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Multi-omic single-cell snapshots reveal multiple
independent trajectories to drug tolerance in a
melanoma cell line
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Sylvia K. Plevritis11, Guideng Li 12,13✉, David Baltimore 2✉ & James R. Heath 1,3,6,8✉

The determination of individual cell trajectories through a high-dimensional cell-state space is

an outstanding challenge for understanding biological changes ranging from cellular differ-

entiation to epigenetic responses of diseased cells upon drugging. We integrate experiments

and theory to determine the trajectories that single BRAFV600E mutant melanoma cancer

cells take between drug-naive and drug-tolerant states. Although single-cell omics tools can

yield snapshots of the cell-state landscape, the determination of individual cell trajectories

through that space can be confounded by stochastic cell-state switching. We assayed for a

panel of signaling, phenotypic, and metabolic regulators at points across 5 days of drug

treatment to uncover a cell-state landscape with two paths connecting drug-naive and drug-

tolerant states. The trajectory a given cell takes depends upon the drug-naive level of a

lineage-restricted transcription factor. Each trajectory exhibits unique druggable suscept-

ibilities, thus updating the paradigm of adaptive resistance development in an isogenic cell

population.
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Cellular processes ranging from the development of drug-
tolerant states in cancer cells to stem cell differentiation
can be described as cell-state changes. Specifically, certain

cancer cells that are initially responsive to targeted inhibitors that
act against these oncogenic drivers1 can evolve into a drug-
tolerant state via non-genetic mechanisms, perhaps preceding the
emergence of drug-resistant clones2–5. The molecular details of
how the cancer cells transition between the two states can inform
the use of additional drugs designed to arrest the transition6–8.
Previous studies have uncovered mechanistic insights of drug
tolerance at the signaling, metabolic, transcriptional, and epige-
netic levels5,9. However, most of these studies either compared
drug-tolerant cells and drug-sensitive cells only at bulk level
without single-cell resolution or did not provide a detailed time-
resolved characterization of the trajectories connecting the two
states. We hypothesize that there could be multiple independent
paths accessible to the cells between the drug-sensitive and drug-
tolerant states. If this is true, then the challenge of finding drug
combinations that can arrest the unfavorable cell-state transition
is significantly increased. Here we investigate a highly plastic
cancer cell line that, when treated with a targeted inhibitor,
switches from a rapidly dividing drug-responsive state to a drug-
tolerant, slow-cycling state within a few days. We show that
the cells can indeed take multiple classes of trajectories between
the two states. Each trajectory class is characterized by a
unique signaling and metabolic network with distinct drug
susceptibilities.

From a functional perspective, cell-state changes are often
accompanied by changes in gene expression7,10–13, protein
signaling9,10,12,14–19, and cellular metabolism20–23. Highly mul-
tiplexed single-cell methods24–27 can provide powerful tools for
mapping out cell-state landscapes associated with cell-state
changes17,28–31. However, capturing the trajectories that indivi-
dual cells take as they traverse those landscapes is challenging,
even for the case of an isogenic cell line. This is because multiplex
single-cell omics methods only provide snapshots of the occupied
cell-state space at a given instant. Measured similarities between
cells captured at successive time points can imply probable paths
through the landscape32–35. However, cells may stochastically
switch from one state to another, so an individual cell may not
take a smooth trajectory between states. Time-lapse imaging
methods can map individual cell trajectories, but for only two to
three analytes for each cell, and so provide a limited view of the
cell-state space36–38. Thus, the ability to extract cellular trajec-
tories from a kinetic series of cell-state space snapshots would
have a high value. Here we report on combined experimental and
theoretical approaches towards addressing this fundamental
challenge.

We utilize a patient-derived BRAFV600E mutant melanoma
cancer cell line39 as a model for the rapid development of drug
tolerance against targeted inhibitors. Under BRAF inhibition,
these highly plastic cells rapidly transit from a drug-responsive
state to a drug-tolerant state10,16. We characterize this transition
using integrated single-cell functional proteomic and metabolic
assays designed to broadly sample proteins and metabolites
associated with selected cancer hallmarks and cell-state-specific
processes. Dimensional reduction, information-theoretic analysis,
and visualization of the time-series single-cell data uncovers a
complex cell-state space landscape and hints at the possibility of
two distinct paths between drug-naive and drug-tolerant states.
Further experiments test whether these paths constituted inde-
pendent cellular trajectories. In fact, we find that even isogenic
tumor cells can undertake different, independent trajectories to
drug tolerance. The two trajectories are associated with distinct
signaling and metabolic networks, and are independently drug-
gable. This finding challenges the current paradigm of targeted

inhibitor resistance development and also provides guidelines for
assessing the value of combination therapies.

Results
Single-cell proteomic and metabolic analysis of BRAFi adap-
tation. We characterized drug adaptation in individual melanoma
cells by assaying for a panel of selected proteins, plus glucose
uptake, in BRAFV600E mutant M397 cell cultures during the first
5 days of BRAFi treatment using the Single Cell Barcode Chip
(SCBC)10,17,26,40–43 (Fig. 1a). Following 0, 1, 3, and 5 days (D0
control, D1, D3, and D5) of drug treatment, individual cells were
isolated into nanoliter-volume microchambers within an SCBC.
Each isolated cell was lysed in situ to release its cellular contents.
Each microchamber within an SCBC contains a full barcode array
in which each barcode element is either an antibody for specific
protein capture44 or a molecular probe designed to assay for a
specific metabolite via a competition assay42,43 (Fig. 1a). The
design of this panel was informed by transcriptomic analysis of
BRAFi-treated M397 cells (Supplementary Fig. 1) and existing
literature9,10,12,20,45. The panel broadly samples various func-
tional and metabolic hallmarks of cancer and cell-state markers.

