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Background. Although strategies to contain influenza pandemics are well studied, the characterization and the implications
of different geographical and temporal diffusion patterns of the pandemic have been given less attention. Methodology/

Main Findings. Using a well-documented metapopulation model incorporating air travel between 52 major world cities, we
identified potential influenza pandemic diffusion profiles and examined how the impact of interventions might be affected by
this heterogeneity. Clustering methods applied to a set of pandemic simulations, characterized by seven parameters related to
the conditions of emergence that were varied following Latin hypercube sampling, were used to identify six pandemic profiles
exhibiting different characteristics notably in terms of global burden (from 415 to .160 million of cases) and duration (from 26
to 360 days). A multivariate sensitivity analysis showed that the transmission rate and proportion of susceptibles have a strong
impact on the pandemic diffusion. The correlation between interventions and pandemic outcomes were analyzed for two
specific profiles: a fast, massive pandemic and a slow building, long-lasting one. In both cases, the date of introduction for five
control measures (masks, isolation, prophylactic or therapeutic use of antivirals, vaccination) correlated strongly with
pandemic outcomes. Conversely, the coverage and efficacy of these interventions only moderately correlated with pandemic
outcomes in the case of a massive pandemic. Pre-pandemic vaccination influenced pandemic outcomes in both profiles, while
travel restriction was the only measure without any measurable effect in either. Conclusions. Our study highlights: (i) the
great heterogeneity in possible profiles of a future influenza pandemic; (ii) the value of being well prepared in every country
since a pandemic may have heavy consequences wherever and whenever it starts; (iii) the need to quickly implement control
measures and even to anticipate pandemic emergence through pre-pandemic vaccination; and (iv) the value of combining all
available control measures except perhaps travel restrictions.

Citation: Kernéis S, Grais RF, Boëlle P-Y, Flahault A, Vergu E (2008) Does the Effectiveness of Control Measures Depend on the Influenza Pandemic
Profile?. PLoS ONE 3(1): e1478. doi:10.1371/journal.pone.0001478

INTRODUCTION
The continuous spread of H5N1 avian influenza raises concerns

about the possible consequences of a major human influenza

pandemic. The three pandemics of the last century each spread

differently across the world [1–2]. So, although we can learn from

past experience, current response plans need to consider the

possibility that the eventual pandemic diffusion profile may

differ substantially geographically and temporally from previous

pandemics.

Mathematical modeling has been used to simulate the spread of

a pandemic at a local [3–10] and a global scale [11–15] and to

estimate the impact of different control measures [3–19]. Ferguson

et al. [3] simulated the spread of a pandemic in South-East Asia

and showed that containment at the source was feasible using a

combination of antiviral prophylaxis and social distancing

measures if the basic reproductive number of the new virus was

below 1.8. Longini et al. [4] showed that in the case where

interventions were used jointly (targeted antiviral prophylaxis,

quarantine and pre-vaccination), the pandemic could be stopped

at the source even for basic reproductive numbers as high as 2.4.

These results were later extended to the United States and

highlighted the potential impact of pre-pandemic vaccination [5–

6]. Other recent modeling studies have focused on the interna-

tional spread of an emerging influenza strain taking into account

air transportation between countries [11–13,20]. These studies

confirm the importance of local control measures and show that

restrictions on air travel were unlikely to be of great value in

delaying epidemics [11–13]. However, the characteristics of a

future pandemic could differ substantially from the previous ones.

For example, international travel has increased dramatically since

the last major pandemic in 1968–1969 and is likely to affect the

geographical and temporal spread of the virus.

The great uncertainty on the characteristics of the future

influenza pandemic is also due to the uncertainty of key

parameters such as the geographical region where the pandemic

will start, its season of emergence, the extent of susceptibility of the

population to the emerging viral strain, or the epidemiological

parameters of influenza like mean durations of latent and

infectious periods. Our study aims to identify typical profiles of

geographical and temporal diffusion of an influenza pandemic at

the global level, taking into account the variability of these

parameters. Simulations obtained after sampling the model’s

parameters were clustered and a multivariate sensitivity analysis
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was performed to explore how the correlation of different control

measures with the pandemic outcomes would vary depending on

these profiles. This paper adds to previous work by identifying

potential diffusion profiles of a future pandemic on a global scale

and by providing new insights on the effectiveness of policies

taking into account the great variability in geographical and

temporal diffusion.

