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Bi-stable perception is a strong instance of cognitive self-organization, providing
a research model for how ‘the brain makes up its mind.’ The complexity of
perceptual bistability prevents a simple attribution of functions to areas, because
many cognitive processes, recruiting multiple brain regions, are simultaneously involved.
The functional magnetic resonance imaging (fMRI) evidence suggests the activation
of a large network of distant brain areas. Concurrently, electroencephalographic and
magnetoencephalographic (MEEG) literature shows sub second oscillatory activity
and phase synchrony on several frequency bands. Strongly represented are beta
and gamma bands, often associated with neural/cognitive integration processes. The
spatial extension and short duration of brain activities suggests the need for a fast,
large-scale neural coordination mechanism. To address the range of temporo-spatial
scales involved, we systematize the current knowledge from mathematical models,
cognitive sciences and neuroscience at large, from single-cell- to system-level research,
including evidence from human and non-human primates. Surprisingly, despite evidence
spanning through different organization levels, models, and experimental approaches,
the scarcity of integrative studies is evident. In a final section of the review we dwell on
the reasons behind such scarcity and on the need of integration in order to achieve a
real understanding of the complexities underlying bi-stable perception processes.

Keywords: bi-stable perception, neural synchrony oscillations, neural models, multiscale brain activity, EEG
frequency bands, brain networks, fMRI, Necker cube

INTRODUCTION

Bi-stable and multi-stable perception, also known as perceptual rivalry (Lumer et al., 1998), refers to
a process in which insufficient or ambiguous sensory information is provided to the senses such that
the perceptual process cannot reach a definitive solution and continues to iterate through two or
more perceptual states. This perceptual process provides an opportunity to directly assess the neural
dynamics related to perceptual change without following the unecological procedure of physically
flashing different stimuli to the visual system of the subject. Bi-stable perception is interesting
because using a relatively simple stimulation paradigm allows for the investigation of a variety
of neural and cognitive processes, including spontaneous or self-driven changes in brain state
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(von der Malsburg, 1999), consciousness (Crick and Koch, 1990),
the neural basis of self-triggered changes in perception (Blake
and Logothetis, 2002), cognitive control of perceptual states
(Van Ee et al., 2005), and high-level perceptual gestalt formation
(Zaretskaya and Bartels, 2015), among others.

However, despite the scientific interest in this phenomenon,
which has resulted in extensive study and a massive number
of publications, the neural bases of bi-stable perception are
still incompletely understood. Partially, because behavioral,
neural and cognitive aspects must be integrated to a
complete understanding of this complex phenomenon.
Electroencephalographic (EEG) and magnetoencephalographic
(MEG) studies have shown the involvement of different brain
regions and modulation in several frequency bands, including
but not restricted to alpha, beta, and gamma bands (as it will be
discussed in depth in a next section). However, as every study
has used different methods, stimuli and recording parameters,
the exact role of each brain area and frequency band and the
mechanisms of their interactions are still unknown.

Despite this incomplete knowledge, a solid assertion can
be done so far that bi-stable processes rely on short-lived
neural activity, which is widely distributed across brain regions
and involves local and long-range coordination over specific
frequency bands.

Here, we review the most prominent oscillatory frequencies
and related synchronization patterns, along with fMRI
localization results and computational models, and present
their results in an integrated manner. This is not an exhaustive
summary of the literature of the multistable perception field.
The contribution of the present review is the complete revision
of MEEG experiments reported so far, with a special emphasis
on its integration with both behavioral and computational
research. Because of the fast and global reorganization of the
perceptual field characteristic of bi-stable perception, we make a
specific statement regarding the need for methods able to detect
fast transient periods of coordinated neural activity. Bi-stable
perception requires fast neural coordination across different
brain regions and through distinct neural organization scales,
the relevant levels include at least neuron-to-neuron, circuit-to-
circuit and region-to-region coordination. We propose that such
coordination is achieved through transient dynamical coupling
based on oscillations, on oscillation synchronization and, likely,
on cross-frequency coupling.

PERCEPTION AND BI-STABLE
PERCEPTION

Characteristics of Visual Multi-Stable
Perception
Perceptual rivalry occurs when mutually exclusive perceptions
are possible for one physical stimulus. Particularly, perception
is called multi-stable when more than two mutually exclusive
perceptions are possible and is called bi-stable perception
when only two exclusive perceptions are possible (Blake and
Logothetis, 2002; Sterzer et al., 2009). Subjects’ perception can

switch from one perceptual state to the other mainly without
the subject’s control (Sterzer et al., 2009). Evidence shows
that under some circumstances, subjects have some degree
of voluntary control over perceptual changes, but they also
continue to experience spontaneous switches (Van Ee et al.,
2005; Klink et al., 2008). In bi-stable perception, the period
between two changes in perception is called perceptual stability;
the distribution of periods of stability during bi-stable tasks
follows a gamma distribution (Zhou et al., 2004). Several factors
can modify this distribution (Brascamp et al., 2015b). Motor
acts such as eye movements will increase the probability of a
perceptual change (Einhäuser et al., 2004); however, even during
tasks with gaze fixation, subjects still experience spontaneous
changes in perception.

As stated, visual bi-stable perception dissociates perception
from physical stimulation (Wang et al., 2008) while also strongly
engaging the subject’s attention for extended periods of time, as
long as 10 s (Zhou et al., 2004). During perceptual transitions,
subjects experience changes in their level of attention but
not in the object of attention (Blake and Logothetis, 2002;
Sterzer et al., 2009).

Limitations
The first and main limitation of perceptual rivalry is that the
experimenter must rely solely on the subject’s report to know
that a change in perception has occurred. This introduces a
jitter in the measures given by the time difference between the
subjective changes in perception and the subject motor response
that can be around 500 ms but can extend to over 1 s in some
subjects. Measures can be taken to counterbalance this situation:
(1) training the subjects to familiarize them with the motor
component of the task to decrease the jitter between reports; (2)
estimating the subject’s reaction time to approximate the amount
of jitter introduced; (3) using behavioral and physiological
measures to complement or replace subject reports, such as eye
position or pupil diameter (Einhäuser et al., 2004, 2008); and
(4) minimizing the jitter effect by introducing methodological
modifications, such as the discontinuous presentation method.
The first two measures translate into longer recording sessions,
the third measure requires the use of eye tracking, and the fourth
is the easiest to implement because it changes only the display
images but at the cost of sacrificing the ecological dynamics of
continuously viewing bi-stable stimuli.

The discontinuous presentation method (or onset paradigm)
has the advantage of setting an upper limit for the period of time
between the actual change in perception and the subject’s report.
However, it still has its own limitations. In general, three stages
compose each trial of this method (Figure 1J): bi-stability, in
which an ambiguous stimulus is presented; delay, in which an
empty screen is presented for a period of time; and test, in which
either an ambiguous or a non-ambiguous version of the stimulus
is shown and the subjects report whether they experienced a
change in perception (called reversal or stability, respectively).
The duration of the bi-stable and delay stages affects the rate
at which perception alternates (Orbach et al., 1963; Orbach and
Zucker, 1965; Kornmeier and Bach, 2012), and the duration is
adjusted to emulate the dynamics observed during continuous

Frontiers in Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 805690

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-805690 January 22, 2022 Time: 15:3 # 3

Devia et al. Brain Self-Organization Underlying Bi-Stable Perception

IHGF

LKJ

A B C D E

FIGURE 1 | Examples of ambiguous figures. (A) Necker cube. (B) Array or lattice of Necker cubes. (C) Motion induced blindness. (D) Rubin vase. (E) The
diamond-lines illusion. (F) Basar dots. (G) Moving-dots illusion. (H) The lady and old woman illusion. (I) Binocular rivalry stimuli. (J) Discontinuous presentation
method. Here, the bi-stable image was presented (usually for less than a second), followed by a delay, then the presentation of a stable version of the stimulus. The
subject’s task was to report if the perception of the second image was the same as that for the first. Trials were classified as perceptual stability or perceptual
changes. (K) Local vs. global percept illusion. (L) Wagon wheel illusion.

presentation. An upper limit is set because subjects have to
report during the test image, and then the delay of the report
cannot be longer than the presentation period. The main problem
with this method is that it modifies the physical content of the
image during the delay period, losing the ecological feature and
introducing confounding factors in regard to interpreting the
behavior and the brain responses.

A second limitation of bi-stable stimulation is that during
perceptual changes, other cognitive functions participate, such
as attention, working memory, or expectations, especially
during motor responses (Tsuchiya et al., 2015; Brascamp et al.,
2018). This is especially important when researching the brain
mechanisms that underlie bi-stable dynamics, as the activation
of a particular area may reflect the recruitment of those other
processes. To control for these other factors, two approaches
have been taken: either tracking some non-reported physiological
variables such as eye movement or delaying the report to prevent
the mixing of perceptual and motor processes (for a more detailed
review, see Tsuchiya et al., 2015; Brascamp et al., 2018).

