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1  Introduction

Sequencing by hybridization (SBH) is a well-known 
method used for reading unknown DNA strings. It has 
been proposed in the late 80  s by various authors [1–3]. 
SBH consists of two distinct phases. It begins with the 
biochemical phase in which an unknown, single-stranded 
DNA must be prepared and cloned. In addition, the so-
called DNA chip (also known as a DNA microarray, or a 
biochip) is being prepared. Such a chip consists of cells 
in which oligonucleotides are being placed. Such cells 
containing oligonucleotides are often called probes. Oli-
gonucleotide is a short, single-stranded DNA fragment, 
usually having length within the range of 5–20 nucleo-
tides. In the classical approach to the SBH, DNA chip is 
prepared, consisting of all the oligonucleotides of a given 
length. Four types of nucleotides are the building blocks 
for every oligonucleotide: adenine, cytosine, guanine, and 
thymine. Therefore, a string representing oligonucleotide 
is built over the four-letter alphabet ΣDNA = {A, C, G, T}. 
The chip capacity depends on the length of its oligonucle-
otides, e.g., when the length l = 10, then the chip capacity 
C(10) = 104 = 1,048,576 probes. Such a value is often con-
sidered as a realistic limit in the classical approach, which 
is strongly connected with technical difficulties in creat-
ing such a number of probes. Having prepared the cloned 
DNA samples and the chip, the hybridization experiment 
takes place. In this phase, the DNA fragments bind to the 
probes according to the Watson–Crick complementary 
rule: adenine binds to thymine, while cytosine to guanine. 
In other words, the DNA will attach itself to the probe if 
its fragment of a given length is complementary to the 
same length oligonucleotide in the probe. Probes with the 
attached DNA fragments can be detected, allowing to cre-
ate a spectrum—a set of all oligonucleotides that binds 

Abstract  Sequencing by hybridization allows the recon-
struction of the DNA string of a given length from smaller 
fragments. These fragments are obtained in the hybridiza-
tion experiment in which the DNA hybridizes to a DNA 
chip. In a classical approach, the chip consists of all oli-
gonucleotides of a given length, with only one type of oli-
gonucleotide for each probe of the chip. In this paper, we 
propose an algorithm solving the non-classical case of 
SBH, where the chip probes consist set of oligonucleotides 
described by some specific pattern. We will present the def-
inition of such a non-classical DNA chip and the algorithm 
solving a sequencing problem related to such a chip. Unlike 
recent metaheuristic approaches to the classical SBH prob-
lem, the proposed algorithm tries to find an exact sequence, 
and even in the presence of all the hybridization errors 
in spectrum is very often able to do so in a short time. If 
only negative errors from repetitions are allowed, then the 
algorithm is able to reconstruct sequences having length of 
thousands nucleotides.

Keywords  Sequencing by hybridization · Non-classical 
SBH · Algorithm

 *	 Marcin Radom 
	 marcin.radom@cs.put.poznan.pl

1	 Institute of Computing Science, Poznan University 
of Technology, str. Piotrowo 2, 60‑965 Poznań, Poland

2	 Institute of Bioorganic Chemistry, Polish Academy 
of Sciences, str. Z. Noskowskiego 12/14, 61‑704 Poznań, 
Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s12539-017-0220-0&domain=pdf


606	 Interdiscip Sci Comput Life Sci (2018) 10:605–615

1 3

with the DNA. Because one can easily transform an oli-
gonucleotide from the probe into the corresponding frag-
ment of the analyzed DNA molecule; in the ideal case; the 
spectrum consists of all fragments of a given length of the 
analyzed DNA. This phase is susceptible to the so-called 
hybridization errors: positive and negative ones. The errors 
of the first type occur if in spectrum, there are fragments 
that hybridized to the microarray when theoretically, they 
should not. Negative errors correspond to the loss of some 
fragments of the DNA in spectrum.

Obtaining a spectrum is necessary to begin the second, 
computational phase of the SBH. Using special algorithms, 
one tries to reconstruct the analyzed DNA sequence from 
the spectrum elements. It has been proved that when there 
are no hybridization errors, the computational problem 
which should be solved in this phase of the method is quite 
simple—it can be reduced to finding an Eulerian trail in the 
graph as stated by Pevzner in [4]. However, this assumption 
is unrealistic, because the SBH method is very susceptible 
to the hybridization errors. When the errors are present in 
the spectrum, the sequencing problem becomes strongly 
NP-hard as it has been proved in [5].

Sequencing by hybridization had been extensively modi-
fied in the last decades since its discovery, to enhance its 
accuracy. The method is quite sensitive to the hybridization 
errors in spectrum; therefore, many approaches aim to cre-
ate methods that improve the resistance of the hybridization 
phase to errors. One of the enhancements introduced an 
additional information to the spectrum, i.e., estimated loca-
tion in the target sequence for each of its elements [6–8]. 
One can here mention interactive protocols also known as 
sequencing in rounds [9–11]. This approach is still being 
improved, creating some new open questions, e.g., for the 
minimal number of rounds required for a given DNA to 
be successfully read [12]. Another way of improving SBH 
method is the isothermic libraries [9, 13, 14], where spe-
cially designed oligonucleotide libraries that dependent on 
the melting temperature are being used in the probes of the 
microarray. There are also recent enhancements, for exam-
ple, an approach that deals with the repetitive subsequences 
in the target sequence [15]. In the most recent paper con-
cerning SBH method, an approach has been presented 
based on the limited knowledge how many times an oli-
gonucleotide from the probe is present in the target DNA, 
i.e., once or more. Knowing that simple fact can greatly 
improve the method, as shown in [16–18].