METHODS

The Model
The mathematical model used in this study is a refinement of that

developed by Flahault et al. [11] and implements a metapopula-

tion approach with coupling between locations through transpor-

tation [21–22]. The model simulates the spread of a pandemic

through a worldwide network of 52 major cities. The epidemic at

the city level is simulated by a deterministic model in discrete time,

which is composed, when no interventions are modeled, of four

compartments representing disease states (Susceptible, Exposed,

Infectious, Removed; S, E, I, R). Each compartment is divided into

five sub-groups corresponding to age groups to which individuals

were assigned based on the international population database

figures (www.census.gov). The E compartment corresponds to the

incubation period and individuals become infectious and enter the

I compartment when symptoms develop. An air traffic matrix

connects all cities. This matrix and information on city populations

were collected in 2000 by Grais et al. [23]. Individuals in the I

compartment are supposed to not travel. As the model is

formulated in a continuous state space whereas the variables

represent discrete quantities (number of individuals), we intro-

duced a control on the number of latent and susceptible

individuals similar to Rvachev and Longini [21]: if the sum of

all individuals in each compartment at a particular stage is less

than one, the compartment is considered empty. This allows the

simulation of trajectories leading to extinction as in a stochastic

framework, even though this model is deterministic.

The seasonality was accounted through a cosine term in the

monthly transmission rate formula:

b tð Þ~b0� 1zb1�cos 2p tzshiftð Þ=12ð Þð Þ

where b0 is the basic transmission rate-defined as the product of the

number of contacts per unit of time and the probability of infection

given a contact between an infectious and a susceptible individual, in

the absence of any seasonality of transmission; b1 is the amplitude of

seasonal variation of the basic transmission rate; and shift represents

the delay in transmission (in months) between Northern and

Southern hemispheres. As it is well documented that seasonality of

influenza transmission varies with location [24], the 52 cities were

classified into one of three distinct regions of seasonal variation of

transmission as a good approximation of a more graduated variation:

northern and southern zones, characterized by annual cycles in

transmission and by a relative delay of 6 months, and tropical

regions without any seasonality in transmission.

We also assumed that only a fraction of newly infectious

individuals was reported to the authorities.

Six preventive and control measures were integrated into the

model: travel restrictions, use of masks, isolation of infectious

individuals, antiviral prophylaxis, antiviral therapy and vaccina-

tion campaigns (pre-pandemic-with vaccine based on the pre-

pandemic strain and pandemic-with vaccine updated for matching

pandemic circulating strains).

Input parameters that were varied were divided into two

groups: seven parameters related to the pandemic and twenty

parameters related to the control measures. Parameters related to

the pandemic were: (i) the mean duration of the latent period, (ii)

the mean duration of the infectious period, (iii) the city of

emergence–characterized by its size, its number of flight

connections and the average daily number of travelers from this

city (expressed as ordered nominal variables with values

representing categories, see Table S2); (iv) the month when the

pandemic starts; (v) the basic rate of transmission within the

population (b0); (vi) the amplitude of seasonal effect (b1); and (vii)

the initial proportion of susceptible individuals in the population–

assumed to be the same for all cities.

Pandemic vaccination, use of masks, prophylaxis, antiviral

therapy and isolation were each characterized by three input

parameters: theoretical efficacy, proportion of target population to

which the measure is applied, and time lag to introduction

(counted from the first case). Pandemic vaccination was also

characterized by the duration of the vaccination campaign (time

needed to vaccinate target population). Reduction of air traffic was

modeled by two parameters: the proportion of air-traffic reduction

and the time lag to introduction. Pre-pandemic vaccination was

taken into account simply by a coefficient affecting the number of

initial susceptible individuals. For antiviral prophylaxis, the

theoretical efficacy had two components: one for susceptibility to

infection and one for developing the illness if infected.

The effects of vaccination were modelled in our study according

to an ‘‘all or nothing’’ action. This means that vaccination confers

absolute protection to a given proportion of individuals and no

protection to the remaining proportion. Isolation was also taken

into account in an ‘‘all-or-nothing’’ manner, and we considered

two parameters: the actual proportion of individuals being isolated

and the theoretical efficacy of isolation to prevent transmission. In

this way, we could take into account possible ‘‘leaks’’ in isolation of

ill individuals. Antiviral therapy was considered to reduce the

transmission rate of ill patients (illustrating the reduction of

infectiousness of those individuals) and also the length of the

infectious period by an average of one day [16] (this parameter

was not varied in our study).

The model was implemented in Fortran 90: all parameters were

specific to each city and to each sub-group, allowing the simulation

of a range of eventualities. Figure 1 shows the flow diagram for the

epidemic model, describing the different compartments and their

interactions for each sub-group (k) in each city (i). Mathematical

details of the model and descriptions of the parameters and values

are given in the supplementary information (Appendix S1, Table

S1, Table S2 and Table S3).

Pandemic profiles and impact of control measures
Influenza pandemic profiles and the study of the impact of

interventions according to these profiles were identified through

several steps:

(1) Possible values of input parameters were sampled using the

Latin Hypercube Sampling (LHS) method.

(2) At first, we sampled values of input parameters related to the

characteristics of the pandemic. These values were used to

perform 1000 simulations.

(3) We applied clustering methods to this set of simulations to

identify typical pandemic profiles in the absence of any

control measures.

(4) A multivariate sensitivity analysis was applied to these 1000

simulations to identify which input parameters had the

greatest influence on the temporal and geographical diffusion

of the pandemic in the absence of any control measures.