Single-cell profiling of BRAFi-naive (D0) M397 cells revealed
heterogeneous levels of many assayed markers at baseline.
Referring to Fig. 1b, c and Supplementary Fig. 2, certain analytes
exhibited high variability across the cell population. These
include the melanocytic lineage transcription factor MITF and its
downstream melanocytic cell-state marker MART1, the meta-
bolic regulators HIF1α and p-AMPKα, and the proliferation
marker Ki67. The variance in Ki67 implies that the population
contains both rapid-cycling and slow-cycling cells. By contrast,
high glucose uptake and the expression of metabolic enzymes
lactate dehydrogenase (LDH) and PKM2 were relatively uniform
from cell-to-cell. Drug treatment initially (at D1) inhibits glucose
uptake and represses most metabolic regulators and signaling
phosphoproteins, as well as Ki67. The repression of these cancer
hallmarks reflects blockage of the key oncogenic signaling
pathway upon initial BRAF inhibition. The drug also promotes
transient cell differentiation followed by dedifferentiation, as
evidenced by an increase of MART1 expression in D3 followed
by its downregulation in D5. However, a small subpopulation of
M397 cells remained Ki67-High in D1, implying a slower drug
response in that subset of cells. At D3, most analytes exhibit a
sharp and transitory increase in variance, which shrinks by D5.
This change includes all of the metabolic regulators except
p-LKB, all resistant state markers and regulators except Slug, all
of the metabolic enzymes, and all of the signaling phosphopro-
teins. The increased magnitude of the fluctuations of many
markers at D3, based upon previous reports41,46, implies one or
more cell state changes near this time point. This was also
confirmed by flow cytometry analysis (Supplementary Fig. 3). By
D5, glucose uptake increased back to near D0 levels, but with
increased variance. Ki67 is further decreased and with a sharply
decreased variance relative to D0. In fact, most cells in D5 enter a
state of senescence, without an increased incidence of apoptotic
cell death (Supplementary Figs. 4 and 5). In addition, at D5, the
variance and abundance of the epithelial-mesenchymal transi-
tion-related transcription factor, Slug, has increased, indicating
the emergence of some cells that are trending towards a
mesenchymal phenotype. Further, the levels of the other assayed
protein markers that are associated with drug resistance (AXL,
N-cadherin, NGFR, and TNFR) were all higher by D5. The
changes of these markers were also confirmed via flow cytometry
analysis (Supplementary Fig. 6). The upregulation of glucose
uptake and many resistance markers indicates that cells have
initiated drug resistance programs by D5. Thus, single-cell
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integrated proteomic and metabolic analysis, when viewed at the
level of individual analytes, provides evidence of initial drug
response at D1, a drug-induced cell-state change at D3, and
emerging drug tolerance at D5, prior to an increase in cell
proliferation (full drug resistance), which has been shown to
occur a few weeks later. These observations are all consistent
with the existing literature9,12.

Dimensional reduction analysis implies multiple trajectories.
Simultaneous visualization of the time-dependent, coordinated
changes across multiple markers requires algorithms that can
reduce the high-dimensionality of the dataset. We applied three
such algorithms: the FLOW-MAP47, t-SNE48, and PHATE49. All
approaches provided an intuitive representation of the dataset
(Fig. 2 and Supplementary Figs. 7–9). FLOW-MAP analysis
revealed that melanoma cells clustered primarily based upon drug
exposure time (Fig. 2, upper left plot), indicating chronological
cell-state trajectories. Most untreated M397 cells (in the lower left
of the graph) were characterized by uniform levels of all measured

analytes excepting N-cadherin, MITF, HIF1α, Ki67, and MART1
(see analyte-specific plots of Fig. 2 and Supplementary Fig. 7).
Most of these non-uniformly expressed proteins exhibit differ-
ences that vary gradually from left-to-right across the D0 cluster
of cells, with a small subpopulation of untreated cells (right side
of D0 cluster) exhibiting lower expression of Ki67, MITF, and
MART1. These features point to a small group of dedifferentiated,
slow-cycling cells. Upon BRAFi treatment, the cell populations
initially split to occupy two regions of the FLOW-MAP. At D1
(green points), the majority of the cells cluster to the upper right
of the D0 cells, whereas a small subpopulation clusters directly to
the right of the D0 group. This trend continues at D3, with most
cells clustering above the largest D1 mass, while a small number
cluster to the right of the small D1 group. By D5 (purple), all cells
cluster to the right-hand side of the graph. The bifurcation of cells
at Day 1 and 3 implies the possibility of upper and lower tra-
jectories towards the drug-tolerant state. The possibility of two
classes of trajectories was also indicated by t-SNE48 and PHATE49

analyses (Supplementary Figs. 8, 9). Thus, computational analyses
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Fig. 1 Single-cell proteomic and metabolic analysis of early drug response in M397 cells. a The single-cell integrated proteomic and metabolic analysis
experiments design. Cells from different time points during BRAFi treatment are collected and individually analyzed using the microfluidic-based single-cell
barcode (SCBC) technology. Each cell was characterized for the levels of six different categories of markers. b Heatmap representation of integrated
proteomic and metabolic analysis dataset. Each row represents an individual cell and each column (except the last column) represents an individual
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of the single-cell dataset indicate a bifurcated drug response
during the early stages of BRAFi adaptation.

Surprisal analysis uncovers analyte modules of the trajectories.
To further dissect the dynamics of molecular changes associated
with the bifurcated drug-response trajectories, we applied sur-
prisal analysis50–52 to our single-cell dataset. Surprisal analysis is
a thermodynamics-inspired method that has been broadly
applied to understanding large-scale bulk and single-cell omics
data sets46,50,52–54. This approach is based on the identification
of the steady state of the system (formally speaking the state of
minimum free energy) and any constraints (analyte modules)
that increase the free energy from this theoretical minimum52,55.
Using this approach, we identified two main modules, each
representing a set of analytes that exhibit coordinated changes
across cells. The predicted expression of all 20 analytes based on
these two modules matched well with the measured single-cell
dataset (Supplementary Figs. 10 and 11), demonstrating that
modules 1 and 2 recapitulate the overall changes of all molecular
signatures across all cells over the 5-day course of drug
treatment.

