates. In faster-growing

species, R2 was slightly higher than in slow-growing species [67].

These values are in the range of other studies on tropical trees

using diameter and crown illumination index [24] or a species-

specific neighborhood competition index [26] as predictors of tree

growth. In temperate trees, larger values of R2 have been reported.

Using tree size and exposed crown area or accounting for above

and belowground competition, up to 90% of growth variance of

North American tree species could be explained [66,68].

The large amounts of unexplained variance can be due to

environmental conditions not considered here, e.g. soil texture

[24], soil moisture [67,69], nutrient availability [18,70], below-

ground competition [61], soil biota [71], year-to-year variation in

cloud cover or temperature [23,35], the identity of neighbors

[66,67,72], or genetic variability within species [35]. In the study

area, the elaboration of fine scale maps of soil nutrients and

moisture is underway, and these may lead to further understand-

ing of variation in growth.

Uncertainty in our model fits also comes from other sources:

error in the light estimate, measurement error of past growth, and

sampling error in rare species [23,35,73]. Our light index is only

an approximate way of estimating the light environment in the

forest. However, measuring light at every tree in the 50-ha plot

would involve a prohibitive amount of time and labor. Until

LiDAR-mapping data of the entire 50 ha are available, the

method we propose offers an objective and straightforward

measure of how much vegetation is blocking the sky above any

tree of any height in the entire forest. In a previous study based on

the same estimation of light availability, a strong impact of light on

species-specific recruitment rates was detected [47]. This indicates

that our light index captures relevant spatial heterogeneity of light

availability.

Future directions
A problem inherent in highly diverse tropical forests is the low

number of individuals per area of the many rare species [19].

Figure 6. Impact of light availability and stem size on growth rates. Contributions of light availability and size to growth for species with
$100 individuals. For small trees (A), contributions are expressed by the absolute difference between baseline growth rate of a tree at 1 cm dbh and
average light (2%) and growth when light is doubled (4%), dbh is doubled (2 cm) or both. For larger trees (B), contributions are expressed by the
difference between baseline growth of a tree at 10 cm dbh and average light (18%) and growth when light is doubled (36%), dbh is doubled (20 cm)
or both.
doi:10.1371/journal.pone.0025330.g006
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Hierarchical Bayesian methods explicitly account for this problem

by superimposing a form of variation of the studied phenomenon

across the community and by including species-level predictors to

constrain parameter estimates of rare species. We used the

relationship between a species’ abundance as a species-level

predictor and found that it explained a small but significant

portion of growth parameters. Rare species tended to grow faster

and showed a greater sensitivity to light than abundant species.

However, functional characteristics of tree species such as wood

density, specific leaf area or maximum height may relate more

directly to growth strategies and hold greater promise for a more

mechanistic understanding of life-history strategies of tropical tree

species [56,74]. Therefore, as a next step, we aim to include

information on species’ functional traits to explore their capacity to

predict recruitment, growth, and mortality rates as well as the

sensitivity of these demographic rates to changes in resource

availability. Based on such relationships, studies on recruitment,

growth and mortality could be integrated into dynamic simulation

models to further investigate the consequences of species

differences with respect to demographic characteristics for species

coexistence in highly diverse tropical forests.

Supporting Information

Figure S1 Diameter-light relationship. (A) Light estimate

vs. tree diameter (dbh) for 148 933 trees at Barro Colorado Island,

Panama, in 1990. Trees with dbh .1 m are assumed to receive

full sunlight and are not shown. (B) Nonlinear regression

predicting average log(dbh) in the light range from 2 to 20%

(log(dbh) = 4.547+0.4556log(light)+2.0066light; dbh is in mm).

Average log(dbh) is used to estimate average growth across the

light range for Fig. 4.

(PDF)

Figure S2 Light dependence of growth rates for species
with $25 individuals in the two census intervals
(198521990, 199021995). Light classes correspond to deciles

of light availability across all individuals. Predicted mean growth

rates were calculated at mean observed light level and mean dbh

of the individuals in the respective light class. Observed and

predicted growth rates of individual trees are displayed as grey and

orange dots, respectively. Mean observed and predicted growth

rates in different light classes are displayed as black and red dot,

respectively.

(PDF)

Figure S3 Dbh dependence of growth rates for species
with $25 individuals in the two census intervals
(198521990, 199021995). Observed and predicted growth

rates of individual trees are displayed as grey and orange dots,

respectively. Mean observed and predicted growth rates in

different size classes are displayed as black and red dot,

respectively. For species with ,100 individuals, the dbh range

was split into three size classes each containing a third of the

individuals. For species with ,2000 individuals, four size classes

contain 25% of the individuals each. For species with ,3000

individuals, six size classes contain 25%, 25%, 25%, 15%, 5% and

5% of the individuals, respectively. For species with ,4000

individuals, seven size classes contain 25%, 25%, 25%, 15%,

3.3%, 3.3% and 3.3% of the individuals. For species with $4000

individuals, nine size classes contain 25%, 25%, 25%, 15%, 2%,

2%, 2%, 2% and 2% of the individuals. We only plot the size

dependence for species with a maximum dbh of .3 cm. Predicted

mean growth rates were calculated at mean observed light level

and mean dbh of the individuals in the respective size class.

(PDF)

Table S1 Posterior means, lower and upper limits of
95% credible intervals (CI2, CI+) of the average growth
rate at 5 cm dbh and 5% light (a), log(light) dependence
(b), log(dbh) dependence (c), and process error (sp) for
two census intervals (1985–1990, 1990–1995) and tree
species in the 50-ha Forest Dynamics Plot at Barro
Colorado Island, Panama. Dashes indicate no living individ-

uals at the beginning of the respective census interval.

(XLSX)

Table S2 Observed and predicted average growth rate
for tree species with ,25 individuals at Barro Colorado
Island, Panama. N is the number of individuals.

(XLSX)
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