Influenza Pandemic Profiles
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(5) In a second step, we focused on two particular pandemic

profiles previously identified (at step 3). For each, we

performed 1000 simulations using sampled values of input

parameters related to the control measures.

(6) Next, we performed another multivariate sensitivity analysis

to study the independent and relative effects of each control

measure on the burden of the pandemic according to the

pandemic profile.

Latin Hypercube Sampling Method
We used the LHS sampling scheme, a type of stratified Monte Carlo

sampling first proposed by Mc Kay, Conover and Beckman [25] and

later applied to deterministic mathematical models, in particular by

Blower et al. [26]. This technique involves several steps: 1) the

definition of probability distribution functions for each of the K input

parameters; 2) the division of the range of each parameter into N

equi-probable intervals; and 3) the generation of the LHS K-sets of

parameters by matching at random values sampled without

replacement from each probability distribution function.

The ranges of input parameters were taken from previous

studies as specified in Table S1. In the absence of available data on

the distribution functions, we chose a uniform distribution for all

input parameters and large ranges of variation. For more

information on the intervals of variation of the input parameters,

see Table S1 and Table S2. The proportion of individuals

protected by pre-pandemic vaccination was varied between 0 and

0.2 (a range that includes low efficacy scenarios), similar to values

considered in a recent work [27]. The theoretical efficacy of the

pandemic vaccine (with vaccine strains matching pandemic

strains), was considered to be much higher (between 0.3 and 0.7)

in agreement with literature values (see Table S1). Similarly, even

more restrictive intervals of variation (lower bound = 0.4) were

chosen for efficacies of antiviral prophylaxis and therapy.

Pandemic Profiles
Pandemic profiles were described by five outcome variables: (1) the

cumulative number of cases at the end of the pandemic for all

affected cities; (2) the total duration of the pandemic defined by the

time lag between the first case in the first city affected and the last

case in the last city; (3) the number of cities affected by the pandemic;

(4) the mean time to peak, calculated as the mean time between the

start of the pandemic and its peak over all cities affected; and (5) the

standard deviation of the time to peak. The first three outcome

variables explored the global burden of the pandemic whereas the

last two focused on the dynamics of the pandemic within the network

of cities. Figure 2 represents the pandemic’s course within four cities

of the network, the total duration, the mean time to peak and the

total number of cases (the area under the curve of the global

incidence). We considered that a city was affected if the daily

incidence rate reached 1/100,000. The day of peak was defined as

the day when the incidence rate is maximal in each city.

Clustering methods
Sets of input parameters related to the pandemic sampled using

LHS were used in 1000 simulations of the model representing

different possible profiles in the absence of any control measure.

Typical profiles within the first set of 1000 were identified by

hierarchical classification using the Ward’s minimum-variance

method [28], based on the five outcome variables of the model

taken in their standardized form. This is a bottom up method,

where objects are iteratively grouped in clusters of increasing size.

The algorithm starts with as many clusters as objects, each one

containing one object. At each step, the grouping is performed by

minimizing the within-cluster sum of squares over all the partitions

obtainable by joining two clusters from the previous step. The

choice of the number of clusters was based on the values of three

criteria: the pseudo t2 statistics, the squared multiple correlation

R2-accounting for the proportion of variance explained by the

clusters- and the cubic clustering criterion CCC which compares

the observed R2 to the expected R2 from a uniform distribution.

We considered values of pseudo t2 statistics markedly smaller than

the consecutive ones (when the number of cluster increases), values

of R2 grater than 0.85 and values of CCC greater than 3 indicating

a good clustering.

Once the different clusters were identified, a typical profile for

the simulated epidemic was determined in each cluster to allow

them to be analyzed separately. Since the mean of each cluster was

not necessarily a simulated scenario, we selected the trajectory

with the minimum sum of squared deviations of the five

standardized outcome variables from the cluster mean. The mean

of a cluster was defined as the vector of the means of the five

output variables. The reproductive rate R in the emerging city at

Figure 1. Flow diagram describing the infection spread within a given subgroup k of a city i and the implementation of interventions. At each
time, susceptibles (S0) could be vaccinated (V) or not (S). The remaining susceptibles could receive prophylaxis (SP) during a given time; if not infected
at the end of prophylaxis duration they re-enter the susceptible compartment. Susceptibles receiving or not prophylaxis could use masks (SPM and SM

respectively, with SPM becoming SM if not infected at the end of antiviral administration period). Once infected, individuals enter the non-infectious
latent state (E or EP if under prophylaxis). Infectious symptomatic individuals (I) could be treated (IT) (assuming that treatment is administrated in the
first day of symptoms, individuals under therapy pass directly from E to IT compartment), isolated (IIs) or both (ITIs). The R compartment contains all
individuals who have been ill and those of latents under prophylaxis that did not develop symptoms.
doi:10.1371/journal.pone.0001478.g001

Influenza Pandemic Profiles
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the very beginning of the pandemic was calculated for each profile

using a formula that connects it to the rate (r) of the exponential

increase of an epidemic in its initial phase. We fitted gamma

distributions to empirical discrete distributions of latent and

infectious durations (c(k1,h1) and c(k2,h2) respectively) and used

the corresponding exact expression to compute R [29]:

R~
rTI 1zrTE=k1ð Þk1

1{ 1zrTI=k2ð Þ{k2
, where TE and TI are the mean duration

of the latent and infectious phases respectively.