A third limitation in this approach is the difference in the
semantic values of the perceptions elicited by the multi-stable

stimuli. As perception may differ in some important features,
they may evoke different cognitive and brain processes. For
instance, when viewing the Rubin vase stimulus (Figure 1D),
the subject can perceive either a vase or two faces, which
have very different semantic values. In fact, the vase is an
inanimate object that correlates with increased activity in the
parahippocampal gyrus (Andrews et al., 2002), whereas faces
correlate with activity in the face fusiform gyrus (Hasson et al.,
2001; Andrews et al., 2002). This is problematic because when
averaging trials to calculate the event-related potential (ERP),
the semantic value of the stimuli is ignored. To solve this
issue, subjects can use two different buttons to report the
different perceptions, but authors have found that this can be
challenging for subjects as it takes attention away from the
task. Another solution to this problem is to use ambiguous
images with the same semantic meaning for the two possible
perceptions as that in the Necker cube or other moving
stimuli (on Figure 1 all except D and H that change their
semantic content).

Despite these limitations, perceptual rivalry tasks are currently
the best tool to study the mechanisms of self-driven changes
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in brain state because they induce brain dynamics while
maintaining a fixed stimulation.

NEURAL CORRELATES OF
PERCEPTUAL RIVALRY

Computational Models: Implications for
Neurophysiology
The neurophysiological bases of perceptual rivalry have not yet
been completely established, mainly because this phenomenon
has been described mostly in humans though the technology
to assess brain activity is limited. Given this current limitation,
computational models have been a good tool to infer the
physiological mechanisms and the dynamic processes that
underpin perceptual multi-stability. Nevertheless, filling the
gap between neurophysiological evidence and computational
models poses the following important challenges: How is
perception represented? What are the relevant features of
brain activity for multi-stability? To what extent are models
able to predict the existing psychophysical data? Concerning
the neural representation of perception, most models assume
that during perceptual rivalry, two different neural assemblies
compete, and the winner represents the actual perception (Varela,
1995; Blake and Logothetis, 2002); this simple assumption
generates a dynamic process that leads to switches between
the two neural assemblies (Engel and Singer, 2001), emulating
the multi-stability transition process. Regarding the dynamic
brain features relevant for multi-stability, models have posited
that the most relevant are adaptation, inhibition, and noise
because they have a simple computational implementation and
a direct physiological interpretation. For example, Kogo et al.
(2021), recently developed a hybrid in vitro and in silico
dynamic clamping, where the computational model interacted
with neurons in a slice (Kogo et al., 2021). The authors
observed that the increase of synaptic noise altered the dynamic
of the multistable state, supporting the causal role of noise
level on perceptual transitions. Finally, modeling studies have
been undertaken to reproduce multi-stability phenomena, as
observed in psychophysics studies; however, to date, no single
model can explain every psychophysical finding. Through this
process, psychophysiological experiments and computational
models drive each other, the former guiding the formulation of
the models and the latter providing insight into the possible brain
mechanism of perceptual rivalry.

The implementation of computational models differentially
incorporates features of brain activity, allowing the models
to make psychophysical predictions. To date, relevant features
comprise membrane potential, firing rate, population activity,
noise, adaptation, inhibition, ion conductance, and synaptic
depletion, among others (Wilson et al., 2001; Laing and Chow,
2002; Wilson, 2003; Freeman, 2005; Moreno-Bote et al., 2007;
Noest et al., 2007); a detailed report of computational models,
authors, neural units, physiology, and psychophysics are depicted
in Table 1. The first step in modeling is to decide which features
will embody perception and which ones will be treated as latent

variables (see section “Glossary”), that is, variables needed for
perceptual multi-stability dynamics but that do not directly
reflect a feature of the phenomenon. The second step is to
choose the complexity level of the model, which refers to the
complexity of the interactions between the different features of
the model that can be implemented at a particular spatial scale.
For instance, Moreno-Bote et al. (2007) proposed two different
models to explain bi-stable phenomena, with population activity
representing perception in both models but with different levels
of complexity and spatial scales. The spatial scale of one model
was larger (population of neurons vs. spike activity of single
neurons), and its complexity level was lower than that of the other
(a single equation vs. a set of differential equations); however,
both models explained the same psychophysical features. In
perspective, the spatial scale and complexity of the models
showed a wide range of possibilities, but in almost all models,
the representation of percept was still the level of activity of a
population of neurons.

Despite the variety of models described in the literature,
there is still no single model that explains all the psychophysical
evidence; furthermore, none of them consider the brain as a
whole interactive system. This is partially explained because, so
far, models depict specific aspects of multi-stable perception by
considering particular features, as they are needed to reproduce
the dynamics. Moreover, how the brain represents conscious
perception is still debated, so the selection of relevant brain
features is somehow arbitrary, as we do not know if they are
in fact needed to build perception or if they are just correlated
phenomena. In fact, the most basic building blocks for perception
are still unknown, as recent evidence stresses the importance of
considering a smaller spatial scale such as dendritic organization
(Jia et al., 2010) and dendritic action potentials (Moors et al.,
2017) in brain computations. These limitations have led to
simpler questions, such as the basic brain features needed for
multi-stability to occur (for instance, adaptation or noise in
Moreno-Bote et al., 2007). Similarly, it is unknown whether
perceptual representation is anchored in a local population or in
distributed brain areas, which may challenge current models to
incorporate distant neural populations and top-down influences,
as has been suggested (Hohwy et al., 2008; Braun and Mattia,
2010). This would require the incorporation of a mechanism
for the long-range coordination of neurons and populations, as
the incorporation of distant areas would require a mechanism
for making computations at proper time scales (Varela et al.,
2001). More recent studies, have advanced in the aforementioned
direction, by predicting all four Levelt laws (Cao et al., 2021)
while at the same time incorporating two brain hierarchical levels
possibly embodying feedback and feedforward connections (Cao
et al., 2016, 2021).

Network Activity Underlying Multi-Stable
Perception
So far, the evidence in humans shows that complex interactions
between frontal, parietal, occipital, and temporal areas underlie
the dynamics of the duration and changes between the
different perceptions (summarized in Box 1; for a review:
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TABLE 1 | Models of visual bi-stable perception.

Neural model Model unit Physiology Psychophysics

Moreno-Bote
et al., 2007
(M1)

Population network and
energy minimization

Neural population firing
rate

Lateral Inhibition
Connections depending on type of neuron
and percept

Gamma distribution for dominance
durations
Levelt II
Levelt IV

Moreno-Bote
et al., 2007
(M2)

Spiking Neural network,
noisy conductance and
excitatory-inhibitory
connections

Membrane potential Lateral Inhibition
Recurrent excitatory connections
Connections depending on type of neuron
and percept population

Gamma distribution for dominance
durations
Levelt II
Levelt IV

Wilson, 2003
(M1)

Spike-frequency
adaptation produced
by slow
after-hyperpolarizing
potentials

Neuron Firing Rate Lateral inhibition
Adaptation
Connections depending on hierarchical
model

Swapping binoculary
Levelt II

Wilson, 2003
(M2)

Simplified
conductance-based
model

Membrane Potential Detailed neural model
Adaptation
Lateral inhibition
Connections depending on hierarchical
model

Swapping binoculary
Levelt II

Noest et al.,
2007

Two pools of neurons,
with membrane
potential model and an
elastic equation

Membrane potential Adaptation
Cross-inhibition (between populations)
Gain control by third neuron pool
Connections depending on population

Alternation after short interruption
(“priming”)
Repetition after long interruption
(“habituation”)

Wilson et al.,
2001

Spike rate network,
excitatory-inhibitory
populations and wave
propagation (local
stimulus)

Neuron spike rate Adaptation
Lateral – inhibition (inhibition between
adjacent columns)
Colinear facilitation
Connections depending on: distance, type
of neuron and population

Wave propagation

Laing and
Chow, 2002

Neural population and
Hodgins–Huxley
equations

Membrane potential
and conductance

Spike frequency adaptation (due to a
calcium dependent potassium current)
Slow hyperpolarizing current
Recurrent excitation
Lateral inhibition
Excitatory input emulates receptive field
(response decay over distance)

Dominance durations
Lack of correlations between length of
successive events
Levelt II
Similar stimuli increase mean
dominance durations

Freeman,
2005

Hierarchical
“box/channel” model of
firing rates and
post-synaptic
potentials

Hierarchical stages of
visual pathway

Adaptation
Lateral Inhibition
Hierarchical connections

Increasing depth of rivalry at higher
cortical areas
gamma distribution of duration
No correlation between dominance
durations
Differences in eye stimuli implies
differences in
eye suppression