Various metaheuristics are also being used to further 
enhance SBH sequencing ability. For the already men-
tioned isothermic oligonucleotide libraries, a genetic 
algorithm has been developed [19, 20]. For the classical 
SBH problem, one can mention an algorithm which in 
its original form has been developed for the asymmetric 
traveling salesman problem, but has been proved to be 

very efficient for the SBH with both positive and negative 
hybridization errors [21]. In another, very recent publi-
cation authors proposed a hybrid algorithm [22] with 
an additional analysis concerning the relation between 
hybridization errors distribution and the performance of 
the algorithm.

Recently, Next Generation Sequencing is being exten-
sively used, especially for genomic sequences. This 
approach, however, still has some drawbacks; for example, 
it is more suited for large DNA sequencing tasks. If the tar-
get DNA is a small sequence, using methods like SBH can 
still be justified. Sequencing hybridization can be used in 
the medical diagnostics, e.g., the [23] authors have used 
small libraries (8192 7-mer oligonucleotides) to inexpen-
sively sequence individual genes or pathogen genome sam-
ples. What is even more interesting, when the reference 
sequence is available, sequencing by hybridization remains 
a reasonable approach even for the large-scale sequencing 
[24]. In [25], a so-called shotgun sequencing by hybridiza-
tion has been proposed. Authors were able to resequence 
E.  coli genome of 4.6 Mbp—by acquiring 3.3  million 
image features corresponding to 660 Mbp and 143-fold 
coverage. Achieved accuracy was 99.93% with 320 Mbp/
day speed. All of this has been achieved using a library of 
582 5-mer probes, clearly showing a potential still lying 
within the sequencing by hybridization methodology. In 
[26], authors defined mathematically three non-classical 
chips for the SBH hybridization phase. One of the main 
reasons was to reduce SBH sensitivity for the hybridization 
errors, especially for the so-called negative errors result-
ing from repetitions. They occur in spectrum when the 
sequenced DNA has identical fragments of a length equal 
to the length of oligonucleotides used in the microarray 
probes. Unfortunately, no algorithm dealing with non-clas-
sical spectrum resulting from such a phase has been given. 
The idea of such chips is based on the new type of nucleo-
tides and in the proposed gapped and alternating chips it 
is the nucleotide that binds to every other classical nucleo-
tide from ΣDNA = {A, C, G, T}. The third proposed chip 
called binary chip uses nucleotides that bind to the specific 
two-elements subsets of DNA. The proposed algorithms for 
the gapped and the binary chips when only negative errors 
resulting from repetitions are present have proven to be 
very effective, being able to sequence unambiguously DNA 
sequences with length of even thousands nucleotides [27]. 
However, one must remember that demanding error-free 
hybridization experiments (except maybe for the repetitions 
of a sequence fragments) is in most cases impractical. SBH 
by its nature is susceptible to such errors; therefore, real-
istic algorithms for solving real sequencing problems must 
deal with these errors in some way. For the binary chip, an 
algorithm handling all types of errors had also proved to be 
efficient in the sequencing problem [28].
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In this paper, a new algorithm is proposed for one of 
the non-classical variants of the SBH chips called alternat-
ing chip when all types of errors are present. The gapped 
chip has similar construction demands (a general-binding 
unspecified nucleotide), while the binary chip uses a com-
pletely different patterns for probes construction. Alter-
nating chip is composed of probes of two different kinds, 
which both utilize unspecified nucleotides in their pat-
terns. Such a nucleotide in theory must bind to any other 
normal nucleotides from ΣDNA. A resulting spectrum from 
a hybridization phase is divided depending on the probe 
type. One of these types is used to verify a path for the 
reconstruction of a given DNA sequence, therefore, greatly 
improving the chances of obtaining the original sequence. 
The algorithm can handle both types of hybridization 
errors, but can be configured to work in a mode in which 
only negative errors resulting from repetitions are consid-
ered. If such a spectrum can be delivered, the algorithm can 
reconstruct much larger DNA sequences, having even a few 
1000 base pairs.

In the next section, the alternating chip will be described 
as proposed in [26]. Then, the hybridization errors will be 
discussed followed by the detailed description of the algo-
rithm. We have tested the algorithm using different sizes of 
DNA sequences. In the case, where both types of hybridi-
zation errors are present, the algorithm has been tested for 
sequences from a range 300–700 bp. However, if only neg-
ative errors coming from sequence repetitions have been 
allowed within a spectrum, the algorithm has been tested 
with sequences ranging from 1000 up to 5000 bp. For such 
large sequences, the algorithm has been able to provide 
satisfactory results given only a minute as time limit per 
sequence reconstruction. The results of the computational 
experiments have been given followed by the conclusion 
with proposition of possible enhancements.

2 � Materials and Method

2.1 � Alternating Chip for SBH

In the paper [26], Pevzner and Lipshutz proposed three 
different non-classical chips for the SBH. Here, we will 
discuss one of them, the alternating chip. Such a microar-
ray uses an unspecified nucleotide denoted as x along with 
normal nucleotides represented by the letters from ΣDNA 
= {A, C, G, T}. Chip capacity tells how much probes 
the chip has. The total capacity of the alternating chip is 
||Calt(k)|| = 2 × 4k. The chip is composed of all probes of two 
types. They are described by the following patterns:

N
1
xN

2
x… xN

k
and N

1
xN

2
x… xN

k−1
N
k
.