Multivariate sensitivity analysis
Two successive multivariate sensitivity analyses were performed,

one to identify the input parameters with the greatest influence on

the diffusion profile of the pandemic and the other to study the

impact of each control measure on each pandemic profile. In both

cases, we calculated Partial Rank Correlation Coefficients

(PRCCs) between input parameters and output variables. PRCC

measures the influence of uncertainty in estimating the values of

the input parameter on the imprecision in predicting the value of

the output variable [26,30]. We considered values of PRCC

greater than 0.4 as indicating an important correlation between

input parameters and output variables and values between 0.2 and

0.4 a moderate correlation.

Figure 2. Definition of a pandemic profile and of the outcome variables considered. (A) The upper graph represents the daily incidence of flu in
each city affected by the influenza pandemic. The first outcome variable, the cumulated number of cases at the end of the pandemic within all
affected cities, is given by sum of areas under the curves of incidence. The second outcome variable, the number of cities affected by the pandemic is
given by the number of incidence curves. (B) The day of peak is defined as the day when the incidence rate is maximal. It is represented in each city
affected by the pandemic by a deep black square, the level of grey in the other squares being proportional with the daily incidence of flu (scaled
separately on the maximum for each city). The cities are represented in the order in which they are affected by the pandemic. (C) The third outcome
variable, the mean time to peak, is calculated as the mean time between the start of the pandemic and its peak over all cities affected. The fourth
outcome variable represented is the total duration of the pandemic and is defined by the time lag between the apparition of the first case in the first
city affected and the last one in the last city. The fifth variable not represented on this graph is the standard deviation of time to peak, calculated as
the standard deviation of the time between the start of the pandemic and its peak over all affected cities.
doi:10.1371/journal.pone.0001478.g002

Table 1. Last 10 generations of the clustering history.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of clusters R2 t2 statistic (PST2)
Cubic Clustering
Criterion (CCC)

10 0.915 64.8 35.3

9 0.907 60.4 34

8 0.895 108 31.4

7 0.88 1009 29.1

6* 0.864 50.1 23

5 0.835 258 20.2

4 0.804 86 20.4

3 0.767 70.9 24.6

2 0.543 651 5.65

1 0 1187 0

*The set of simulated dynamics was split into six clusters by considering values
of R2 grater than 0.85, values of pseudo t2 statistics markedly smaller than the
consecutive ones when reading the table from the bottom and values of CCC
greater than 3. The minimum number of clusters satisfying all these criteria is 6.

doi:10.1371/journal.pone.0001478.t001..
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SAS statistical software (version 9.1) and R statistical package (R

Development Core Team; R Foundation for Statistical Comput-

ing, Vienna, Austria [http://www.R-project.org]) were used for all

statistical analyses.

RESULTS

Pandemic profiles
Clustering the first set of 1000 simulations identified six groups of

pandemic profiles that could occur in the absence of any control

measure.

As reproduced in Table 1, according to the values of clustering

criteria, the set of simulated dynamics was split into six subsets,

since it performs a significant decreasing in pseudo t2 statistics and

corresponds to the first time the 0.85 threshold in R2 values is

exceeded.

As is shown in Figure 3, where axes represent three of the

discriminating criteria, profiles could be grouped based on (i) the

total number of cases: massive pandemics (group A), moderate

pandemics (groups B, C and D) and mild pandemics (groups E and

F), (ii) duration (groups A and F distinct from groups B, D and E),

and (iii) the mean time to peak (groups A and C distinct from

groups B and E).

Table 2 contains the characteristics of the six profiles identified

as representatives of their respective groups. Figure 4 shows

disease incidence over time in the identified profiles in the absence

of any control measures.

Profile F corresponds to a situation where, despite initial cases in

the city of emergence, the pandemic does not take off. In this case, the

number of cases is around 415 (RF = 0.9) in the initial city) and the

corresponding incidence curve in Figure 4 is undistinguishable from

the x-axis. This scenario with less than 500 cases in only one city is not

strictly speaking a pandemic, but rather an influenza outbreak.

Profile A corresponds to a rapidly propagating pandemic with

high attack rates. The spread of A is detailed in Figure 5. In this

case, 86% of individuals are susceptible and the rate of

transmission at emergence is 1.37 (RA = 4.9). Up to 50% of

people could be identified as infected worldwide, and all 52 cities

Figure 3. Results of the clustering analysis: the six profiles (profile A in red, B in green, C in blue, D in light blue, E in pink and F in orange) are
represented according to three criteria: the total duration, the total number of cases and the mean time to peak.
doi:10.1371/journal.pone.0001478.g003
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would be affected. The global incidence would peak 46 days after

the first case and the pandemic would spread quickly from one city

to another (standard deviation of time to peak = 8 days) with a

global duration of 89 days.