The influence score (the lambda values defined in ref. 52) of a
module in a cell represents the extent to which the module-
associated analytes are enriched or repressed in that cell. Modules
1 and 2 were visualized by color-coding their influence scores
onto each node in the FLOW-MAP graph (Fig. 3a). We found
that the influence score of module 1 gradually increased from a
negative (blue) to positive (red) value along both the upper and
lower paths, with a clear sign change (lambda1= 0) in the middle
time points (Fig. 3a, left panel), indicating the existence of a
biophysical barrier along the transition trajectories. We have
previously shown that such a sign change can imply a cell-state
transition and a boundary between different cell states50.
Considering the negative correlation of Ki67 expression and
positive correlation of NGFR/AXL expression with the module
1 score (Supplementary Fig. 12), the time dependence of module

1 score change appears to reflect the transition from a drug-
responsive state to a slow-cycling, drug-tolerant state between
days 1 and 3. Similarly, the module 2 score, when projected on
the FLOW-MAP, also exhibits a sign change (lambda2= 0),
which indicates the existence of one biophysical barrier separating
the upper and lower paths (Fig. 3a, right panel). Notably, the
expression of melanocytic phenotype transcription factor MITF
and its downstream protein MART1 both showed negative
correlations with module 2 score (Fig. 3b and Supplementary
Fig. 13), indicating that the separation of the two paths may be
related to the melanocytic lineage of the cells. Similar results were
achieved by either additional z-score normalization or deleting
the top two most variable markers, Ki67 and MART1
(Supplementary Fig. 14). In summary, surprisal analysis resolves
both time-dependent and path-specific modules. It also reveals
that, as the cells advance from drug-naive to drug-tolerant, they
occupy a rather complex landscape: comprising four distinct
cellular states separated by two biophysical barriers (Supplemen-
tary Fig. 15).

Experimental validation of the bifurcated trajectories. Surprisal
analysis provides theoretical support for the existence of both the
upper and lower paths from drug-naive to drug-tolerant cell
states. However, experimental validation is required to determine
whether individual cells would follow a single trajectory along one
path or the other, or if cells stochastically switch between paths.
The map of module 2 on the D0 cell data hints at biological
differences that separate even the untreated D0 cells into two
subpopulations (State1 and State2) (Supplementary Fig. 15). The
expression levels of the transcription factor MITF and its direct
downstream target MART1 are among the top four markers that
distinguish the two D0 subpopulations (Supplementary Fig. 16).
This finding suggests that drug-treated MITF-Low cells might
follow the lower path, while MITF-High cells might follow the
upper path (Supplementary Figs. 17a). We thus generated MITF-
green fluorescent protein (GFP) reporter cell lines and sorted
GFP-High (MITF-High) and GFP-Low (MITF-Low) subpopula-
tions (Supplementary Figs. 17b and 18). Consistent with our
hypothesis, MITF-High cells displayed higher level of Ki67 and
MITF, as well as a shorter doubling time relative to sorted MITF-
Low subpopulations (Fig. 3c–f). This data is consistent with
reported observations of melanoma phenotype switching from a
melanocytic, highly proliferative state to a non-melanocytic, more
invasive state56. It also confirmed that the two subpopulations in
D0 cells can be separated using this reporter system. We next
performed time-course experiments on the MITF-High and
MITF-Low subpopulations to analyze the expression of the fol-
lowing markers individually within the two subpopulations,
including Ki67, MART1, p-ERK, NGFR, AXL, and MITF by flow
cytometry. Visualization of the trajectory of both subpopulations
from the high-dimensional space onto three-dimensional (3D) or
two-dimensional (2D) space showed a clear separation of the two
trajectories (Supplementary Fig. 19). These data indicate that,
even in an isogenic cell line, different subpopulations could
behave differently upon BRAFi treatment. MITF-High and
MITF-Low subpopulations may represent cells destined to follow
the upper and lower paths, respectively, following drug treatment.

To quantify the frequency of stochastic interconversion
between the sorted MITF-High and MITF-Low subpopulations
during the drug treatment, we monitored the MITF activity
within large numbers of single cells, over a 5-day period of BRAFi
treatment. As expected, the MITF-High cells displayed higher
activity (quantified by the GFP reporter) than did the MITF-Low
cells (Fig. 3g), with no significant stochastic switching between
the two trajectories observed.

Ki67

MART1

MITF

NGFR

Timepoint

d0 d1

d3 d5

Glucose

High

Low

Fig. 2 Visualization of single-cell data by FLOW-MAP. Each dot
represents an individual cell. The distance between each pair of cells
represents the overall multi-omic dissimilarity between them. Cell pairs
that are close enough are linked with an edge in between. The colors of the
dots in the main panel (upper left) represent BRAFi exposure time (0, 1, 3,
or 5 days) of the corresponding cells. Dot colors in the other panels
represent the abundance of each marker in each cell. The dashed-line box
in the panels for MITF, MART1, and Ki67 levels show a small subpopulation
of day-0 cells that are slow-cycling with less melanocytic phenotype.
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To further confirm that the sorted cells reach their respective
destination states after 5 days of drugging, we quantified the
markers that are differentially expressed between the upper and
lower paths at D5. Mining of the single-cell data sets revealed that
several markers, including Slug, MITF, MART1, and PFK, are

differentially expressed between the two paths (negative- and
positive-valued module 2) at D5 (Fig. 3h and Supplementary
Figs. 13 and 20a). By analyzing the expression of these four genes
in sorted MITF-High and MITF-Low D0 cells after 5 days of
treatment (Supplementary Fig. 20b), we found that their

–1

–0.5

0

0.5

K
i6

7

G
lu

co
se

M
IT

F

M
ar

t1

P
F

K

p-
A

C
A

C

p-
LK

B

P
D

K
1

P
K

M
2

LD
H

N
G

F
R

H
IF

1α
T

N
F

R

N
-c

ad
he

rin

A
X

L

p-
E

R
K

1

p-
N

F
κB

-p
65

p-
S

R
C

S
lu

g

p-
A

M
P

K
αM

od
ul

e2
 C

or
re

l.