Gershman
et al., 2012

Gibbs Sampling
(Markov Chain Monte
Carlo)

Abstract
representation, which
most simplified form
can be understood as
neural population

Retinotopic map
Simplified model, as Wilson (2003)

Gamma distribution
Traveling waves
Binocular fusion
Levelt II

Moreno-Bote
et al., 2011

Population network and
Energy minimization

Neural population firing
rate

Lateral inhibition
Connection depending on type of neuron
Recurrent excitation

Fraction of dominance follows a
Bayesian multiplicative rule

Watanabe
et al., 2014

Energy maximization in
an energy landscape

Activation of a network
of brain regions

Activation of a particular brain area Mean durations, Frequency of
transitions

Cao et al.,
2021

Neural population and
Ehrenfest process

Proportion of active
units

Lateral Inhibition
Recurrent excitatory connections
Feedback and feedforward connections

Gamma distribution (scaling properties)
Levelt I
Levelt II
Levelt III
Levelt IV
Positive correlation between successive
dominance durations

References: Laing and Chow, 2002; Wilson, 2003; Freeman, 2005; Moreno-Bote et al., 2007; Noest et al., 2007; Moreno-Bote et al., 2011; Gershman et al., 2012; Cao
et al., 2021.
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BOX 1 | Visual pathways involved in bi-stability.
Bi-stable perception involves mainly visual areas but also higher areas, enacting top–down modulations. The lateral geniculate nucleus (LGN) has yielded
contradictory results, with spike activity in non-human primates being unmodulated during rivalry (Lehky and Maunsell, 1996), whereas the fMRI BOLD response
correlates with the perceptual state (Haynes et al., 2005; Wunderlich et al., 2005; Schneider, 2009). This contradiction was partially solved when Wilke et al. (2009)
showed that slow LFP oscillations but not spike rates at the LGN correlated with the subject’s perception (Wilke et al., 2009). The same study also showed that
pulvinar spike activity correlated with perception. In the primary visual cortex, the V1 spike rate in nonhuman primates correlated with subject perception
(Leopold and Logothetis, 1996, 1999; Wilke et al., 2006; Keliris et al., 2010), whereas in humans, the BOLD response (Polonsky et al., 2000; Lee et al., 2005; Zou
et al., 2016) and MEG activity (Parkkonen et al., 2008) also covaried with perception. Higher on the visual hierarchy, the extrastriate visual cortex showed a clear
correlation between functional activity and the dominant percept on fMRI experiments (Lumer et al., 1998; Polonsky et al., 2000) and on intracortical recordings in
non-human primates (Logothetis and Schall, 1989; Leopold and Logothetis, 1996; Maier et al., 2008), serving as a good predictor of what will be perceived when
the stimulus appears (Tong et al., 1998). Single-unit and LFP recordings in non-human primates also show perceptual modulations at the IT (inferior temporal lobe)
(Sheinberg and Logothetis, 1997), MT (medial temporal lobe) (Bradley et al., 1998; Dodd et al., 2001; Grunewald et al., 2002) and STS (superior temporal sulcus)
(Logothetis and Schall, 1989).

Frontal and parietal cortices are also modulated during bi-stability tasks (Sterzer and Rees, 2008), even before the report of the perceptual change (Wang et al.,
2013). However, no-report paradigms show reduced frontal activity (Frässle et al., 2014; Brascamp et al., 2015a), whereas subliminal stimulation induces no frontal
or parietal modulation (Zou et al., 2016). This suggests that associative areas participate in bi-stability but in an indirect manner. On the other hand, a considerable
amount of evidence relates the parietal cortex with perceptual transition, although the extent of its involvement and its precise relation with other areas is still debated
(Kanai et al., 2011; Weilnhammer et al., 2013; Baker et al., 2015; Megumi et al., 2015; Roy et al., 2017). Several interpretations have been proposed, including
stabilization of the percept (Leopold and Logothetis, 1999; Sterzer and Rees, 2008), feedback error signals in predictive coding paradigms (Hohwy et al., 2008;
Brascamp et al., 2018) or the higher level of a network of hierarchical nested attractors (Braun and Mattia, 2010). In any case, it is already clear that an extensive
network including structures such as the LGN and pulvinar, V1 and extrastriate cortices all the way up to the frontal and parietal cortices is simultaneously involved in
the processing of bi-stable perception.

Brascamp et al., 2018). Despite the large number of areas
involved in multi-stable perception, it is not clear whether all
areas participate in this dynamic to the same extent or even
if their activity is actually related to multi-stability or just to
other cognitive processes such as attention, decision making,
expectation, motor planning and execution (Frässle et al., 2014).
One of the key components of the networks studied so far is
the right superior parietal lobule (SPL) (Williams et al., 2003;
Carmel et al., 2010; Baker et al., 2015; Megumi et al., 2015),
which is an area consistently associated with perceptual transition
(Brascamp et al., 2018).

The role of the SPL in bi-stability was first explained by
two distinct functional regions, the anterior SPL (aSPL) and
posterior SPL (pSPL) (Carmel et al., 2010; Kanai et al., 2010,
2011); however, recent evidence points out that its role actually
comes from different brain networks in which these regions
belong (Kanai et al., 2010; Watanabe et al., 2014; Baker et al.,
2015; Megumi et al., 2015). For example, Baker et al. (2015)
shown that the duration of perception correlate with the activity
of three networks including either the aSPL or the pSPL. One
of them included the aSPL and the striatum, a second one
included the aSPL striatum and the premotor cortex, and a
third included the pSPL and the temporal and frontal associative
areas. Specifically, using BOLD activity these authors showed
that short perceptual stabilities had negative correlations with
the functional connectivity between the aSPL and the striatum.
Longer perceptual stabilities showed positive correlations with
functional connectivity between the aSPL and premotor cortex
(on the Necker cube). The functional connectivity of the pSPL
and temporal and frontal associative areas showed a positive
correlation with perceptual stability (on binocular rivalry).

Other authors using different analytical approaches have also
observed that aSPL and pSPL participate in larger networks
that correlate with multistable perception (Kanai et al., 2010;
Watanabe et al., 2014). Watanabe et al. (2014) found three

“basins” or networks operating during bi-stable perception: a
visual basin composed of the aSPL, the LOC and V5; an
intermediate basin composed only of the FEF; and a frontal basin
composed of the pSPL, the FEF and the a/pDLPFC (Watanabe
et al., 2014). In this work, the authors related the time that
one network stayed dominant with the duration of the percepts.
The visual network, which included the aSPL, had a positive
correlation with perceptual changes, whereas the frontal network,
which included the pSPL, had a negative correlation with the
duration of perception (structure from motion; Watanabe et al.,
2014). Using a different approach, Megumi et al. (2015) studied
temporal correlations among the aPSL, pSPL and V5. This
allowed them to determine that the aSPL and pSPL interaction
and that the connectivity from the V5 to the pSPL and from
the pSPL to the aSPL (but not in the opposite directions)
correlated with perceptual durations during bistability. These
results highlight that perceptual bi-stability is governed by a long-
range bidirectional network integrating sensory and associative
areas, including pSPL and aSPL as key structures. The evidence
just reviewed came mostly from fMRI studies and, due to its
sampling limitations, accounts for very slow temporal oscillations
(0.01–4 Hz); nonetheless, there is an ample range of brain
processes that also occurs in higher frequency ranges. Increasing
evidence suggests that these higher frequency oscillations allow
for large-scale coordination in the brain and account for several
brain functions, such as attention, perception, and memory
(Varela et al., 2001; Buzsáki and Draguhn, 2004; Fries, 2015).
In this context, the work from Hipp et al. (2011) shed light on
the activity of brain networks at this finer temporal scale (Hipp
et al., 2011). They showed, using EEG recordings in human
subjects, that two moving bars, perceived as either bouncing
or passing each other, correlated with synchronization networks
in beta (approximately 15–30 Hz) and gamma bands (above
30 Hz). The beta band network involves the extrastriate visual
areas and association areas, specifically areas related to the FEF,
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PPC (including the IPS and LOC), and the medial extrastriate
visual cortex, whereas the gamma networks involve the posterior
and medial areas. This suggests that other areas, such as the
frontal, parietal and temporal cortices, are involved in bi-stable
perception at these higher frequencies (as will be discussed in
the next section), and reinforce the idea that bistability may be
regulated by network activity.