Profile B corresponds to a progressive and long lasting

pandemic (Figure 6). In this case, 39% of the global population

is susceptible, with a lower rate of transmission at emergence (1.13)

and a lower reproductive number (RB = 1.8). Twenty percent of

the global population would be reported as infected in all 52 cities.

In this scenario, the pandemic wave would spread slowly (standard

deviation of time to peak = 44 days) with the peak incidence

164 days after the first case and would last for 297 days.

Profiles C, D and E are in-between these two extremes

(represented by profiles A and B) in terms of global burden and

total duration (RC = 1.8, RD = 1.6 and RE = 1.1at the source).

Input parameters influencing the pandemic profile
Table 3 shows the correlations between the input parameters and

outcome variables. The basic transmission rate (the rate of trans-

mission in the absence of any seasonality) and the initial proportion

of susceptibles correlated most strongly with outcomes. The greatest

correlation was between the basic transmission rate and the total

number of cases (PRCC = 0.77). The basic transmission rate was also

strongly correlated with the number of cities affected (PRCC = 0.70)

and moderately associated to the other output criteria. Likewise, the

global proportion of susceptibles at the start of the pandemic was

strongly correlated with the total number of cases (PRCC = 0.72)

and with the number of cities affected (PRCC = 0.50). None of the

characteristics of the city of emergence examined (connectivity,

population size) correlated with pandemic outcomes. Neither the

month of emergence nor the amplitude of the seasonal effect had a

significant impact on the spread of the pandemic.

Correlation of control measures with pandemic

outcomes
The correlation of interventions with pandemic outcomes was

examined in profiles A and B (Figures 5 and 6 respectively). The

PRCCs between input parameters and output variables are

summarized in Tables 4 and 5, respectively.

Regardless of the profile, restricting air travel (either expressed

by the proportion and the date of introduction of transport

limitation) had no impact on the global burden of the pandemic.

Only the date at which travel restrictions are introduced correlated

slightly with the number of cities affected (profile A, PRCC = 0.20;

profile B PRCC = 0.14).

The other main finding is that early introduction of other

control measures is the most important factor to reduce the

number of infections, regardless of the profile and for all

interventions considered. In profile A, it impacted mainly on the

number of cases, the number of cities affected and the duration

(PRCCs ranging from 0.28 to 0.76, from 0.23 to 0.73 and from

0.15 to 0.58 respectively), and other outcomes also showed

important correlation. In profile B, date of introduction of control

measures (again excepting travel limitation) correlated slightly less

with outcomes and in a more homogeneous manner (PRCCs for

all output variables in the range 0.14–0.44).

Apart from air traffic reductions, the effectiveness of control

measures varied depending on the pandemic profile. In case of a

fast and massive pandemic (profile A), efficacy and coverage play a

moderate role for several interventions, whereas in a progressive

and long lasting pandemic (profile B), such correlations do not

clearly appear, except for speed of intervention (as mentioned

above) and pre-pandemic vaccination. In this case, PRCCs show
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moderate correlation between efficacy of pre-pandemic vaccine

and total number of cases, standard error of time to peak, and

number of cities affected (PRCC = 0.48, 0.31 and 0.43 respective-

ly). Profile B is characterized by a weak correlation between the

proportion of individuals being vaccinated with the pandemic

strain, using masks, or being treated or isolated and the total

duration of the pandemic (PRCC from 0.10–0.16).

For profile A, the PRCC of the efficacy for all interventions is

higher than 0.10 for at least one of the outcome variables. In terms

of theoretical efficacies, the interventions having an impact on the

pandemic dynamics are masks (PRCC.0.25 for the total number

of cases, the duration and the number of cities affected), antiviral

therapy (PRCC = 0.10 and 0.27 for total number of cases and

duration, respectively), pandemic vaccination (PRCC = 0.24 for

the total duration) and isolation (PRCC = 0.11 and 0.20 for total

number of cases and duration, respectively).

The proportions of individuals of target populations to which

interventions are applied are also correlated with outcomes: the

coverage of prophylaxis have the greatest impact on all criteria

(PRCCs between 0.23 and 0.56), but coverage of pandemic

vaccination, antiviral therapy, masks use and isolation also

influence the pandemic dynamics (PRCC of respectively 0.33,

0.26, 0.29 and 0.37 with the total duration). Profile A is also

characterized by moderate correlations between the global effect

of pre-pandemic vaccination and the total number of cases and of

cities affected (PRCC equal to 0.30 and 0.27 respectively).

From the point of view of the output variables, the global

pandemic burden and the total duration seem to concentrate the

most of the impact of input parameters. However, this pattern is

less obvious for the profile B.