The number of x symbols is equal to k − 1 for the first 
type of probes and k  −  2 for the second type. For both 
types, the number of known nucleotides denoted above as 
N is equal to k. These two types of probes form two sets 
of the hybridization spectrum. These sets are described, 
respectively, as A1 and A2. The length of oligonucleotides 
in A1 is l1 = 2 × k − 1, while in A2, it is l2 = 2 × k − 2. While 
in the classical approach, each probe consists of multiple 
copies of exactly the same oligonucleotide, in the proposed 
non-classical microarray, every probe is described by some 
pattern. This pattern, different for each probe, defines a 
set of natural oligonucleotides, i.e., the ones which can be 
described as strings over the alphabet ΣDNA.

For example, in a probe denoted as CxGxG, there are 
16 different types of oligonucleotides: CAGAG, CAGCG, 
CAGGG, ..., CTGTG. The number of oligonucleotides 
types in each probe is equal to 4k−1 and 4k−2 depending on 
the type of probe, as explained in the previous paragraph.

After the hybridization experiment, the probes which 
attached the analyzed DNA are used to form two subsets 
A1 and A2.

2.2 � Hybridization Errors

There are two types of errors that can occur during the 
hybridization phase: negative and positive ones. The first 
type is connected with a loss of information in spectrum. 
There are two sources of such errors. The first one is con-
nected with the detection technology. There can be probes 
that did not hybridize when they should or the signal from 
them is so weak that it is not detected at all. There is also 
a second source of negative errors. The analyzed DNA 
can be built from two or more identical subsequences, 
i.e., there are repetitive fragments. Such fragments hybrid-
ize with the same probe. In our algorithm, we assume no 
knowledge about the number of times when different frag-
ments hybridized with the same probe. There are articles 
dealing with such a problem, for example [16–18], but in 
our approach, we consider negative errors from repetitions 
as missing data.

The errors of the second type are called positive errors. 
They occur when for some reason probes hybridize (or are 
detected as such) when they should not, resulting in addi-
tional, false elements within the spectrum. When there 
are no hybridization errors at all, one obtains an ideal 
spectrum.

Depending on the type and source of errors, our pro-
posed algorithm behaves differently. We will now discuss 
these different scenarios connected with the explained 
types of the hybridization errors.

The most simple case occurs when an ideal spectrum is 
obtained. The cardinality of set S1 is equal to n − l1 − 1, 
while the cardinality of set S2 equals n − l2 − 1. Such sets 
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of a spectrum are subsets of A1 and A2 containing ele-
ments representing probes that hybridized to the target 
DNA. The length n of the target DNA sequence is known. 
It means that there are no positive or negative errors of 
any type within the spectrum. If that ideal case could be 
achieved, then the task would be to find a sequence that 
contains every element from both spectrum sets. Such 
strict conditions for the number of spectrum elements 
could allow quite fast and exact DNA reconstruction. The 
downsize of such a scenario lies in its small likelihood. 
In practice, hybridization errors usually occur both due 
to technical imperfection of the hybridization experiment 
and because of the repetitions of subsequences of the tar-
get DNA which cause the negative errors.

The next considered scenario assumes only negative 
errors within a spectrum. They can appear in both S1 and 
S2, which can be easily detected when the sets cardinal-
ity are less than theoretical value given in the previous 
paragraph. In this case, all the elements have to be used 
from both sets to reconstruct the DNA. This scenario is 
more difficult, because the algorithm must compensate 
the missing elements in spectrum with the ones that are 
present, which can lead to lowered efficiency in finding 
the exact DNA sequence. There is a higher probability for 
reconstructions which can be similar, but not exactly the 
same as the analyzed DNA fragment.

The third case when only positive errors are present in 
spectrum is not as difficult as the previous one. Having 
the size of the analyzed DNA and the length of oligonu-
cleotides in the microarray, the algorithm computes the 
sizes of the ideal spectrum sets. Then, it only allows the 
solutions that contain exactly that number of elements 
from both sets.

The most complex case, when all types of errors are pre-
sent, is unfortunately the most realistic one. The algorithm 
has no precise information how many elements from the 
spectrum have to be used. Both positive and negative errors 
are present and their number can only be estimated. In such 
a scenario, there can be many sequences given as a result of 
the computational phase, and without additional hybridiza-
tion experiments, it is impossible to decide which one of 
them is the target sequence. This is a huge problem in the 
classical SBH approach. Algorithm we propose can handle 
such a realistic case, being able to produce reconstructed 
sequence precisely and fast.

2.3 � The Algorithm

The algorithm is able to reconstruct the analyzed DNA 
sequence using a spectrum obtained from a non-classical 
alternating chip probes in the hybridization experiment. 
Input data for the algorithm are as follows:

1.	 spectrum obtained using alternating chip, consisting of 
sets S1 and S2 (they are the subsets of A1 and A2 defined 
in alternating chip description);

2.	 the length n of the DNA fragment;
3.	 parameter k denoting the length of oligonucleotides. l1 

and l2 can be computed as described in Sect. 2;
4.	 the sequence of the first l1 + 1 nucleotides in the ana-

lyzed DNA fragment;
5.	 estimated, arbitrarily taken percentage values of nega-

tive and positive errors which must exceed the real 
ones.