Are These Networks Causally Related to
Bistability?
Despite the extensive literature relating bi-stability with several
brain areas in humans and other primates (Table 2), there
are only a few studies directly showing that a particular
area is necessary for some bi-stable processes (transitions and
stabilities). This evidence comes from TMS studies and through
case studies of brain lesions or mental diseases in which a
particular brain area or function was altered. TMS evidence has
been recently reviewed (Brascamp et al., 2018) and suggests
a central role of the SPL (as already discussed in previous
paragraphs), which is also the most targeted region in these
studies, whereas only a few studies have targeted human middle
temporal areas (Brascamp et al., 2010) or frontal areas (de Graaf
et al., 2011; Vernet et al., 2015). For instance, Brascamp et al.
(2010) applied TMS pulses over the motion sensitive area hMT
which resulted in a long-term stabilization of perceptual bias
toward the preferred orientation in a structure from motion
task, while in absence of TMS pulses, the perceptual bias slowly
disappears. Thus, hMT seem to be involved in a long-term
buildup of bi-stable perceptual memory. Vernet et al. (2015)
showed that a TMS pulse over the IPS decreased percept
stability and that this effect was not significant if after this
pulse, in a precisely timed manner, a DLPFC pulse was also
paired (Vernet et al., 2015). This suggests that frontal areas
participate in a larger network controlling the dynamics of bi-
stability. Similarly, de Graaf et al. (2011) showed that frontal TMS
stimulation impaired the ability to voluntarily control the rate
of change in bi-stable perception. Consistent with these results,
patients suffering from schizophrenia have also impaired their
ability to voluntarily control the rate of change in perception
(McBain et al., 2011). This might be caused by the functional
dysconnectivity between distant brain areas that characterize this
disease (Friston, 1999; Uhlhaas and Singer, 2010). Regarding
the few recent studies of brain lesions and bi-stability (Bonneh
et al., 2004; Windmann et al., 2006), only one of them addressed
the issue of whether the ability to voluntarily increase the rate
of change was impaired. Windmann et al. (2006) showed that
patients suffering from a lesion on the PFC could not speed
up the rate of change compared with controls, although they
could sustain the percept as much as controls when they were
asked to maintain a particular perception. This evidence is
consistent with the involvement of frontal areas in the voluntary
control of bi-stable processes. This evidence also supports the
idea that long-range network activity is essential for bi-stability.
Nevertheless, apart from TMS studies, the amount of research
addressing the causal role of different brain areas during bi-
stability is scarce.

As reviewed so far, during bi-stability, two essential processes
simultaneously occur: on one hand, different and distant
brain areas participate in the process, probably embodying
a variety of complementary functions; on the other hand,
there is a characteristic dynamic of the process, requiring
proper coordination between these different functions and their
underlying brain processes. Thus, we propose that a neural
synchronization mechanism is essential for bi-stability because
different functions, subserved by distant regions, such as the
parietal, frontal, and occipital areas, must be coordinated in a
brief period of time.

NEURAL SYNCHRONY IN BI-STABLE
PERCEPTION

Time-Resolved Approaches Are
Necessary for the Study of Bi-Stable
Perception
The evidence discussed above supports the hypothesis that the
bi-stable process requires neural coordination over distant brain
areas (see Box 2). Evidence gathered via fMRI suggests the
involvement of different distant brain areas, but fMRI is too
slow to reveal the fast temporal dynamics of neural coordination
during bi-stable perception. By contrast, single unit activity
and LFP data reveal fast and precise synchronization of neural
populations during bi-stable perception but only locally inside a
very small area surrounding an electrode. Taken together, fMRI
and LFP evidence suggests that during bi-stability, local and long-
range synchronization occurs within short temporal windows,
arguably shorter than the latencies observed at the behavioral
level. To try to simultaneously reveal both the brain areas and
their coordination during short temporal intervals, the use of the
MEEG techniques seem to be the best option, overcoming the low
temporal resolution of fMRI and the excessive locality of LFP.

MEEG activity has been proposed to reveal both local
and long-range transient neural coordination by means of
increased oscillations and phase synchronization, respectively
(Varela et al., 2001). The following section presents a general
definition of synchrony and the main findings regarding neural
synchronization and bi-stability.

Neural Coordination
During the perception of an image, several brain areas engage
as part of the same perception process, while the activity of
other areas is suppressed or ignored. As discussed in Box 1,
the primary visual areas, extrastriate areas, parietal cortex, and
frontal cortex should work together in a window of a few tens of
milliseconds to generate perception. However, it is not clear how
these distant neural populations collaborate in such a brief period
of time. One of the mechanisms proposed for brain coordination
is time correlation between areas (von der Malsburg, 1994),
especially through neural synchrony (Varela, 1995; Singer, 1999;
Varela et al., 2001). This theoretical perspective proposes that
anatomically distant neuronal populations establish transient
connections, forming a closed system or cell assembly for a
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TABLE 2 | Brain areas from different organism are modulated by bi-stable stimuli.

Brain area References Stimulus Measures Subject

V1 and Extrastriate Wilke et al., 2006 Generalized flash suppression LFP and MUA nhp

Parkkonen et al., 2008 Rubin vase MEG Human

Maier et al., 2008 Generalized flash suppression fMRI, LFP and SU nhp

Leopold and
Logothetis, 1996

BR SU nhp

Lee et al., 2005 Traveling waves fMRI Human

Zou et al., 2016 Invisible BR fMRI Human

Keliris et al., 2010 Binocular flash suppression LFP and SU nhp

Gail et al., 2004 BR LFP & MUA nhp

de Jong et al., 2012 Structure from motion fMRI Human

Polonsky et al., 2000 BR fMRI Human

Lumer et al., 1998 BR fMRI Human

LGN Lehky and Maunsell,
1996

BR SU nhp

Wunderlich et al., 2005 BR fMRI Human

Haynes et al., 2005 BR fMRI Human

Schneider, 2009 BR fMRI Human

Wilke et al., 2009 Generalized flash suppression LFP and SU nhp

Pulvinar Wilke et al., 2009 Generalized flash suppression LFP and SU nhp

Temporal (IT, MT, SST) Logothetis and Schall,
1989

BR SU nhp

Bradley et al., 1998 Structure from motion SU nhp

Dodd et al., 2001 Structure from motion SU nhp

Grunewald et al., 2002 Structure from motion SU nhp

Maris and Oostenveld,
2007

Flash suppression SU nhp

Wang et al., 2008 Structure from motion LFP nhp

Sheinberg and
Logothetis, 1997

BR and flash suppression SU nhp

FFA vs. PPA Tong et al., 1998 BR (houses vs. faces) fMRI Human

Parietal Kanai et al., 2011 SFM fMRI + TMS Human

Roy et al., 2017 BR fMRI + EEG Human

Williams et al., 2003 Apparent motion SU nhp

Megumi et al., 2015 Structure From Motion fMRI Human

Fronto-Parietal Weilnhammer et al.,
2013

Lissajous figure fMRI Human

Lumer et al., 1998 BR fMRI Human

Pre-frontal (LPFC) Sterzer and Rees, 2008 BR fMRI Human

Panagiotaropoulos
et al., 2012

Flash suppression LFP, MUA, and SU nhp

Wang et al., 2013 Necker cube, Rubin vase fMRI Human

Frässle et al., 2014 BR without report fMRI Human

Brascamp et al., 2015a BR fMRI Human

FEF Libedinsky and
Livingstone, 2011

Motion induced blindness SU nhp

ACC, SMA y PRE-SMA Gelbard-Sagiv et al.,
2018

BR SU Human

Network Hipp et al., 2011 Bounce or pass stimulus EEG Human

Watanabe et al., 2014 Structure from motion fMRI Human

Baker et al., 2015 BR and Necker cube fMRI Human

Not visual pathway Kreiman et al., 2002 Flash Suppression SU Human

brief period (Figure 2), and the reverberant activity of this cell
assembly has been proposed as the basis for cognitive tasks
(Hebb, 1949; Buzsáki and Draguhn, 2004). As an example, during

perception, the brain must be able to bind together the relevant
features and to segregate the nonrelated features of the whole.
When we are faced with a big orange letter T composed of small
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BOX 2 | Measures of brain synchrony.
The study of brain synchrony relies on two complementary mathematical tools: time-based measures and spectral analysis. Time-based measures involve mainly
statistical descriptors such as correlations and event-related potentials (ERPs) or event-related fields (ERFs) (Picton et al., 2000; Maris and Oostenveld, 2007).
Event-related activity is a highly used method to assess local synchronies at a high temporal resolution because of its advantage when compared with neuroimaging
techniques (Nunez and Srinivasan, 2006). In addition, MEG has a high spatial resolution. On the other hand, spectral analysis looks at the data from its frequency
content (Kay and Marple, 1981) and incorporates measures of the power and/or phase of the signal at specific frequencies. Power activity is related to local
synchronies that are either evoked or induced by stimulus onset (Tallon-Baudry and Bertrand, 1999), whereas phase values are mainly used to assess connectivity
between brain areas. Examples of phase measures are the phase-locking value (Lachaux et al., 1999, 2000), coherence, the imaginary part of coherency (Nolte
et al., 2004), pairwise phase consistency (Rosenberg et al., 1998), and mean vector length (Fisher, 1995), among others (Bastos and Schoffelen, 2016). Most of the
measures mentioned are bivariate methods; they are restricted to studying the relations between the signals from two electrodes and are susceptible to volume
conduction confounding factors, especially when applied to EEG data.

duplicates of the letter x, we can see the big T, fixate on one
small letter x or even just see a pattern of lines. On this examples,
different features need to be integrated and segregated in different
ways to originate each of these three different perceptions, even
though the physical stimulus is the same all the time and the
brain areas involved should also be the same, as on feature
attention (Ramalingam et al., 2013). To assess unified perception,
the areas involved in the construction of the percept should have
strong reciprocal connections for a short period of time, thus
forming a “cell assembly,” a functional unit of the nervous system
(Hebb, 1949).