DISCUSSION
Using a mathematical model, we identified six typical profiles of

geographical and temporal spread of an influenza pandemic, and

the two key parameters influencing these profiles: the proportion

of susceptible individuals in the initial population and the basic

rate of transmission between individuals. Supplementary analyses

performed separately on each of two selected profiles suggest that

the variation in the impact of pandemic control measures and the

spatial-temporal pattern subsequent to their implementation

depend on the pandemic profile.

Although not unexpected, the importance of the proportion of

susceptible individuals in the population may have important

policy implications. The fact that not all individuals are susceptible

to the pandemic strain represents cross-immunity with previously

circulating viruses. This assumption is supported, for instance, by

what was observed during the 1968/A/H3N2 pandemic in United

States: a reduced mortality burden with respect to that of the

previous pandemic which occurred in 1957 and was also caused by

an A/H3N2 strain. One possible explanation is that human

population was partially protected in 1968 against H3N2 strain

due to antibodies to N2 allele acquired after the 1957 pandemic

[31]. In large urban areas or mega-cities, the pandemic virus will

continue to spread even if only a small proportion of the

population is susceptible, but it will not in less populated areas.

Where resources are potentially limited, these results stress the

importance of focusing control efforts on densely populated areas.

Targeting high transmitters such as children would be an equally

important step to limit transmission, since transmission rate was

also identified as being strongly correlated with pandemic outputs.

The central role of the proportion of susceptibles also indirectly

illustrates the potential benefits of pre-pandemic vaccination, which

aims to reduce the susceptibility of individuals before the emergence

of the pandemic strain. It is therefore not surprising that in this

model, pre-pandemic vaccination correlates with the number of

cases whatever the pandemic profile. Although the efficacy of pre-

pandemic vaccine remains uncertain, pre-pandemic vaccination

should still be useful even at a low level of efficacy [27]. As our

simulation results suggest, it could be beneficial if, on average,

complete protection is conferred to at least a proportion of

population ranging from 0 to 0.2. In addition, for a given duration

Figure 4. Incidence curves of pandemic profiles identified over 1000 simulated dynamics without control measures. Curve A corresponds to a
fast and massive pandemic. Up to 50% of people would be infected worldwide, and all 52 cities of our network would be affected. The global
duration would be 89 days and RA = 4.9. Curve B corresponds to a progressive and long lasting pandemic, where 20% of the global population would
be infected in 52 cities of our network. The total duration of the pandemic would be around 297 days, and RB = 1.8. Curve E on the x-axis corresponds
to a very mild pandemic where cases would represent only 0.1% of the global population. Curve F on the x-axis represents the profile where despite
cases in the initial city, the pandemic does not take off. In this case, the number of cases is around 400, which explains why it does not appear clearly
on the graph. The other two curves (D and E) show profiles in between, where 35% and 27% respectively of the global population would be attained
in 167 and 291 days respectively.
doi:10.1371/journal.pone.0001478.g004
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of infection and a specific transmission rate, there is a minimum

threshold of susceptible individuals in the city of emergence required

for virus propagation, and hence the spread of the pandemic itself.

As illustrated by profile F, with a basic rate of transmission of 0.84

and 29% of the population susceptible in the city of emergence

(much lower than the required threshold) only one city and 415

individuals were affected. Any interventions which might lower the

number of susceptible individuals below this theoretical threshold

might go a great way to preventing a pandemic.

It is also noteworthy that the city of emergence, the month of

emergence and seasonality do not play a major role in the profile

of a pandemic. According to field evidence, it seems that pandemic

flu is more likely to start in a region where there is close proximity

between humans and their poultry, a point that was not explicitly

included in our modelling approach. However, our simulation

analysis shows that a pandemic is likely to occur independently of

the characteristics of the city of origin, like its size or its number of

air connections. Since the best way to mitigate its consequences is

Figure 5. Spatial and temporal spread of Profile A. The pandemic would start in Melbourne and reach all 52 cities of our network. The peak would
be reached in all cities affected in less then two months (46 days after the first case). The mean time between peaks in two successively affected cities
would be around 8 days. This extreme speed of spread would be associated with a relatively short total duration (89 days).
doi:10.1371/journal.pone.0001478.g005
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to contain it at source [3–4] this highlights the importance of

having every country as prepared as possible to react quickly if the

pandemic emerges on its soil.

The variation of mean duration of latent and infectious periods

also did not result in significant PRCC values with any of outcome

variables. This finding, a little surprising at a first glance, could

have at least two explanations: 1) the relatively small range of

variation (between 1.2 and 1.9 for TE and from 2.5 to 4, for TI,

where these values were taken from the literature [3–4]); and 2) the

relatively weak impact of these parameters’ variation in relation,

for instance, to the initial proportion of susceptibles, in the frame

of a multivariate sensitivity analysis. This last point is supported by

important correlations coefficients between TE and TI with the

total number of cases (0.93 and 0.88 respectively, data not shown)

but weak relative variation of the global burden (factors of

1.04 and 1.38 when bounds of variation intervals are considered

for TE and TI respectively) computed in the case of a univariate

analysis.