On the basis of the values of parameters n and k, the 
algorithm computes the theoretical number of elements that 
would have been needed to reconstruct the target DNA in 
an ideal case with no errors. Using only the elements from 
set S1, a graph Galt is constructed, in which two separate 
paths will be searched in commutative order—the first one 
for odd nucleotides of the target DNA sequence and the 
second one for its even nucleotides. Elements of S1 are built 
over the alphabet Σalt = {A, C, G, T, X}. Every element 
from S1 is a vertex in the graph Galt. Arcs are being cre-
ated on the basis of the overlapping of letters only from the 
alphabet ΣDNA = {A, C, G, T}. Each S1 element consists of 
lσ = (l1 + 1)/2 letters from ΣDNA. Therefore, a possible over-
lapping is in a range from l − 1 to 1. Maximum overlapping 
of lσ − 1 letters has weight equal to 1, while the minimal 
possible overlapping has the maximum weight equal to 
lσ − 1. For example, vertices AxGxG and GxGxC overlap 
on GxG and G labels. This corresponds to two arcs going 
from AxGxG to GxGxC, having, respectively, weights 1 and 
2.

From the input data, one has knowledge about the very 
beginning of the target sequence. Assuming that letter x in 
spectrum elements overlaps freely to any letter from ΣDNA, 
one can easily obtain two S1-like elements corresponding to 
two starting vertices in graph Galt. For example, if the start-
ing element in the target DNA is ACG​CGA​AT, then two 
starting nodes (for, respectively, odd and even nucleotide 
paths) are: AxGxGxA and CxCxAxT. Later, we will call odd 
and even nucleotides paths as Po and Pe, respectively.

The x symbol overlaps with itself and with every letter 
from ΣDNA. This feature will be used later by the algorithm. 
For this reason, in the phase of graph creation, overlap-
ping only on letters from ΣDNA is the only logical choice. In 
addition, to allow the overlapping for such a vertex labels, 
the normal nucleotides must be evenly placed—this is true 
for the elements from S1 subset, but not for the S2. For the 
latter, each of its elements is one base shorter than those 
from S1. In addition, its last two letters (from ΣDNA) are 
placed directly one after the other, without the x separator. 
The last nucleotide in each element from S2 is on the even 
position, like all its x letters. This means that if one would 
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like to create a graph using elements from this subset, 
the maximal possible overlapping would be one position 
shorter, compared to the situation, where elements from 
S1 are used. This would result in a more densely connected 
graph, and as a result in an increased difficulty to find cor-
rect paths in it. For this reason, only elements from S1 cre-
ate the search graph, while elements from S2 are being used 
for the verification of connections for the searched paths, as 
will be later explained in details. The pseudo-code for the 
main loop of the algorithm is in Fig. 1.

As a first step, the algorithm chooses one new vertex for 
the odd nucleotides path Po. Then, it chooses a new one 
for Pe and the procedure continues until both paths have 
the desired length which allows target DNA reconstruc-
tion. In each step, elements from subset S2 are being used 
to verify a validity of a new chosen vertex. The algorithm 
adds one or more nucleotides of given type (odd or even) 
to the reconstructed sequence depending on the overlap 
value of the new vertex used, i.e., a weight of a given arc 
taken. Weight 1 means adding a single new nucleotide, 
weight 2—adding two nucleotides, etc. The list of already 
visited vertices with values corresponding to their overlap-
ping is denoted as solution. The vertices from both graphs 
are alternately put into this list. There are two important 
integer values steps and maxsteps. The latter represents a 
maximum number of vertices weights that must be reached 
to have odd and even paths ready to reconstruct the target 
sequence. The step value represents the current number 
of vertex weights accumulated. Every new vertex adds to 
steps a value equal to the weight on an arc connecting it 
with the previous chosen vertex in a given graph.

The verification of a new vertex is a complex process 
which depends on the types of errors in spectrum. The 
algorithm can work in four modes: no errors, only posi-
tive errors, only negative errors, or when both types of 
errors are present. The description of the verification pro-
cess will begin with a case when there are no negative 

errors in S2 subset. The example of the verification pro-
cess is given in Fig. 2.

In a given example, algorithm tries to extend the odd 
path Po. There are three possible new vertices connected 
by arcs with weight 1 with the vertex named AxTxGxGx-
TxA (Fig.  2a). They will add nucleotide C, G, or T 
(underlined black) depending on which one will be cho-
sen. We assume that in the example, there are only ver-
tices that have not been already visited in any of the two 
paths. In part b, there is a name of the last vertex already 
extending even path Pe. Using its postfix (underlined dark 
grey) and last letters from vertices that can potentially 
extend path Po, the verification process build potential S2-
like elements (Fig.  2c). If any of them will be found in 
spectrum set S2, the corresponding vertex from a) part of 
Fig. 2 will be marked as verified. In the example, only the 
vertex TxGxGxTxAxC is verified properly. It is not pos-
sible to choose any other vertex except the ones which 
have been verified. Doing so would result in an incorrect 
reconstruction of the target DNA sequence.

As it has been stated before, vertices can also be con-
nected with arcs having weights greater than 1. It means 
that they overlap on a shorter label. Such vertices, if cho-
sen, will add two or more new nucleotides (odd or even) 
to the reconstructed DNA fragment. In such a case, only 
the first nucleotide extending a given path will (and can) 
be verified. An example is given in Fig. 3.