1.5

1.0

0.5

0

a

b

c

h

Slug MITF PFK

1.5

1.0

0.5

0

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

i

R
el

at
iv

e 
E

xp
re

ss
io

n

1.5

1.0

0.5

0

1.5

1.0

0.5

0

1.5

1.0

0.5

0

M
IT

F-L
ow

M
2-

Lo
w

M
IT

F-H
igh

M
IT

F-L
ow

M
IT

F-H
igh

M
2-

High

M
2-

Lo
w

M
2-

High

R
el

at
iv

e 
E

xp
re

ss
io

n

R
el

at
iv

e 
E

xp
re

ss
io

n

ed f

Module2-Low Module2-High MITF-High MITF-Low

Module1
Score

Module2
Score

Ki67 MITF Ki67

Analysis of single-cell dataset in day 5 Experiment validation at day 5

15

10

5

0

D
ou

bl
in

g 
tim

e/
da

y

Upper-path

Lower-path

g

0 48 96
0k

1k

2k

3k

4k
Initial MITF-GFP Low
Initial MITF-GFP high

G
F

P
 F

lu
or

es
ce

nc
e 

(a
.u

.)

Time (h)

Positive

Negative

Zero

Day 0 BRAFi Day 5

M
IT

F
-H

ig
h

M
IT

F
-L

ow

MART1 Slug MITF PFKMART1

Fig. 3 Surprisal analysis identifies MITF as a transcription factor regulating the bifurcation. a Visualization of the influence score of the two regulatory
modules identified from surprisal analysis. Module 1 is time-dependent, whereas module 2 exhibits a path-specific pattern. The dashed black lines indicate
the region for which the respective module scores of each cell approach zero. b Pearson’s correlation between individual marker levels and the module
2 score. c, d Boxplot of Ki67 and MITF expression level in module 2 score-high and -low subpopulations at day 0. Data are median with first and third
quartiles (box), and top and bottom quartiles (whiskers) indicated. Each experiment is the result of n= 16 biologically independent cells per group. e Ki67
relative expression, measured by qPCR in sorted MITF-High and MITF-Low cells at day 0. Each experiment is the result of n= 3 biologically independent
samples per group. f Doubling time measured in treatment-naive condition, collected from sorted MITF-High and MITF-Low cells at day 0. Each experiment
is the result of n= 3 biologically independent samples per group. g Single-cell time-lapsed microscopy analysis of MITF-activity during 5 days of BRAFi. Top
panel: time-lapse images of sorted GFP-High and GFP-Low cells before and after 5 days of BRAFi. Representative images from three biological replicates are
shown. Scale bar, 100 µm. Bottom panel: single-cell MITF-reporter traces for MITF-High (orange) and MITF-Low (blue) cells. Bold lines represent the mean
response. h Slug, MITF, MART1, and PFK relative expression levels in module 2 score-high and -low subpopulations, collected from cells at day 5 and
analyzed from the single-cell dataset. Each experiment is the result of n= 16 biologically independent samples per group. i Slug, MITF, Mart1, and PFK
expression, measured by qPCR in sorted MITF-High and MITF-Low day-0 cells that have been treated with BRAFi for 5 days. Each experiment is the result of
n= 3 biologically independent samples per group. Data are presented as mean values ± SEM. Source data are provided as a Source Data file.
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expression levels in sorted MITF-Low cells were significantly
lower than those in MITF-High cells after 5 days of treatment
(Fig. 3i). These results experimentally support that, upon drug
treatment, MITF-High and MITF-Low cells take distinct
trajectories towards drug tolerance along the upper and lower
paths, respectively (Supplementary Fig. 20a, left panel).

MITF is a molecular driver for the bifurcated trajectories.
MITF is suggested to be an elicitor of intrinsic drug tolerance57.
To investigate whether MITF drives the bifurcation in drug
response, we generated an M397 cell line with MITF stably
knocked down. Before treatment, knockdown of MITF induced
the cells to become slow-cycling with characteristic low levels of
Ki67 (Supplementary Fig. 21a, b), suggesting that the down-
regulation of MITF will force these cells to transition along the
lower path. Furthermore, upon 5 days of BRAFi treatment,
MITF-knockdown cells showed significantly lower levels of
SLUG, MITF, MART1, and PFK relative to control (Supplemen-
tary Fig. 21c), suggesting that MITF-silenced cells did, in fact,
follow a trajectory along the lower path. Thus, MITF is identified
as an important molecular driver that discriminates between the
two drug-response trajectories we identified.

Critical point analysis identifies central trajectory regulators.
The tipping point is the critical point in an evolving situation that
leads to a new and irreversible development58. Critical point
analysis has been widely used in understanding state transitions
in physical systems. Recently, more studies have applied critical
point analysis for investigations of cell-state transitions in bio-
logical systems46,59,60. During a cell-state transition, there will be
the tipping point at which critical changes of cell state take place.
If two cell states are separated by a barrier, then the tipping point
can be understood as the peak of the barrier, beyond which the
cell will irreversibly transition towards a new state (Supplemen-
tary Fig. 22a). Identification of such tipping points is essential to
mine the important regulators, which can drive the transition.
Drugging these regulators may provide a strategy for stopping
such transition (Supplementary Fig. 22b)10,28,46,53,59,61.