Figure 6. Spatial and temporal spread of Profile B. The pandemic would start in Berlin to reach 52 cities worldwide in a very progressive course. The
incidence would peak 164 days after the first case, and the speed of spread would be much lower (standard deviation of time to peak = 44 days). In
this scenario, the pandemic would last close to ten months (297 days).
doi:10.1371/journal.pone.0001478.g006
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Our results also suggest that travel restrictions would have a

limited impact on the spatial and temporal diffusion of an

influenza pandemic. Indeed, regardless of the pandemic profile,

restricting air travel in our model has little effect on the

global burden of the pandemic. Such restrictions have significant

logistical, ethical and economic implications and their impact

on an influenza pandemic is currently debated [6,9,12,13,20,

23,32].

Our research also highlights the importance of a timely

response. Regardless of the spatial-temporal profile, the timing

of interventions is crucial, underlining the need for vigilant and

sensitive surveillance to ensure an early detection and timely

Table 3. Absolute values of PRCCs between parameters related to the pandemic and outcome variables.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total number
of cases Total duration

Mean time to
peak

Standard error
of time to peak

Number of
cities affected

Mean duration of latent period 0.01 0.07 0.06 0.04 0.04

Mean duration of infectious period 0.04 0.04 0.03 0.04 0.05

City of emergence

Population size 0.01 0.00 0.01 0.00 0.01

Mean number of connections 0.03 0.03 0.03 0.02 0.02

Mean daily transportation flow 0.00 0.01 0.01 0.01 0.02

Transmission

Month of emergence 0.04 0.03 0.01 0.03 0.04

Basic rate of transmission 0.77 0.40 0.36 0.41 0.70

Amplitude of seasonal effect 0.16 0.10 0.11 0.03 0.17

Initial proportion of susceptibles* 0.72 0.09 0.08 0.16 0.50

*The proportion of susceptibles was considered the same in all cities.
doi:10.1371/journal.pone.0001478.t003..
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Table 4. Absolute values of PRCCs between parameters related to the control measures and outcome variables for Profile A
corresponding to a fast and massive pandemic (RA = 4.9).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total number
of cases Total duration

Mean time to
peak

Standard error of
time to peak

Number of
cities affected

Efficacy

Pandemic vaccination* 0.03 0.24 0.11 0.11 0.03

Masks 0.27 0.28 0.20 0.16 0.27

Antiviral Prophylaxis# 0.14/0.08 0.09/0.23 0.09/0.14 0.01/0.11 0.14/0.07

Antiviral Therapy 0.10 0.27 0.11 0.12 0.07

Isolation 0.11 0.20 0.11 0.08 0.09

Coverage in the target population

Pandemic vaccination* 0.22 0.33 0.21 0.14 0.18

Masks 0.21 0.29 0.21 0.17 0.21

Antiviral Prophylaxis 0.28 0.56 0.39 0.35 0.23

Antiviral Therapy 0.25 0.26 0.12 0.11 0.24

Isolation 0.17 0.37 0.18 0.10 0.15

Pre-pandemic vaccination1 0.30 0.21 0.07 0.16 0.27

Proportion of air travel restrictions 0.02 0.02 0.01 0.07 0.16

Date of introduction

Pandemic vaccination 0.28 0.33 0.23 0.17 0.23

Masks 0.33 0.15 0.16 0.13 0.32

Antiviral Prophylaxis 0.76 0.58 0.69 0.50 0.73

Antiviral Therapy 0.38 0.32 0.28 0.31 0.38

Isolation 0.29 0.15 0.12 0.06 0.28

Travel restrictions 0.06 0.05 0.01 0.02 0.20

Duration of the vaccination campaign 0.02 0.01 0.01 0.00 0.01

1Vaccine composition based on the pre-pandemic strain.
*Vaccine composition updated for matching pandemic circulating strains.
#The first value corresponds to the efficacy for susceptibility to infection and the second one to the efficacy for illness given infection.
doi:10.1371/journal.pone.0001478.t004..
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response. It also stresses the added value of pre-pandemic

vaccination, which can be used immediately, even if less efficacious

than the appropriate pandemic vaccine which may take several

months to be produced and distributed. But at this stage, it is

impossible to predict which proportion of susceptibles will actually be

immunized by a vaccine based on a pre-pandemic strain, and the

effectiveness of this control measure is strongly correlated with this

missing information. The choice of using such pre-pandemic vaccine

should probably rely on preliminary immunogenicity studies.