In the example, the algorithm has two possible new 
vertices for the even path, i.e., vertices GxAxTxC and 

Fig. 1   Pseudo-code for the alternating algorithm

Fig. 2   Verification of possible next move based on spectrum set S2

Fig. 3   Verification with longer overlapping
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AxTxGxT. The first one will extend the solution only by 
one even nucleotide C, and the second one will extend 
it by two even nucleotides C and T. They are denoted as 
even#3_ovlap1 and even#3_ovlap2. Verification of the 
first one can be performed as described in the previous 
example. For the second one, only the first extending 
nucleotide (C) can be verified—the procedure is analo-
gous as for the even#3_ovlap1. Nucleotide T cannot be 
verified at this moment, because the algorithm is una-
ble to create S2-like element for it. This is because ver-
tex odd#3 extending odd path Po is placed there with 
too long overlapping (maximal in fact) to help create a 
proper S2 element for even#3_ovlap2. If the odd#3 vertex 
had a shorter overlap, and therefore, it extended the odd 
path by more than one nucleotide from ΣDNA, this could 
be possible. As one can see, set S2 is crucial in ‘connect-
ing’ odd and even nucleotides paths. The verification 
makes the search space much smaller by reducing the 
number of potential vertices that will extend each path. 
Different types of errors have different influence on the 
verification. Negative errors following from repetitions 
have no impact on the process. Even if an S2-like frag-
ment hybridize with different parts of the DNA, it will 
be present in this set at least once, and the algorithm will 
not count how many times this element verified elements 
from S1. Positive errors increase the number of false veri-
fications. The test results presented in this paper proved 
that their impact on the overall effectiveness of the algo-
rithm is minimal if they are the only type of errors. The 
most serious situation takes place when there are negative 
errors in the spectrum resulting not only from repetitions 
but also specifically from losing data about some probes 
that in fact did hybridized. Elements from S1 used to cre-
ate search graph can compensate for this using shorter 
overlapping. Unfortunately, spectrum set S2 used for veri-
fication is especially susceptible to such errors. As one 
can see in Fig. 3, to verify vertex even#3_ovlap1 element, 
TxAxGC created from postfix of odd#3 and the last letter 
from even#3_ovlap1 must be present in S2. Its loss due 
to the negative errors makes such a verification impos-
sible. Therefore, if the algorithm knows about the present 
of such a type of negative errors, the verification process 
is adjusted. Only vertices labels that overlap in Po or Pe 
path on maximal possible length (i.e., l1  −  2) are veri-
fied. Shorter overlapping is accepted without verification. 
In our example, vertex even#3_ovlap1 will not be veri-
fied due to the absence of verification element TxAxGC in 
S2. However, the vertex even#3_ovlap2 will be accepted, 
containing both new letter for this path: C and T.

There is another mechanism that participates in mini-
mizing the number of potential solutions to the sequenc-
ing problem. The paths Po and Pe are searched in such a 
way that they cannot contain the same vertex from graph 

Galt. This comes directly from the assumption that S1 is 
not a multiset (neither is S2). Therefore, it is possible that a 
misplaced vertex in some path will be missing later in the 
reconstruction and will not be replaced by a vertex with 
longer overlapping. If the algorithm will not be able to 
reconstruct a sequence of a desired length, it will have to go 
back and try different paths. This feature makes the search 
process longer, but also reduces the number of ambiguous 
solutions. This is obviously a trade-off. If enough elements 
corresponding to the neighboring location in an original 
DNA will be missing from S1, there is a risk that the algo-
rithm will not be able to reconstruct the correct sequence.

There are a few reasons for the algorithm to reverse the 
steps already taken, i.e., the vertices last taken are discarded 
and a new ones are being chosen. The reasons for this can 
be divided into two categories given in the following.

1.	 There are no arcs leading from a current vertex to new 
ones that can be chosen. In most cases, it means that 
there are in fact arcs, but they lead to vertices already 
taken or to such that cannot be verified properly.

2.	 The algorithm have just recently created new solution 
and going back is necessary to search the rest of the 
search space.

When the algorithm reaches the desired length for both 
paths, the target DNA sequence is being reconstructed. 
This step is simple—path Po reconstructs all the odd nucle-
otides, path Pe—all the even ones. If there is still time left, 
the algorithm reverses last steps to the last unvisited but 
verified vertex and try to reconstruct more sequences from 
this point. Ambiguous reconstructions are possible, but as 
the results prove such a situation is very rare. Much more 
likely is the situation when in a given short time, the algo-
rithm presents unambiguous reconstruction, identical to the 
target DNA sequence.

When the double-path reconstruction and the verifica-
tion procedures have been explained, it should be clear why 
this two phase approach (i.e., choosing candidates for the 
extension of a path, then their verification) has been imple-
mented. It is impossible to use S2 elements for the arcs veri-
fication when the graph is being constructed. The correct-
ness or the incorrectness of a connection between pair of 
vertices in a given path is based on the sequence of recon-
structed nucleotides in the other path. Therefore, it is not 
possible to decide this before the actual sequence recon-
struction begins.