However, how do cell assemblies achieve their computational
tasks? To date, evidence shows that the brain uses two coding
dimensions to fulfill its computational demands: space and time
(von der Malsburg et al., 2010). The space dimension is used in
the representation of incoming sensory information by means of
topographically organized (for instance retinotopic or tonotopic)
neural activity, thus giving rise to the distributed nature of
cortical activity (Quiroga et al., 2005). The time dimension is
used as a way to establish brief reciprocal connections between
distant populations (von der Malsburg, 1994; Varela, 1995;
Varela et al., 2001) in periods as brief as 10 ms, as suggested
by behavioral (Goodale et al., 1986) and electrophysiology
experiments (Maldonado et al., 2008). These are the two
dimensions that the brain uses to bind and segregate features and
to move from the current to the next brain state.

Neural synchrony has been proposed as a general mechanism
to bind features in a unified percept (Uhlhaas et al., 2009).
Neural synchrony has been observed in visual tasks, including
Mooney faces (Rodriguez et al., 1999), word recognition (Melloni
et al., 2007), and oddball tasks (Brázdil et al., 2013), as well as
in somatosensory (Palva et al., 2005), auditory (Dykstra et al.,
2011), and multisensory modalities (Senkowski et al., 2008). In
a case of visual perception, Mooney faces presented for brief
periods elicited a transient increase in long range (Rodriguez
et al., 1999) and local gamma-band synchrony (Grützner et al.,
2010). These experiments showed that synchronization occurred
when the different elements of the stimuli were integrated in
a unified percept. To investigate whether synchronization was
related to the moment of perception of the stimulus and not only
to the binding process, Melloni et al. (2007) used a detection
task. Subjects viewed a masked visual stimulus (a word) that
could be perceived only in a fraction (close to 50%) of the trials.
They found an increase in long-range gamma-band synchrony
for perceived words compared with unperceived words. Palva

et al. (2005) showed that in an equivalent somatosensory task,
there was also more synchrony when subjects were able to detect
a tactile stimulus, in this case in the alpha band. These examples
suggest that the increase in neural synchrony correlates with the
emerging perception resulting from the binding process and not
with the processing of stimuli parts or subthreshold stimuli parts.

Event-Related Potential and Bi-Stable
Perception
Among MEEG analyses, the most commonly used method to
study brain-evoked responses in cognitive sciences is event-
related potential (ERP) analysis. ERPs provide is a continuous
and temporally precise measure of brain processes with low
spatial resolution (Luck, 2005). Many of the experiments
involving ERP on bi-stable perception use discontinuous
presentation methods (Kornmeier and Bach, 2004, 2005, 2006,
2009, 2012; Pitts et al., 2008) to compare evoked responses
either between perceptual transitions and stabilities or between
endogenous and exogenous transitions. The first approach
provides insight into the brain mechanism under perceptual
changes, whereas the second approach provides insight into
the self-generated processes that lead to spontaneous changes
in perception. Regarding comparisons between perceptual
transition and stability, the most consistent ERP difference found
in several publications is reversal negativity (RN) (Kornmeier
and Bach, 2004, 2005, 2006, 2009, 2012; Pitts et al., 2008; Britz
et al., 2009; Intaite et al., 2010). A negative ERP deflection
peaking at approximately 300 ms after stimulus presentation
occurs in both exogenously and endogenously triggered changes
in perception (40 ms later for endogenously triggered changes
than for exogenously triggered changes). ERPs are related to
the changes in perception as its amplitude changes between
stability and transitions. Pitts et al. (2008) also found that ERP
amplitude increases when subjects try to reverse perception
voluntarily. To further study reversal negativity, Intaite et al.
(2010) adjusted the intensity of the perceptual experience using
two arrays of cubes, one on each hemifield of the screen,
to manipulate the subject’s attention and awareness levels. In
this discontinuous presentation task, they found that the RN
is specifically correlated with changes in perception (Intaite
et al., 2010) and not with changes in attention or in the
level of awareness. Recently Joos et al. (2020) showed that
ERP observed after perceptual transitions resemble the effect
after Gestalt construction in non-bi-stable stimuli. This result
indicates that part of the effects observed so far reflect the
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From membrane potential dynamics to behavior.

Behavioral Predictions. Some of the characteristic properties of 
binocular rivalry have been reproduced using computational models of 
the brain. These properties include: gamma distribution of the dominant 
percept, Lelevelt’s laws and more specific phenomena, as binocoular 
suppression or priming. For instance, the gamma distribution of the 
dominant percept has been modelled several times (2, 4, 5 , 7, 10). 
Levelt’s second law states that increasing the stimulus strength in one eye 
reduces the mean duration of the percept associated with the other eye, 
while not affecting the duration of the percept associated with the stimu-
lated eye. Levelt’s fourth law states that increasing stimulus strength 
equally in both eyes increases the alternation rate. Both of these laws  
have been replicated several times using computational models (Second 
law: 2, 5, 7, 10 Fourth law 3, 5, 10), and recently all laws toghether (10). 
More specific stimuli manipulations have also been modelled. For instan-
ce, it is known that exchanging the stimulus between eyes does not 
change the dominant percept (3), or that “priming” subjects with one of 
the two stimuli, increases the probability of perceiving it later (the 
opposite occurs during habituation) (6). Also, it has been shown that the 
duration of the dominant percept follows a Bayesian multiplicative rule 
(8). The former models address only time independent properties, while 
dynamical models have explicitly included a time variable to explain 
observation as wave propagation (1) or rivalry suppression (4). To date, 
no model can explain all of these properties simultaneously.

Spatial extent of the model. Computational models encompass 
different spatial scales, from single neuron activity to activation of whole 
brain areas. Interestingly, each of these models can replicate some of the 
behavioral properties given appropriate and biologically plausible 
parameters. At the larger spatial level, an energy landscape model (9) has 
been used to predict perceptual transitions during rivalry. At the neural 
population level, a system of dynamical equations models the firing rate 
of two mutually exclusive populations representing each percept (8), or 
an Ehrenfest process models the number of active units (10). Single 
neuron models involve spiking neural networks with excitatory (trian-
gles) and inhibitory (circles) connections or adaptation (1, 2, 5). Finally, 
membrane voltage models use Hodgin-Huxley equations to simulate 
membrane potential dynamics and neuronal spikes. These models can 
include either neuronal noise (5), neuronal adaptation (6, 1, 2) or 
feedback inhibition (10) to account for perceptual transitions. With the 
exception of the energy landscape model, all of these models represent 
each percept with non-overlapping neuronal populations. The question 
remains, whether these are stable neuronal ensambles that represent 
each percept, or a transient functional organization changing over time.

1) Wilson et al., 2001, 2) Laing and Chow, 2002, 3) Wilson 2003,
4) Freeman 2005, 5) Moreno-Bote et al., 2007, 6) Noest et al.,
2007, 7) Gershman et al., 2012,  8) Moreno-Bote et al., 2011,
9) Watanabe et al., 2014, and 10) Cao et al., 2021.

FIGURE 2 | From membrane potential dynamics to behaviour. Reference: 1, Wilson et al. (2001); 2, Laing and Chow (2002); 3, Wilson (2003); 4, Freeman (2005); 5,
Moreno-Bote et al. (2007); 6, Noest et al. (2007); 7, Gershman et al. (2012); 8, Moreno-Bote et al. (2011); 9, Watanabe et al. (2014): and 10) Cao et al. (2021).

process of perceptual disambiguation and may not be exclusive
of bi-stable phenomena. Future experiments should address (1)
whether reversal negativity is observable when viewing other
bi-stable stimuli because Kornmeier and Bach (2014) did not
observe RN activity when using Boring’s old/young woman
stimulus and (2) whether the RN is still present under continuous
paradigms (Kornmeier and Bach, 2014). The results presented
indicate that the RN is present on endogenously and exogenously
induced transitions, reflecting changes in perception during the
bi-stability process, and that it can be modulated endogenously

(Pitts et al., 2008). Importantly, this ERP already occurs 250 ms
after stimulus onset, supporting the need for time-resolved
methods such as MEEG.