The date of introduction of most of the control measures

considered correlated with pandemic outcomes whatever the

pandemic profile, although coverage and theoretic efficacy were

more strongly correlated to the outcomes of a fast, massive pandemic

than a long-lasting pandemic. This can be interpreted as the need for

a control measure to be used at a very large scale to have a real

impact in the case of a massive pandemic. This supports the idea that

that a very aggressive pandemic will be very difficult to mitigate

given the constraints on resource availability [5–6]. Conversely, this

result stresses the value of measures not relying on stockpiled

resources such as isolation [18], measure that correlated moderately

by its coverage with the total duration in the case of a massive

pandemic. Regardless of the profile, the date of isolation

introduction also correlated with outcomes. When evaluating the

potential impact of isolation measures, one should have in mind that

their outcome could be influenced by the pre-symptomatic or

asymptomatic individuals, as it was discussed in Fraser et al. [33].

Here, we assumed that only infectious symptomatic individuals who

become infectious at the end of incubation period transmit.

According to experimental and observational studies, viral shedding

arises at low levels a short while before the onset of symptoms [34].

However, the public health impact of pre-symptomatic transmitters

still remains unclear and could not be quantified precisely since there

are few field studies reporting infections from such infected

individuals [35]. Nevertheless, considering the potential importance

of such transmitters on the outcome of isolation-like interventions,

we consider this statement in an indirect manner by assuming that

isolation efficacy could not be greater than 70%.

When interpreting the results of this analysis, it must be

remembered that most are expressed in terms of correlation with

outcomes and not in terms of level of impact. Our correlation

results express the ability to improve the results each time a control

measure is more (or less) extensively used (rank correlation). A low

correlation coefficient does not necessarily mean an absence of

impact. It means that increasing the use of a control measure is not

systematically beneficial.

Beyond the results for any one specific measure, our analysis

highlights the value for every country looking to limit the potential

devastating consequences of a pandemic to 1) not rely on a single

control measure but use them all to complement each other, 2) be

prepared with response planning, and stockpiling of antivirals and

vaccines and 3) monitor the progression of the pandemic and

adapt the response to its profile.

The general applicability of our conclusion may be limited by

the following considerations. Firstly, we used air travel data from

Table 5. Absolute values of PRCCs between parameters related to the control measures and outcome variables for Profile B
corresponding to a long-lasting pandemic (RB = 1.8).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total number
of cases Total duration

Mean time to
peak

Standard error
of time to peak

Number of
cities affected

Efficacy

Pandemic vaccination* 0.01 0.02 0.01 0.00 0.01

Masks 0.04 0.06 0.05 0.03 0.02

Antiviral Prophylaxis# 0.01/0.01 0.03/0.04 0.04/0.03 0.05/0.03 0.01/0.02

Antiviral Therapy 0.02 0.05 0.02 0.04 0.03

Isolation 0.04 0.07 0.02 0.06 0.01

Coverage in the target population

Pandemic vaccination* 0.07 0.16 0.09 0.07 0.06

Masks 0.09 0.10 0.09 0.07 0.07

Antiviral Prophylaxis 0.06 0.09 0.06 0.03 0.07

Antiviral Therapy 0.06 0.12 0.08 0.11 0.06

Isolation 0.07 0.14 0.10 0.09 0.04

Pre-pandemic vaccination1 0.48 0.16 0.01 0.31 0.43

Proportion of air travel restrictions 0.03 0.06 0.06 0.05 0.09

Date of introduction

Pandemic vaccination 0.28 0.42 0.32 0.25 0.23

Masks 0.21 0.19 0.23 0.16 0.19

Antiviral Prophylaxis 0.30 0.44 0.34 0.29 0.24

Antiviral Therapy 0.29 0.31 0.30 0.23 0.26

Isolation 0.19 0.26 0.22 0.14 0.15

Travel restrictions 0.03 0.04 0.08 0.04 0.14

Duration of the vaccination campaign 0.05 0.07 0.09 0.08 0.06

1Vaccine composition based on the pre-pandemic strain.
*Vaccine composition updated for matching pandemic circulating strains.
#The first value corresponds to the efficacy for susceptibility to infection and the second one to the efficacy for illness given infection.
doi:10.1371/journal.pone.0001478.t005..
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2000 and for 52 global cities. Although updating air travel data

and including more cities in the model might improve its accuracy,

these values were chosen to be representative of global air travel

volume and world geography. Secondly, we used a deterministic,

discrete time formula that has been shown to be suitable for use in

large populations. Since the dynamics of internal epidemics within

cities was not the focus of this research, but rather the global

spread, this type of approach would seem appropriate. Neverthe-

less, since we extensively explored the model behaviour by

performing multivariate sensitivity, we can be confident that our

modelling approach reproduced a number of realistic potential

scenarios and provides, in this sense, a panel of pandemic

dynamics analogue to a fully stochastic model. The fact that our

analyses led to similar conclusions to previous studies using a

slightly different methodology does not make them realistic, but

points to probable robustness of these conclusions.

In conclusion, our key finding concerning the dependence of the

efficiency of interventions on the pandemic profile demonstrates

the critical importance of developing tools for early-stage

identification of the pandemic profile in order to adapt the public

health response in as timely a manner as possible.
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