As a last remark, a different approach to the algorithm 
construction can be considered: this time when the ele-
ments from S2 create the search graph, while set S1 is being 
used for the verification. Theoretically, this is possible, and 
one of the many differences of such an idea would be that 
the verification by the S1 elements would not be required 
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to successfully connect both paths. It would of course be 
used to help in the reduction on ambiguous reconstruc-
tions, but the elements from S2 would suffice to connect the 
path, because their last two natural nucleotides are placed 
directly one after the other without x in between. Explana-
tion why this scenario has been rejected has been in fact 
given in the paragraph where the search graph construction 
is being explained. Elements from S2 are always shorter 
than those from S1; therefore, the maximal possible over-
lapping would be shorter as well. This would create a more 
densely connected graph and definitely increase the search 
space—making the reconstruction more difficult.

3 � Results and Discussions

Real DNA fragments taken from the GenBank database 
have been used for test purposes. Various coding sequences 
have been merged into one, single, and long sequence. 
Using this long sequence, for every single test, a subse-
quence has been extracted by randomly selecting starting 
point from which the fragment of the needed length has 
been taken. This approach allows the necessary randomi-
zation of the test sequences, while using one very long 
DNA fragment from GenBank could possibly reduce the 
test space to one specific region of some genome. The total 
length of the merged sequence has been over one million 
base pairs to assure uniqueness of tests. Test phases are 
described using a few parameters, which we will now pre-
sent in detail.

1.	 Parameter k describes the length of used oligonucleo-
tides and the total capacity of the alternating chip. We 
used two values for k: 8 and 10, which correspond to 
65,536 and 1,048,576 probes on a chip in each of both 
sets: A1 and A2. In each chip, there is the same number 
of probes in A1 and A2 subsets.

2.	 The number of errors of a given type has been prepared 
using a range of 0–5%. 0% has been quite difficult to 
obtain in the longer sequences because of the nega-
tive errors resulting from repetitions. Error preparation 
means adding or removing elements from the spectrum 
depending on the types of error for a given test phase.

3.	 The length lDNA of the tested DNA fragments has been 
in the range between 100 and 700  bp for almost all 
tests except when only negative errors from repetitions 
have been allowed—in such a case, the DNA has been 
in a range from 1000 to 5000 bp.

4.	 Time limit for the algorithm has been set to 60 s.
5.	 The number of test instances for a given set of param-

eters 1–4 has been 100.

Negative errors from a general source have been ‘pro-
vided’ by removing the elements from the spectrum. Posi-
tive errors have been generated by taking already present 
elements in the spectrum and then creating its additional, 
slightly modified version. These new elements have been to 
the proper spectrum set if of course, they were not already 
present there. All experiments described in this section 
have been performed on a PC with Intel C2D processor 
(3.0 GHz), 8 GB RAM, and Windows 7 operating system. 
The algorithm has been implemented in Java.

The first test measured algorithm performance when 
there are no hybridization errors. In Table  1, the average 
number of solutions for 100 instances is given.

Clearly, one can see that this scenario is very easy for 
the algorithm, not only there is almost 100% chance of 
obtaining the precisely the target DNA sequence, but also it 
will be the only, unambiguous solution the algorithm gives. 
In the next test, we have measured the influence of only 
positive errors on the algorithm performance. The results 
are given in Table 2.

In Table  2, the average number of solutions is given. 
Parameter k = 8 means that in both sets A1 and A2, there 

Table 1   No errors in the 
spectrum, average number of 
solutions for 100 instances for 
a given k

Capacity DNA length

100 200 300 400 500 600 700

k = 8 1.00 1.00 1.00 1.01 1.00 1.00 1.00
k = 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2   Only positive errors 
in the spectrum, k = 8, average 
number of solutions for 100 
instances

DNA length Positive errors percent

0% 1% 2% 3% 4% 5%

100 1.00 1.00 1.00 1.00 1.00 1.00
300 1.00 1.01 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00 1.00
700 1.00 1.00 1.00 1.00 1.00 1.00
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are 65,536 probes. Given only 60  s for each instance, the 
algorithm almost always provides only one reconstructed 
sequence; in each case, it proved to be the hybridized target 
DNA. In fact, only in one case, when spectrum had 1% of 
positive errors and the searched DNA length was 300, in 
one instance (out of 100), the algorithm returned two solu-
tions, one being the original DNA, the second a different 
sequence. Therefore, when for 100 instances, the number 
of all returned solutions had been 101, the value of the dis-
cussed cell in Table 2 is 1.01. The results in this table prove 
how resilient to the positive errors in the spectrum the algo-
rithm is. Next, two Tables  3 and 4 present results for the 
negative errors.

As one can see in Tables  3 and 4, the smaller chip 
(k = 8) produces spectrum which can be considered inade-
quate for the longer sequences. On the other hand, using a 
chip with parameter k = 10 gives much greater chance for 
obtaining the proper reconstruction. Table 4 presents the 
average number of solutions given by the algorithm. For 
k = 10, a risk for ambiguous reconstruction is small even 
for the sequences with length of 700. In square brackets 
in Table 3, there is a value indicating number of instances 
(out of 100) when after 60  s, the algorithm has given a 
set of sequences, where the target DNA has been present. 
In parenthesis, there is a value indicating in how many 
instances there were ambiguous solutions (i.e., more than 
one sequence has been found in a given time according to 
the search criteria). The first value in Table 3 cells indi-
cates the number of test instances for which the algorithm 
has given a non-empty set of solutions. Together with 
the results from Table  4, one can see that a chance for 
unambiguous solution with an original DNA sequence is 
significant even for the longer sequences. What is more 
important is the fact that the number of instances, where 
an original sequence has been found, is always very sim-
ilar to the number of instances, where any solution has 
been found—in fact, often, these values are the same. 