As has been described in fMRI experiments, endogenous
vs. exogenous comparisons have already revealed brain areas
that are particularly activated when changes in perception
occur spontaneously, without any change in the stimulus.
For instance, de Jong et al. (2012) have shown that external
sensory repetition (exogenous) attenuates BOLD activity on
visual areas, while perceptual repetition (endogenous) enhances
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BOLD activity on early visual areas, ventral visual stream (V4
and LO) and parietal areas, suggesting a network activation
for perception as compared to mere sensation processing (de
Jong et al., 2012). The ERP literature has also addressed the
differences between endogenous versus exogenous transitions
to reveal different temporal dynamics between self-produced
or externally triggered changes in perception. Kornmeier and
Bach (2009) analyzed ERPs to endogenous and exogenous
transitions using two different bi-stable images, the Necker
cube and Boring’s old/lady woman. They found ERP differences
of approximately 400 ms between these two conditions; the
exogenous condition had a higher amplitude and duration than
the endogenously triggered ERP. Specifically, on endogenously
evoked transitions, the peaks of the ERPs occur 40–70 ms
later than in exogenously triggered transitions (Kornmeier and
Bach, 2006). These results show that the dynamics of the
ERPs between the two conditions (exogenous and endogenous
changes) are different, with endogenous transitions requiring
more time to develop.

As evident in fMRI scans, EEG source localization signals
the role of the right parietal cortex on endogenous transitions.
Ongoing activity has been proposed to reflect endogenous brain
processes (Raichle, 2010). Britz et al. (2009) studied the role
of ongoing activity in endogenous perceptual changes using a
discontinuous presentation of Necker cubes. They found that
increased activity in the right parietal cortex 50 ms before
stimulus presentation correlated with perceptual reversal. Only
a few experiments have also used TMS stimulation to further
assess the causal role of previous brain activity on multi-stable
perception (Vernet et al., 2015). These authors showed that
TMS stimulation over the intraparietal sulcus before stimuli
presentation decreased the stability of the percept and modulated
the ERP over the right parietal cortex. Both results confirm a
parietal role during bi-stability on EEG recordings, as shown for
fMRI scans. This finding also supports a role of the frontal α-band
in this phenomenon. Together, these results suggest different and
possibly opposing roles for each brain region, but more evidence
is needed to precisely understand the effect of stimulation on
this brain process.

Slow Oscillations (δ and α Activity)
As suggested in the previous sections, changes in perception
relate to previous brain activity, with slow oscillation modulation
appearing up to 1000 ms before subject reports. In a line-moving
paradigm, in which the subject perceived either four independent
lines or a diamond, Flevaris et al. (2013) found a decrease in
α-band activity before the button press. Specifically, for both
percepts the decrement in α-band power start 1000 ms before
a button press at occipital sites. It was especially low when
switching from perceiving lines to perceiving a diamond (Flevaris
et al., 2013). In an EEG-fMRI experiment of a continuous
presentation of the Necker cube, Ozaki et al. (2012) showed a
modulation of δ-band power spreading from frontal to parietal
areas before the subject’s report of a perceptual change. The
spectral power at 3–4 Hz increased in the left frontal and
right centroparietal electrodes. This activity sequentially peaked
at 750, 600, and 350 ms before the subject’s report along the

dorsal attentional network. From these two observations, the
authors suggested that the slow oscillation initiated traveling
activity along the dorsal path (Ozaki et al., 2012). For another
moving stimulus, Haendel and Jensen showed that α-band
lateralization preceded the onset of illusory perception (Händel
and Jensen, 2014). They used a variation of the MIB task in
which they superimposed a moving grating at each hemifield.
Subjects reported when gratings spontaneously disappeared
and appeared. They found via MEG that a spontaneous grid
appearance correlated with early α activity, in good agreement
with EEG studies previously reviewed (Ozaki et al., 2012; Flevaris
et al., 2013).

Together, this evidence suggests that (1) several areas peaked
in a traveling pattern from frontal to occipital regions and
(2) these different brain processes developed on a short
time scale (<1 s).

Beta Band Activity
Increments in β-band activity correlate with spontaneous
changes in perception and are usually interpreted as a top–
down modulation of brain activity (Kloosterman et al., 2015).
In a continuous perceptual task of apparent motion, in which
the subject’s perception changes from real movement to the
apparent direction of movement, VanRullen et al. (2006) showed
that the main difference in EEG recordings was at the β-band,
approximately 13 Hz. The modulation in β-band power during
changes in perception had a right centroparietal distribution
and its dynamics were related to the reported perception. It
decreased 1.5 s before transitions from real to illusory movement
and increases in transitions from illusory to real movement
(VanRullen et al., 2006). In accordance with these results,
Kloosterman et al. (2015) found a decrease in β-band activity
associated with the illusory disappearance of a target stimulus
during a motion-induced blindness task and an increase in the
same band during its reappearance. The authors showed that the
amplitude of β-band suppression predicted the duration of the
associated perceptual illusion, which, along with several controls,
led them to suggest that the activity during disappearance was
a top–down modulation. The main difference between the two
studies was the location of the β activity; Kloosterman et al.
(2015) found a clearly occipital topography, whereas VanRullen
et al. (2006) found centroparietal activity. This could be explained
by the difference in the acquisition system, considering that
the former used MEG whereas the latter used EEG, and the
differences in paradigms between the two studies.

β-band activity seems to play several roles in top–down
processes. Zaretskaya and Bartels (2015) found that bi-stable
stimuli with global and local gestalts elicited β-band reductions
before the onset of the global percept. Global states were
associated with a lower β-band power in comparison with
the local states (Zaretskaya and Bartels, 2015). This suggests a
possible role of the β-band in global binding. In addition, beta
band activity is modulated during changes in perception. In an
intermittent-presentation task with EEG recordings, Yokota et al.
(2014) found that spontaneous perceptual reversals correlated
with increases in β-band activity (16–36 Hz) in the right occipital
regions compared with the activity in response to stability.
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This activity had an early component (100–150 ms), probably
related to the disambiguation process, and a late component
(350–450 ms), which has been interpreted as the correlate of
the conscious processing of perception. Both experiments are
consistent with a top–down function associated with the β-band
but also show that this band may reflect distinct functions
depending on the task.

Gamma Band Activity
Gamma band activity has shown a more diverse relation with
bi-stable perception than other frequency bands. On one hand,
gamma band activity has been observed preceding changes in
perception of frontal areas, as previously discussed. On the
other hand, it has also been interpreted as reflecting inhibitory
processes on occipital cortices.

It has been reported that an increase in the γ-band at
frontal electrodes precedes changes in the perception of rivalry
(Doesburg et al., 2009; Händel and Jensen, 2014) in ambiguous
perception tasks (Ehm et al., 2011). This activity occurs before
reversals (Ehm et al., 2011) and is associated with voluntary
manipulation by the subject of the perception duration (Mathes
et al., 2006). In the former case (Ehm et al., 2011), the authors
suggested that the induced γ-band activity might reflect a state of
maximal instability of the brain that would lead to the consequent
reversal of perception. This result agrees with the hypothesis that
a frontoparietal network controls transition during bi-stability. In
the latter case, frontal γ-band activity is enhanced when subjects
voluntarily maintain perception, suggesting a role of the γ-band
in top–down modulation (Mathes et al., 2006), consistent with
frontal lesions that disrupt voluntary control of the duration of
perception (Windmann et al., 2006).

Role of Synchrony on Different
Frequency Bands During Bi-Stability
As shown in Figure 3A, different frequency bands coexist during
bi-stable processes. The coexistence and interaction of different
frequency bands is a well-known phenomenon occurring in
the brain (Varela, 1995; Varela et al., 2001; VanRullen and
Koch, 2003; Jensen and Colgin, 2007). Varela in his 1995 work
proposed that if at a given time 2 or more neural assemblies were
competing to be established as a unified cognitive experience,
these neural assemblies should be expressed as having different
spatiotemporal patterns; therefore, the dynamics of neural
synchrony could be reflected in different frequencies (Varela,
1995; Varela et al., 2001; VanRullen and Koch, 2003; Pockett et al.,
2009; Schroeder and Lakatos, 2009; Uhlhaas et al., 2009).