Surprisal analysis of our single-cell data sets indicates that both
the upper and lower paths are characterized by a cell-state
transition (sign change of module 1 score) in the D1–D3 time
window (Fig. 3a, left panel). To identify the tipping points along
each of the two paths, we first clustered the single-cell data from
all time points into 14 different sub-clusters on the FLOW-MAP
(Fig. 4a). This overall analysis assumes that each cluster on the
FLOW-MAP represents an intermediate state along the transi-
tion. Clusters 1, 6, 7, 8, 10, 11, and 12 align with the upper path,
whereas clusters 2, 3, 9, 13, and 14 fall along the lower path
(Fig. 4a). As there are two paths connecting day 0 and day 5 cells,
we would expect there to be two tipping points, one along each
path. Therefore, each cluster is assumed to contain cells at
locations that are of varying distances from the critical point
along its own path. It has been well-documented that a tipping
point along a critical-point transition, when analyzed with single-
cell resolution, exhibits a decrease of correlation between cells and
a concomitant increase of correlation between genes60. This
feature allows using a quantitative index for predicting critical
transitions in a high-dimensional state space. The signaling
network activity index (SNAI)10 and the critical transition index
(Ic)60, which are both formalized based on such quantitative
features, are two published indices used to identify regions near
tipping points. Using these indices, we found cluster 7 in the
upper path and cluster 9 in the lower path showed the highest
values of these indices within their respective path (Fig. 4b, c, and

Supplementary Figs. 23–25), suggesting that clusters 7 and 9 are
closest to the tipping points along each of the two paths.

To mine the key regulators driving the cell-state transitions, we
next performed network analysis10,17,40 for the tipping points in
clusters 7 and 9. Our hypothesis is that regulators displaying
higher connectivity within the network should be the crucial hub
regulators that maintain the network. As a result, drugging those
hub regulators can more effectively disrupt the network and
therefore prevent the transition through the critical point to the
drug-resistant state (Supplementary Fig. 22b). These two net-
works (for cluster 7 and cluster 9) are characterized by different
structures (Fig. 4d, e), implying that these transitions are
regulated in different ways. To identify the hub regulators of
the network, which can be potential drug targets, we quantified
the connectivity of each analyte (node) in the correlation
networks by calculating the node degree and hub score for each
node (see Methods). For cluster 7 (upper path), we found that
several transcription factors and metabolic enzymes, including
MITF, PFK, p-LKB, PKM2, LDH2, and Slug, showed high levels
of network participation (connectivity) by both scoring metrics
(Fig. 4f and Supplementary Fig. 26). For cluster 9 (lower path),
TNFR, N-cadherin, and p-NFκB-p65 appeared dominant (Fig. 4f
and Supplementary Fig. 26). An interesting observation was that
the markers that exhibited a high score in cluster 7 often
displayed a low score in cluster 9 and vice versa, indicating that
the two paths are dissimilarly regulated. Importantly, these
critical point analysis results are relatively stable across a range of
clustering numbers (Supplementary Fig. 27).

To examine whether the transitions along the two paths are
driven by distinct hub regulators, we chose to use two
commercially available compounds that specifically target
PKM2 or nuclear factor-κB (NFκB) to perturb the respective
hub nodes identified within clusters 7 and 9. We hypothesized
that inhibition of the glycolysis enzyme PKM2 and the signaling
phosphoprotein p-NFκB-p65 would differentially influence the
transitions along the upper and lower paths respectively (Fig. 4f
and Supplementary Fig. 26). Accordingly, we used a PKM2
inhibitor (PKM2i) or an NFκB inhibitor (NFκBi) in combination
with the BRAFi to treat sorted MITF-High and MITF-Low cell
subpopulations. Consistent with our hypothesis, the MITF-Low
subpopulation was more sensitive to the BRAFi+NFκBi
combination (Fig. 5a), whereas the MITF-High subpopulation
was more sensitive to the BRAFi+ PKM2i combination (Fig. 5b).
This hypothesis was further validated by testing the same drug
combinations on the MITF-knockdown cell line relative to
unmodified M397 cells (Fig. 5c, d). Thus, cells passing along the
different trajectories displayed differential sensitivities to PKM2
and NFκB inhibition.

Considering the differential regulator dependence of the two
trajectories, we further hypothesized that co-blocking both
trajectories by simultaneously inhibiting PKM2 and NFκB
signaling might show additive effects in preventing the transitions
towards BRAFi tolerance. To test this hypothesis, we used the
triple-drug combination (BRAFi+ PKM2i+NFκBi) to treat the
M397 cells in vitro for 5 days and compared the resulting cell
number against monotherapies (BRAFi only) and double-drug
combinations (BRAFi+ PKM2i and BRAFi+NFκBi) for 5 days.
Consistent with our prediction, the triple-drug combination
significantly outperformed the double-drug combinations, which
in turn were superior to the monotherapy (Fig. 5e). Further,
PKM2i or NFκBi monotherapy showed minimal growth inhibition
on the M397 cells (Supplementary Fig. 28), implying that these
drugs likely function by selectively blocking the BRAFi-induced
cell-state transitions to the drug-tolerant state. These results
demonstrate that the upper and lower paths are independent, have
different regulators, and are independently druggable.
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Discussion
We explored here whether cell trajectories connecting the initial
and final states of a cell-state transition could be determined from
a kinetic series of static snapshots of the traversed cell-state space
landscape. As a model system, we utilized a highly plastic,
patient-derived M397 BRAFV600E mutant melanoma cell line,
which has been shown to reversibly transition between drug-
naive and drug-resistant states upon treatment with a BRAF
inhibitor8,10,62. Although single-cell omics tools have proven
immensely valuable for resolving the cellular heterogeneity of
tissues at a single given time point, here we sought to quantita-
tively connect that cellular heterogeneity to dynamic hetero-
geneity of cell-state changes.

We utilized microfluidic-based SCBC technology to char-
acterize the cellular heterogeneity during the first 5 days of
drug response. As both metabolic activity and signaling path-
ways display functional changes during the early drug
response, the SCBC is uniquely suited here, as it is capable of
simultaneously capturing both metabolites and cytoplasmic

proteins (and phosphoproteins) from single cells. However,
unlike single-cell RNA sequencing, single-cell proteomics is
typically limited to assaying only tens of functional proteins
and metabolites. To accurately capture the cell-state space
accessed by M397 cells under BRAFi treatment, we first utilized
transcriptomic analysis and literature guidance to define a
panel of 20 analytes that included phenotypic markers, and
markers of metabolic activity, oncogenic signaling, and cell
proliferation, all of which are altered during the initial drug
response. Single-cell analysis using this curated panel readily
resolved the complex cell-state space traversed by the cells
during the first few days of BRAFi treatment. Of course,
moving towards larger numbers of analytes would certainly
provide for a deeper characterization63–65.