It means that even for ambiguous solutions, there is a 
very high probability that the original sequence has been 
found and it is present in the solution set of sequences. 
Tables 5 and 6 present the results for both types of errors.

For both types of errors, the results are similar in 
terms of solutions found. The main problem of such a 
scenario lies in an increased number of ambiguous solu-
tions. Values in parenthesis indicating number of unam-
biguous solution are lower in Table 5 than in Table 3. In 
addition, one can see than average number of solution for 
such instances has increased when comparing Tables  4 
and 6. As it has been explained in the section concern-
ing the verification process, the negative errors of a gen-
eral type (i.e., not only resulting from repetitions) are 
the main reason that the verification mechanism is not as 
effective as if there were no such errors in S2. One can, 
however, see that the number of tests where the original 
sequence has been present in the result set is also very 
similar to the number of tests where any solution has 
been obtained in a given short time. It means that add-
ing positive errors to spectrum slightly worsen the per-
formance of the proposed algorithm (especially in terms 

Table 3   Algorithm 
performance for small (k = 8) 
and large (k = 10) chips, only 
with negative errors

Three values per table cell are as follows: the number of instances when at least one DNA sequence has 
been reconstructed in time, in parenthesis number of instances with only one DNA sequence obtained, in 
square brackets the number of instances when the target DNA has been reconstructed

DNA length, k Negative errors percent

1% 2% 3% 4% 5%

100, k = 8 100(99)[100] 97(97)[97] 94(94)[94] 93(93)[93] 96(92)[96]
300, k = 8 93(93)[93] 85(83)[84] 80(73)[79] 74(68)[72] 61(56)[60]
500, k = 8 67(64)[67] 54(50)[54] 44(39)[43] 24(19)[23] 11(10)[11]
700, k = 8 49(46)[48] 19(16) [18] 8(6)[7] 4(3)[3] 2(2)[2]
100, k = 10 100[99][100] 99(99)[99] 95(93)[94] 95(95)[95] 89(89)[89]
300, k = 10 96(95)[96] 89(89)[89] 88(86)[88] 84(84)[83] 83(83)[81]
500, k = 10 87(87)[87] 83(83)[83] 78(77)[78] 64(62)[64] 59(56)[59]
700, k = 10 87(85)[86] 75(74)[73] 56(55)[55] 50(49)[50] 47(45)[47]

Table 4   Only negative errors in the spectrum, average number of 
solutions for 100 instances for a given k

DNA length, k Negative errors percent

0% 1% 2% 3% 4%

100, k = 8 1.01 1.00 1.00 1.00 1.04
300, k = 8 1.00 1.02 1.12 1.35 1.13
500, k = 8 1.04 1.07 1.11 3.83 1.09
700, k = 8 1.06 1.21 4.00 1.50 1.00
100, k = 10 1.01 1.00 1.02 1.00 1.00
300, k = 10 1.01 1.00 1.02 1.00 1.00
500, k = 10 1.00 1.00 1.01 1.03 1.05
700, k = 10 1.03 1.01 1.01 1.02 1.04
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of ambiguous solutions), but it is still quite high, even for 
the longer sequences.

In Table 7, an interesting test is presented when only 
negative errors from repetitions are allowed in a spec-
trum. If such a situation could be achieved, the algorithm 
shows its potential, being able to reconstructed very long 
sequences exceeding a 1000 base pairs. Time limit for 
such a case has also been set to only 60 s. The first row 
tells how many times the algorithm found any solution 
in a given time. The second row tells about the number 

of solutions having the original target DNA. The third 
and fourth rows tell how many solutions have been unam-
biguous and ambiguous ones. The last one tells about the 
average number of negative errors resulting from repeti-
tions in both spectrum sets S1 and S2.

Papers concerning DNA sequencing by hybridization 
sometimes offer benchmark instance sets. One of such 
sets has been introduced by Blazewicz et  al. in [29]. In 
the cited paper, the set has been used to compare three 
metaheuristics: tabu and scatter search and two genetic 
algorithms enhanced GA and the proposed in the paper, 
the so-called revised hybrid GA. In those original tests, 
two threshold values for hybridization errors have been 
used: 5 and 20% of both positive and negative errors. 
What is more important and what makes the compari-
son of the results harder is the fact that the proposed 
metaheuristics can always produce a sequence that is 
to some degree similar to the original hybridized DNA. 
Therefore, a level of similarity can be compared. In our 
approach, the algorithm aims to reconstruct the ideal 
sequence, and the level of similarity can only be consid-
ered when ambiguous sequences have been found. There-
fore, direct comparison of the algorithms is not possible. 
One can still measure for how many test sequences the 
algorithm can find the ideal reconstruction in a given 
time, and a probability that the solution in a given time 
will be unambiguous. We have tested a scenario when 
there are 10% positive and 10% negative errors within 
spectrum. Time limit for this case has been extended to 
300 s. In Table 8, results are given. For each number of 
errors, there are three rows. The first row contains the 
information how many instances out of 40 resulted in 
finding the original DNA. The second one is the number 
of unambiguous solutions, where the third one tells how 
many tests have given ambiguous solutions.