Many hypotheses have been formulated for the role of
synchrony in different frequency bands. One such hypothesis
is the frequency based on topography (Varela, 1995; von der
Malsburg et al., 2010). This idea proposes that synchrony between
distant neuronal populations, or within a large population, is
mediated by slow bands (θ and β), whereas local oscillations
involve fast frequency bands (mainly γ). Another hypothesis,
proposed by VanRullen and Koch (2003), is that frequency bands
act as a mechanism of multiplexed representations in visual
perception. It proposes that during explicit visual perception,

cortical oscillations at two different frequency bands, one
slow and the other fast, constitute the neuronal ’context’ and
’content’, respectively (for example: α and γ bands in the visual
system). This interaction between different frequencies could
be the basis for a process of discrete perception, consistent
with psychophysics results (VanRullen, 2016). In a similar way,
Uhlhaas et al. (2009) expressed the need to study the coexistence
of oscillations in different bands, their interactions, their
temporal organization and coordination between them, since
they could encode nested relations in frequency. Hypothetically,
these nested relations serve not only the representation of objects
but also compound movements (Uhlhaas et al., 2009). Schroeder
and Lakatos (2009) presented other hypotheses regarding the
role of oscillations in different frequency bands. They proposed
a hierarchical organization of the oscillations, which would
control the baseline excitability and thus the response associated
with a stimulus (Lakatos et al., 2005; Schroeder and Lakatos,
2009). These ideas are not mutually exclusive and are probably
complementary given that complex cognitive processes involve
interactions spanning through multiple bands.

There are only a few papers directly addressing the role of
multiple bands on bi-stability. It has been reported that the
power in the δ-band increases whereas the α-band decreases
during Necker cube reversal (Isoglu-Alkaç et al., 2000; Isoglu-
Alkaç and Strüber, 2006). Additionally, on binocular rivalry,
there is an increment in fronto-occipital γ synchronization
associated with the subject’s report that is phase-coupled to theta
rhythm (Doesburg et al., 2009). Nakatani and van Leeuwen
found a cooccurrence of γ- and α-band activity during Necker
cube perception. Specifically, there are brief periods of γ

synchrony between parietal and frontal areas. These events
start 800 to 600 ms before the report of perceptual change
with a simultaneous modulation in the α-band at occipital
electrodes (Nakatani and van Leeuwen, 2006). Additionally, in
a double flash illusion task, γ-power is enhanced and α-band
power decreases before reporting perception, and in both cases,
the magnitude of power modulation correlates with subject
perception (Lange et al., 2013). Together, these results could be
interpreted as (1) that the simultaneous modulation of the δ, α,
and γ bands reflect the interaction between different frequencies
reflecting one of the mechanisms previously mentioned or (2)
that the modulation of specific frequencies co-occurred during
the task, reflecting different local brain processes. Regardless
of the interpretation, the evidence reviewed so far supports
that multiple oscillations coexist during bi-stability (Figure 3A)
in different brain regions (Figure 3B), with a compendium
of frequency band modulations suggesting the coordination
of multiple brain areas following a specific temporal and
spatial pattern of activation (Figure 3A) in preferred frequency
bands (Figure 3B). It also shows that despite being a single
phenomenon, bi-stability can entail specific brain oscillations
depending on the experimental design (Figure 3C). Some
frequency dynamics are almost exclusively found in Necker cube
experiments (gamma and delta/theta bands), whereas others
(especially the alpha band) seem to be more ubiquitously present
under different experimental conditions. Finally, the evidence
reveals a complex process that develops in no more than 1 s,
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FIGURE 3 | Brain activity modulation by time, frequency, and area. (A) Brain oscillatory activity modulation related to bi-stable perception. Numbers indicate
references and letters brain areas or other commentaries. (B) Articles published on bi-stable perception grouped by oscillatory frequency band and colored by brain
area. (C) Number of published articles grouped by frequency band, colored by bi-stable stimulus. References: (1) Basar-Eroglu et al. (1996); (2) Doesburg et al.
(2009); (3) Ehm et al. (2011), [a] frontal, [b] occipital, [c] central, [d] parietal, frontal, central, [e] occipital, parietal, [f] occipital; (4) Lange et al. (2013) [a] gamma power
correlates with subjective perception, [b] alpha power inversely correlate with subjective perception; (5) Mathes et al. (2006), [a] enhanced for hold condition, [b] a
decrease in delta wave around this time window is observed; (6) Strüber and Herrmann (2002); (7) Kloosterman et al. (2015), [a] decrease for illusory disappearance
and increase for reappearance, [b] decrease before reappearance; (8) Piantoni et al. (2010), [a] higher for veridical percept, [b] decrease for BR and Moving dots
illusion around report; (9) Zaretskaya and Bartels (2015), beta decreases more for local percept. (10) Basar-Eroglu et al. (2016), alpha power was even more
decreased in patients with schizophrenia. (11) Flevaris et al. (2013), there were more decrease for object percept compared with fragment percept; (12) Händel and
Jensen (2014), there is a significant alpha lateralization preceding the estimated illusory disappearance of the stimuli, the level of lateralization predicts the duration of
the following illusion; (13) Isoglu-Alkaç and Strüber (2006), alpha band activity was lower in the interval between 500 and 1000 ms before report than 0–500 ms
before; (14) Mathes et al. (2010), [a] alpha power is higher on parietal and occipital electrodes for standard report, compared with delayed one, [b] a decrease in delta
wave is observed around perceptual change (in standard and delayed conditions); (15) Piantoni et al. (2017), [a] alpha power start decreasing 900 ms before report,
reaching it minimum at 250 ms, [b] after 250 ms alpha power start increasing until 850 ms after report (reaching starting levels). (16) Piantoni et al. (2010), [a] veridical
percept show higher alpha activity, [b] after report of both veridical and illusory percept alpha power decreases; (17) Strüber and Herrmann (2002), the decrease in
activity was not observed for exogenous induced changes; (18) VanRullen et al. (2006); (19) Ozaki et al. (2012), [a] frontocentral, [b] parietal, [c] central parietal; (20)
Devia et al. (2020), [a] frontal, parietal, occipital, [b] parietal-occipital, [c] parietal-occipital, [d] frontal, [e] parietal-occipital, [f] occipital; (21) Yokota et al. (2014).

reinforcing the need to study multiple brain regions at the
proper spatial and time scales. Further research should shed
light on whether the interactions between these oscillations are
an exclusive component of bi-stability dynamics or a general
mechanism to coordinate distant and local brain regions in a
short period of time.

DISCUSSION: WHY INTEGRATING
MODELING, fMRI AND MEG EVIDENCE
IS DIFFICULT AND WHY SUCH
INTEGRATION IS NECESSARY

Multi-stable perception is a widely studied area with a
large body of evidence arising from modeling, fMRI and
MEEG studies; nevertheless, as seen in Figure 4, integrated

research is still very scarce. Here, we will argue why such
evidence is difficult to integrate and why it is essential to try
to integrate it.

Findings from modeling studies are difficult to integrate with
findings from fMRI/MEEG studies because these approaches
represent opposite perspectives on how to uncover the neural
bases of multi-stable perception. fMRI/MEEG studies involve
a bottom-up strategy, as experiments are performed to try to
determine which brain areas and processes are active during
multi-stable perception, trying to collect the pieces of the puzzle
without an a priori idea on how such pieces should fit together
into the mechanism of multi-stable perception. By contrast,
modeling studies display a top–down research strategy, starting
with a clear idea of what the mechanism giving rise to multi-
stable perception should be. The modeler proceeds to choose
which parameters are critical to her or his model and to fine
tune the values of the parameters to obtain a behavior similar
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to the modelized phenomenon. This is done by concentrating
on a few biologically plausible parameters while disregarding
all the remaining biological processes pertaining to multi-
stable perception.

Thus, modeling studies disregard most of the complexity
of biological phenomena, whereas experimental studies fail to
propose a clear mechanism by which neural activity produces bi-
stable perception. Because of these opposing perspectives, both
research programs so far have engaged in insufficient crosstalk
and synergetic interactions.

On the other hand, given that both fMRI and MEEG
approaches share a common experimental perspective,
it would be reasonable to expect that data produced by
fMRI/MEEG studies would be easier to integrate. Data
comparison, however, has proven to be challenging (Ritter
et al., 2009) because both techniques are sensitive to different
brain structures and physiological processes. Concerning
brain regions, fMRI is capable of detecting activities all over
the brain, including deep subcortical structures, whereas
MEEG is mostly sensitive to superficial cortical brain activity.
From a physiological perspective, both techniques also
differ, with MEEG recording fast electromagnetic activity,
mostly dendritic postsynaptic potentials of pyramidal
cells, whereas fMRI records a slow increase in oxygenated
blood supply to the active brain areas. As a result of these
differences, experiments comparing MEEG and fMRI data
must integrate restrictions imposed by each technique (Britz
and Pitts, 2011); even so, when comparing results, we should
be aware that the sources of the described brain activity
may not intersect.