We utilized computational and theoretical methods29,32,33,48,
integrated with additional cell biology experiments, to infer
single-cell trajectories from the SCBC kinetic series of snapshots.
Dimensional reduction of the dataset using the FLOW-MAP
algorithm suggested that the cells might take one of two paths
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(labeled as upper and lower) through cell-state space that con-
nected the drug-naive cells to the drug-tolerant cells. Surprisal
analysis of that same data resolved both a time-dependent
module and a path-dependent module. The path-dependent
module implied that cells traveling along one path are separated
from the other path by a biophysical barrier, which appeared to
be associated with the transcription factor MITF and its down-
stream melanocytic marker MART1. These analyses further
predicted that the trajectory a specific cell takes is determined by
its MITF level prior to drug treatment. These predictions were
verified experimentally, which supported the integration of
computational visualization methods with theoretical biophysical
approaches to gain insight into a complex biological system. Such
an approach should be broadly applicable to other dynamic,

complex biological systems, including studies of cellular differ-
entiation, tumorigenesis, and more.

Proliferative and invasive phenotypes are well-known in
melanoma56,66. MITF, MART1, and Ki67 have been reported as
robust markers for distinguishing these two phenotypes56,66. We
have found that these two distinct phenotypes can co-exist even
in the untreated, isogenic M397 cell line used in our study. The
MITF-High and MITF-Low subpopulations not only displayed
different doubling time without BRAFi treatment but also fol-
lowed distinct drug-response trajectories upon treatment. These
findings are consistent with the observations of melanoma cancer
cell phenotype switching from a melanocytic and highly pro-
liferative state to a non-melanocytic and more invasive state59. In
that study, proliferative or invasive cell lines displayed fixed gene
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expression profiles in culture, but when transplanted in vivo, each
class generated heterogeneous tumors containing cells with both
kinds of expression profiles. Consistent with that observation of
fixed gene expression profiles in vitro, we did not observe sig-
nificant interconversion between cells traveling along different
paths during the 5-day treatment period. These findings sug-
gested that these two phenotypes are relatively stable over a few
days of BRAFi treatment in vitro. Of course, our in vitro study
may not fully recapitulate in vivo melanoma biology in which the
tumor microenvironment can wield a strong influence. Analysis
of clinical samples from early BRAFi-treated melanoma patients
might further validate the clinical significance of our findings. We
have previously reported that upon BRAFi treatment, the cells
start with transient differentiation to early drug-tolerant state
(slightly increased MITF and MART1 expression at D3). Pro-
longed BRAF inhibition (3 weeks) yielded a stem-cell-like drug-
resistant state characterized by a sharp increase in cell prolifera-
tion and loss of MITF and MART1 expression8,10. Consistent
with these findings, we showed that D5 cells (the early drug-
tolerant state) display a low level of proliferation marker Ki67
under BRAFi. Most of these cells still express MART1 and MITF,
but already start initiating the resistance-associated gene program
(upregulation of glucose uptake and many stem-cell markers, e.g.,
AXL and CDH2). Consistent with the previous results from bulk
studies67, we found both MITF-High and MITF-Low sub-
populations will become more melanocytic after short-term drug
treatment. These indicate that the transient differentiation
towards a more melanocytic state may be a general early-acting
mechanism that melanoma cells utilize in response to BRAF
inhibition, in spite of their initial cell states. Furthermore, we also
found that the transition towards MITF-Low invasive-like phe-
notype can be easily induced by knockdown of the MITF tran-
scription factor. This indicates that the complex cell-state
landscape is likely regulated by very few master regulators. It also
emphasizes the importance of MITF as a molecular driver in
regulating melanoma phenotype determination. These findings
add significantly to our understanding of melanoma phenotype
regulation and are uniquely revealed through single-cell analytics.

Our single-cell analysis showed that untreated cells contain
both MITF-Low and MITF-High cell subpopulations, which tend
to take different paths to develop drug tolerance. Thus, it is likely
that the initial state of a cell would determine which path this cell
may undertake. The coexistence of two distinct drug-response
trajectories even in an isogenic cell line may explain the so-called
mixed responses, which is commonly observed during the ther-
apeutic treatment of melanoma patients. Such alternative escape
paths may also explain why melanomas are so refractory to
BRAFi-targeted therapy. Intriguingly, for each of the two paths,
different drug susceptibilities were identified by critical point
analysis and network analysis: the upper path was found to be
susceptible to inhibition of the glycolysis enzyme PKM2, whereas
the lower path is sensitive to NFκb-p65 inhibition. These differ-
ential drug sensitivity results are also consistent with previous
bulk studies on invasive phenotypes of melanoma: MITF-low,
invasive (or mesenchymal) melanoma cells have been reported to
be more dependent on NFκB signaling10, and the single-cell
resolution of our study reveals the exact molecular and cellular
dynamics behind that observation. Co-inhibition of PKM2 and
NFκB pathways demonstrated superior effects in inhibiting
tumor growth; however, both genes are essential regulators in
normal cells and their inhibition may cause toxicity to non-
malignant tissue. Of note, the expression level of MITF has been
shown to correlate with BRAFi sensitivity68. Thus increased
dosage of BRAFi from the current cytostatic level to a cytotoxic
level may eliminate the MITF-High subpopulation and its
respective path. In conclusion, the resolved heterogeneous

drug-response trajectories update the current understanding of
resistance development and can provide a powerful methodology
for identifying effective therapy combinations.