Table 5   Algorithm 
performance for small (k = 8) 
and large (k = 10) chips, both 
types of errors

Three values per table cell are as follows: the number of instances when at least one DNA sequence has 
been reconstructed in time, in parenthesis number of instances with only one DNA sequence obtained, in 
square brackets the number of instances when the target DNA has been reconstructed

DNA, k Negative and positive errors percent

1% 2% 3% 4% 5%

100, k = 8 99(99)[99] 98(73)[96] 98(83)[98] 91(85)[91] 95(77)[95]
300, k = 8 76(67)[75] 66(45)[59] 53(36)[48] 54(36)[46] 39(29)[37]
500, k = 8 47(41)[46] 31(20)[28] 22(12)[19] 11(7)[7] 3(1)[3]
700, k = 8 31(24)[28] 18(5)[9] 4(3)[3] 3(1)[2] 3(1)[3]
100, k = 10 100(99)[100] 99(97)[99] 94(93)[93] 89(87)[88] 88(84)[88]
300, k = 10 89(84)[89] 85(81)[85] 85(76)[84] 77(70)[77] 79(75)[77]
500, k = 10 81(78)[80] 70(65)[69] 70(61)[69] 54(50)[53] 64(58)[63]
700, k = 10 76(72)[73] 67(63)[66] 46(44)[46] 45(40)[44] 47(43)[45]

Table 6   Average number of solutions for 100 instances, for both 
types of errors

DNA length Negative errors percent

0% 1% 2% 3% 4%

100, k = 8 1.01 1.40 1.19 1.09 1.24
300, k = 8 1.52 1.65 2.39 2.03 1.58
500, k = 8 1.31 1.83 10.18 1.54 3.00
700, k = 8 1.29 12.44 5.25 2.00 2.00
100, k = 10 1.02 1.02 1.01 1.02 1.08
300, k = 10 1.08 1.29 1.40 1.16 1.60
500, k = 10 1.03 1.14 1.42 1.07 1.25
700, k = 10 1.06 1.05 1.04 1.22 1.21

Table 7   Only negative errors from repetitions, k = 10

DNA length

1000 2000 3000 4000 5000

Sequence found 100/100 98/100 85/100 71/100 65/100
Target seq. found 100/100 97/100 81/100 67/100 57/100
Only 1 sequence 89/100 74/100 58/100 47/100 41/100
Many sequences 11/100 24/100 27/100 24/100 24/100
Average repetitions 26 72 108 128 177
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4 � Conclusion

In this paper, we have proposed a new algorithm for the 
DNA Sequencing by Hybridization, based on the non-
classical approach, i.e., using specially designed chip called 
alternating. In [26], authors have given much attention to 
the resolving power of the proposed chips, which have 
been proven to be better than of the classical ones. The 
presented algorithm dedicated to the proposed alternating 
chip reconstructs DNA sequences well even when all types 
of errors are present in spectrum. The general simple idea 
behind the algorithm in this form—walking through the 
search space—would have been infeasible in the classical 
SBH because of huge number of possible reconstructions. 
Alternating chip offers the possibility of verification for 
the newly added vertices when constructing the nucleotide 
paths. This alone makes even such an approach possible, 
even more, in a very short time, the proposed algorithm can 
give unambiguous DNA reconstruction when both types 
of hybridization errors are present. Cases when more than 
one solution is found are rare, but as the results given in 
Tables 3 and 5 prove, almost always the original DNA is 
present in such a set of reconstructions.

Depending on the test scenario and its parameters, the 
results of the algorithm vary. Obviously, when longer 
sequences are considered with many negative and posi-
tive errors in the spectrum, the results are worse. Two 
important things should be considered here. The first 
one is the very small difference between the first and 
third values in Tables  3 and 5 cells. This is the differ-
ence between the cases when the algorithm gave a solu-
tion at all in a given time (the first value) and the number 
of times the solution was a set of sequences, where the 
original sequence was indeed present in a solution sets. 
It means that even when the algorithm gives an ambigu-
ous solution, there is a very high chance that an original 
sequence is also present. In that case a smaller, low-cost 

hybridization experiment can be performed to identify 
the original DNA sequence. The second thing one should 
have in mind is the time the algorithm needs. The tests 
for only 60  s show a potential to enhance the results by 
just simply giving the algorithm more time.

There are many possibilities for further enhancements 
for the given algorithm. For example, there exist methods 
to reduce positive errors, based on the verification by other 
elements of spectrum. This is possible, however, the results 
proved that positive errors are not a very import problem in 
this approach. Another way to exploit this feature could be 
the modification of the hybridization experiment. One can 
consider a modification of the chip that makes the binding 
much easier (e.g., more oligonucleotides in a probe). In this 
way, the negative errors could probably be reduced at a cost 
of more positive errors (i.e., false readings). Since the latter 
are much more easier to handle by the algorithm, such a 
trade-off could result in an increase of the sequencing abil-
ity of the algorithm in a given time.

In modern SBH, various meta-heuristics are being 
used, like tabu search or ant colony optimization algo-
rithms. They are the answer for the classical SBH 
approach, where naive search space walking is infeasi-
ble. There are no obstacles for such an approach in the 
non-classical Sequencing by Hybridization. Presented 
algorithm is an exact one, but an approach, where the 
sequence is constructed being similar to the target DNA 
is also possible. The verification feature offered by such 
a non-classical chip can only enhance the performance of 
various other algorithmic approaches aimed to improve 
the Sequencing by Hybridization methodology.
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link to the Creative Commons license, and indicate if changes were 
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