Do we need to try to integrate such information? The
necessity for integrating research arises from the complexity of
multi-stable perception. Experimental research has shown the

involvement of a multiplicity of different brain areas activated
in specific temporal patterns involving several frequency
bands. These brain regions, patterns and frequencies are
modulated depending on the specific stimulus and the task
involved, suggesting not a single but rather a set of related
neural mechanisms. This complexity should be embraced by
studies aspiring to realistically represent the process of multi-
stable perception.

Some efforts have been made to integrate the different
approaches. As depicted in Figure 4, region a, modeling
studies have integrated information from fMRI research as
in the model by Watanabe et al. (2014), in which the
authors integrated fMRI information to show that a model
with three attraction basins representing visual area states,
frontal area states and intermediate area states appropriately
could describe the dynamics of perceptual stability and change
during structure from motion bi-stable perception. The authors
nicely show that, as predicted by the model, subjects with
greater frontal activity display faster changes than subjects
with activity predominantly in visual areas. In a similar
way, Megumi et al. (2015) used fMRI information and
dynamic causal modeling to construct a model with three
interacting areas: r-V5, r-pSPL, and r-aSPL; this model correctly
described the dynamics of residence and change during a
structure from a motion perceptual paradigm. In this study,
the authors were able to show that the strength of bottom-
up connections (r-V5 ->r-pSPL - > r-aSPL) predicted the
stability of perception.

Models integrating MEEG information are almost completely
lacking with only indirect evidence (Figure 4, region b),
suggesting a link between gamma activity, GABA levels, lateral
inhibition and reversion rates in bi-stable perception. Evidence
has related peak gamma activity with occipital GABA levels
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that would be responsible for the observed bi-stable switch
ratios (Brunel and Wang, 2003; Muthukumaraswamy et al.,
2009). This interpretation is consistent with computational
models of adaptation and horizontal inhibition (Wilson,
2003; Tong et al., 2006; Kang and Blake, 2010). In a classical
binocular rivalry task, Fries (2015) showed that the peak
amplitude of evoked γ-band activity in V1 observed in a
detection task was inversely correlated with the perceptual switch
ratio in a binocular task (using the same stimuli). Previous
evidence correlated the peak frequency of induced γ-band
activity with resting levels of GABA (Muthukumaraswamy
et al., 2009) and GABA levels with perceptual switch
ratios (van Loon et al., 2013). This evidence led authors
to interpret the peak frequency as an index of neuronal
population inhibition. Consistently, in the case of perceptual
rivalry, perceptual alterations are explained by inhibitory
connections in the visual cortex, the activity of which would be
reflected by GABA levels.

Finally, as depicted in Figure 4, region c, under specific
conditions, some MEEG and fMRI studies have yielded
converging results. Given the low time resolution of fMRI,
only relatively slow processes can be used to compare
fMRI and MEEG. Particularly the comparison between
endogenously versus exogenously driven bi-stable perception
has been suitable. Both fMRI (Baker et al., 2015) and MEEG
(Kornmeier and Bach, 2009) studies have pointed to the
involvement of right parietal and frontal cortices, with frontal
and parietal cortices performing antagonistic functions.
Additionally, EEG (Kornmeier and Bach, 2006) and iEEG
(de Jong et al., 2020) data have shown smaller and delayed
potentials in endogenously driven bi-stable perception,
suggesting that the brain takes longer to ‘make up its
mind’ when self-organizing than when processing external
stimulation. Also, de Jong et al. (2020) have shown using
iEEG that external stimulation is processed with neural
activity starting at V1 and then proceeding to the higher
ventral stream cortices. By contrast, endogenous self-organized
perception starts in higher ventral cortices and then proceeds
backward to primary visual cortices. Additionally, delta and
alpha MEEG oscillations appear to be slow enough to be
compared with fMRI data. Ozaki et al. (2012) showed a
traveling delta wave involving the dorsal attentional network
by successive activations of left frontal, right parietal and
centroparietal electrodes. However, as the preceding studies
involved different tasks and stimulations, caution is advised in
interpreting the results.

As seen in Figure 4 (regions a, b, and c) pairwise interactions
between fMRI, MEEG and models do exist; however, the
challenge of integrating the three of them has not been
undertaken so far. This is hardly surprising given the difficulties
that must be surpassed to successfully complete research
involving simultaneous MEEG recordings, fMRI scans and
modeling of multi-stable perception. We believe that a research
program particularly relevant for the understanding of multi-
stable perception would involve modeling studies including
multi-level brain interactions mediated by multi-frequency
oscillatory dynamics. However, is the gain worth the effort?

We believe so because multi-stable perception is a particular
instantiation of more general functions of human cognition.
Self-organization, self-determination and self-control are
all crucial characteristics of mind/brain autonomy because
studying their properties may provide us with hints and
intuition as to whether a materially determined system can
achieve freedom.

Open Questions (Future Experiments)

OQ: Where does the ‘perception’ of bi-stable perception
take place? Evidence so far shows that bi-stable perception is
represented along several stages of the visual pathways (Box 1);
nevertheless, we still do not know which, if any, of these areas are
sufficient for bi-stable perception.

OQ: When does the ‘perception’ of bi-stable perception take
place? MEEG studies show that bi-stable perception develops by
a series of parallel activations involving different frequency bands
in different brain regions. However, it is still unknown when
perception emerges. Perhaps complementary measures, such as
pupil dynamics, heart rate variability, or eye movements, are
needed to solve this issue.

OQ: How can we progress from correlational to causal
evidence on bi-stable perception? To date, the computational
models that reproduce the dynamics of bi-stable perception
assume the alternation of two mutually exclusive neural
populations. However, current evidence is mostly correlational,
so further experiments are needed to learn whether such activity
is sufficient for perception.

OQ: How does long-range neural synchronization
participate in bi-stable perception models? Given the
spatially distributed activity shown on fMRI scans and the fast
dynamics evidenced by MEEG, long-range synchronization is a
plausible mechanism to fulfill both requirements. However,
we still do not know how to incorporate this property
into current models.

OQ: How does voluntary perceptual change occur? The
current explanation for endogenous changes in perception is
either noise (introduced by perceptual processing or due to
background brain activity) or neural adaptation; nevertheless,
this does not explain voluntary changes in perception.

AUTHOR CONTRIBUTIONS

CD and MC-M review the literature. CD, MC-M, and ER
discussed the ideas and wrote the manuscript. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was made possible in part by a grant from
CONICYT, FONDECYT/Postdoctorado 3140306 to
CD, CONICYT Doctorado 21150176 to MC-M, and
Iniciativa Cientifica Milenio ICN09_015, and CONICYT,
FONDECYT/Regular 1170145 to ER.

Frontiers in Neuroscience | www.frontiersin.org 15 January 2022 | Volume 15 | Article 805690

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-805690 January 22, 2022 Time: 15:3 # 16

Devia et al. Brain Self-Organization Underlying Bi-Stable Perception

REFERENCES
Andrews, T. J., Schluppeck, D., Homfray, D., Matthews, P., and Blakemore, C.

(2002). Activity in the fusiform gyrus predicts conscious perception of Rubin’s
vase-face illusion. NeuroImage 17, 890–901. doi: 10.1006/nimg.2002.1243

Baker, D. H., Karapanagiotidis, T., Coggan, D. D., Wailes-Newson, K.,
and Smallwood, J. (2015). Brain networks underlying bistable perception.
Neuroimage 119, 229–234. doi: 10.1016/j.neuroimage.2015.06.053

Basar-Eroglu, C., Mathes, B., Khalaidovski, K., Brand, A., and Schmiedt-Fehr,
C. (2016). Altered alpha brain oscillations during multistable perception in
schizophrenia. Int. J. Psychophysiol. 103, 118–128. doi: 10.1016/j.ijpsycho.2015.
02.002

Basar-Eroglu, C., Strüber, D., Kruse, P., Başar, E., and Stadler, M. (1996).
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GLOSSARY

Multi-stable perception: (or Perceptual Rivalry) Perception in which two or more interpretations of the same stimulus alternate
involuntarily. When only two perceptions are possible, the term bi-stable perception is preferred. Two exemplary experimental
paradigms are binocular rivalry and bi-stable stimuli.

Latent Variable: The parameters or physiological features that are supposed to participate in the process that leads to perception
and alternations but that are not strictly necessary for them.

Complexity Level: The number and type of interactions, in time and space, between the different features that modulate and
constrain the variable representing perception; these values are typically resumed in a set of differential equations.

Spatial Scale of a model: Based on Varela et al.’s (2001) definition, this dimension refers to the spatial scale that the model is built
on, including sub-neuron features such as dendrites, ionic conductance or population activity.
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