Methods
Cell lines, reagents, and cell culture. Patient-derived melanoma cell line, M397,
used in this study was previously generated under UCLA IRB approval number
11–00325439. Cells were cultured at 37 °C with 5% CO2 in RPMI 1640 with L-
glutamine (Life Technologies), supplemented with 10% fetal bovine serum
(Omega), and 0.2% antibiotics (MycoZapTM Plus-CL from Lonza). The cell line
was periodically authenticated to its early passage using GenePrint® 10 System
(Promega). The presence of mutations in the genes of interest was checked by
OncoMap 3 or Iontrone, and was confirmed by PCR and Sanger sequencing. BRAF
inhibitor (vemurafenib), PKM2i (Compound 3 K), and NFκBi (JSH-23), all from
Selleck Chemicals LLC, were dissolved in dimethyl sulfoxide (DMSO) at designated
concentrations before applying to cell culture media. M397 cells were plated in
10-cm tissue culture plates at 60% confluency and treated with 3 µM BRAF inhi-
bitor for the specified numbers of days.

Microchip fabrication and integrated single-cell proteomic and metabolic
assay. DNA microarrays within each microchamber were converted to antibody or
Nano-probe microarrays by flowing the DNA–antibody or DNA–probe conjugate
cocktail solution immediately before use. We washed the dead cells with
phosphate-buffered saline (PBS) before trypsinization at respective time points.
Collected cells were treated with Gluc-Bio before randomly loaded into micro-
chambers within the SCBC for analysis. Each microchamber has an assay com-
ponent and a separate reservoir of lysis buffer, and was photographed after cell
loading. The SCBC was then cooled on ice for cell lysis. Following a 2 h protein and
metabolite capture period at room temperature, the microchambers were flushed
and the captured protein or metabolite on the arrays were converted into fluor-
escent readout and digitized by a Genepix scanner (Molecular Devices).

Data processing from Genepix scanner. By a custom MATLAB code, the average
fluorescence signals for all bars within a given barcode were extracted and matched
with the micrograph of that array to prepare a table that contains the micro-
chamber address, the numbers of cells, and the measured fluorescence levels of
each assayed protein or metabolite. The SCBC readouts from the microchambers
with a single cell were collected to form an m × n matrix table where each row (m)
represents a specific microchamber address and each column (n) represents the
abundance of a specific analyte. This matrix table is used for further analysis. One
hundred and fifty-six, 185, 162, and 171 single cells are analyzed for day 0, day 1,
day 3, and day 5 respectively.

FLOW-MAP visualizations. All FLOW-MAP visualizations were created with the
FLOWMAPR R package (version 1.2.0) available on GitHub (https://github.com/
zunderlab/FLOWMAP/). Graphs were produced with seed.X= 1 and no clustering
or downsampling. Final figures were produced in Gephi (https://gephi.org/) either
using the bluered palette described in the FLOWMAPR package or using the jet
rainbow palette. The code used to generate the exact FLOW-MAP graphs is
available upon request.

Surprisal analysis. To identify the cell-state boundaries, we thought to use sur-
prisal analysis to deconvolute the change of many markers across cells into the
change of just a few modules. Each module represents a group of markers that are
collectively changing together from cell to cell. Such analysis can greatly simplify
the complexity of the changes and narrow it down to just a few modules which can
then be further dissected for detailed biological discovery. Computationally, sur-
prisal analysis was applied as previously described52. Briefly, the measured level of
analyte i at cell c, ln Xi (c), is expressed as a sum of a steady-state term ln Xi

0 (c) and
several constraints (modules) λj (c) ×Gij representing deviations from the steady
state. Each deviation term is a product of a cell-dependent weight (influence score)
of the constraint λj (c) and the cell-independent contribution of the analyte to that
constraint (module) Gij. To implement surprisal analysis, we compute the singular
value decomposition of the matrix ln Xi (c). This factors this matrix in a way that
determines the two sets of parameters that are needed in surprisal analysis: the
Lagrange multipliers (λj) for all constraints (modules) at a given time point, and for
all times and the Gij (time-independent) analyte patterns for all analyte i at each
constraint j. In Fig. 3, cells with the top 10% most positive module 2 score are
defined as Module2-High cells and the most negative 10% ones are defined as
Module2-Low cells.

Time-lapse microscopy. Movies were acquired on an Olympus IX8 inverted
fluorescence microscope with hardware autofocus (ZDC2) and an environmental
chamber maintaining a 37°C, 5% CO2 culture environment. Automated acquisition
software (METAMORPH, Molecular Devices) was used to acquire differential
interference contrast (DIC) and GFP images every 15 min from multiple stage
positions.
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Quantification of single-cell trace. Nuclear staining images were segmented using
open-source software ilastik (version 1.3.2) to acquire segmented nuclear bodies.
Five frames (out of 193 frames) were used as the training set for image segmen-
tation of each position. Pixel Classification feature of ilastik 1.3.2 was used to
segment pixels of all 193 frames into “Background” and “Cell.” Then segmented h5
files, together with raw nuclear staining movie, were used in ilastik “manual-
tracking workflow” to obtain 110 single-cell nuclear traces from 18 movie posi-
tions. Based on the cell-tracking results, GFP fluorescence data (background sub-
tracted) of all 107 single-cell traces were extracted from the corresponding GFP
images using a custom Python code. The 107 single-cell GFP traces were then
sorted in the descending order by mean GFP level of the first 50 frames. Among
them, the top 12 traces as “initial MITF-GFP-high” group and the bottom 12 traces
as “initial MITF-GFP-low” group were plotted in Fig. 3g.

Single-cell clustering. Prior to clustering, all single-cell data were separated by
time point (i.e., day 0, day 1, day 3, and day 5). Rclusterpp clusters then applied
which cluster the cells into 14 subpopulations. The cluster number was determined
using the “elbow methods” which is based on the total within sum of squares
metric69. Rclusterpp clusters were produced using the Rclusterpp R package
(version 0.2.5), using all default settings (https://github.com/nolanlab/Rclusterpp).
All clustering algorithms were performed with cells clustered on the following
markers: Ki67, Mart1, HIF1a, LDH, AMPKA, p-ERK1, PFK, p-ACAC, Slug, and p-
LKB. The code used for clustering is available upon request.

Critical point analysis. Critical point analysis was implemented in two separate
runs. Each run was conducted only on clusters from one of the two paths. Two
quantitative indices are utilized for predicting critical transitions in a high-
dimensional state space: Ic60 and SNAI10. Both of the two indices are formalized
based on the mathematical features of the tipping point: increase of
marker–marker correlation and increase of cellular heterogeneity. The SNAI value
is defined as the reciprocal of the determinant of the protein-protein correlations.
The Ic value is defined as the ratio of the average of all pairs of protein-to-protein
correlation coefficients to the average of all pairs of cell-to-cell correlation coeffi-
cients and is calculated. The code used to calculate the SNAI/Ic indices for indi-
vidual cell clusters is available upon request.

Network analysis. Pair-wise correlation matrices were calculated on within each of
the 14 clusters using the Hmisc R package (version 4.2-0, available from https://
cran.r-project.org/web/packages/Hmisc/index.html). Spearman’s correlations were
calculated. The correlation output from the Hmisc package produces the pair-wise
correlation values matrix. Bonferroni corrected p-value was used to filter the
correlation network through statistical significance and the correlation networks
were drawn using a custom MATLAB code. Hub score and node degree for each
marker in each correlation network were calculated using the igraph R package
(version 1.2.4.1). Both scores were rescaled from 0 to 1 for each marker for side-by-
side comparison and plotted to visualize marker-to-marker variation in hub
behavior between methods of calculating correlation. The code used to perform the
correlation network analysis is available upon request.

mRNA extraction and qPCR. RNA was extracted from cells using the RNeasy
Mini Kit or RNeasy plus Micro Kit (Qiagen) according to the manufacturer’s
protocol. First-strand cDNA was synthesized from extracted total RNAs using the
iScript cDNA Synthesis Kit (Bio-Rad). The expression of human Slug, MITF,
MART1, and PFK transcripts were analyzed by SYBR Green-based real-time
quantitative reverse-transcription PCR using specific primers (Supplementary
Table 1). Data were normalized to the expression of RPL19 and are expressed as
fold changes.

MITF-knockdown cell line. Short hairpin RNA (shRNA) targeting the coding
sequence of MITF and control shRNA were purchased from Santa Cruz. Lenti-
viruses encoding control shRNA and MITF shRNA were produced in HEK-293T
cells by transient transfection of lentiviral-based vectors and their packaging vec-
tors psPAX2 and pMD2.G. The virus was collected, filtered through a 0.45 µm
syringe filter after 48 h, and the M397 cells were spin-infected with viral super-
natant supplemented with 10 µg/mL polybrene at 900 g and 30 °C for 90 min. The
transduced cells were selected using puromycin, starting at 3 days post
transduction.

MITF-reporter cell line. The human Tyrosinase Promoter was subcloned from
pLightSwitch Prom S700747 (SwitchGear Genomics, Carlsbad, CA) into the
BamH1 and EcoRI sites of the lentiviral vector backbone, driving the expression of
the Zsgreen gene. Lentivirus particles were generated as described above to stably
transduced M397 cells. A clonal cell line was further generated via single-cell
sorting and expansion. Cells were then sorted as GFP-High and GFP-Low popu-
lation by BD FACSAria Fusion Cell Sorter for further treatment and analysis.

Fluorescence microscopy. Images were acquired at ×10 (Olympus, 10X FL PH,
0.3 NA) on an EVOS FL Auto Imaging System (Fisher Scientific) in Yellow

fluorescent protein (YFP) and DIC channels. Light or laser intensity, exposure, and
gain were set to be the same between MITF-High well and MITF-Low well.

Flow cytometry analysis. All cells were then fixed with Fix-Perm buffer from BD
Bioscience and then stained for intracellular dye-conjugated antibodies for
MART1, NGFR, AXL, p-ERK, and Ki67. Flow cytometry analysis was conducted
using Attune NxT Flow Cytometer from Thermo Fisher and the data were ana-
lyzed using FlowJo software. To visualize the cell-state transition trajectories, the
six-dimensional flow cytometry data were projected onto a 3D and 2D space via
surprisal analysis and t-SNE, respectively.

Fluorescence-activated cell sorting. Cells were washed and trypsinized from
culture plates, following by centrifugation at 500 × g and 4 °C for 5 min to pellet
cells. Cell pellets were then resuspended in PBS containing 1% BSbovine serum
albumin before fluorescence-activated cell sorting. The gating strategy is shown in
Supplementary Fig 29.

Senescence associated β-galactosidase activity. Percentage of the senescent cell
was quantified using the Senescence β-Galactosidase Staining Kit (Cell Signaling,
9860) according to the manufacturer’s protocol. Briefly, cells on the plate were
rinsed with PBS and then fixed with the Fixative Solution for 15 min. After fixation,
the plate was rinsed with PBS two times and then incubated at 37 °C overnight in
staining solution. Plates were examined under phase-contrast microscopy.

Apoptosis assays. Cell apoptosis assays were performed by treating indicated cell
lines cultured under respective conditions. Cells were stained with Annexin
V–fluorescein isothiocyanate and propidium iodide for 15min at room temperature
before flow cytometry analysis. Gates were determined using an unstained control.

Clonogenic assay. M397 cells were plated onto six-well plates with fresh media at
an optimal confluence. The media (with drug or DMSO) were replenished every
two days. Upon the time of staining, 4% paraformaldehyde was applied onto
colonies to fix the cells and a 0.05% crystal violet solution was used for staining the
colonies.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the data supporting the findings of this study are available within the article and its
Supplementary Information files, and from the corresponding author upon reasonable
request. Raw data for underlying Figs. 3c–f, h–i and 5a–e, and Supplementary Figs. 3, 4,
5, 6, and 21a–c are provided in the Source Data file.

Code availability
Custom code for analysis of raw CSV output of the SCBC measurements was written in R
and has been made available/open-source via GitHub (https://github.com/mesako/
Melanoma-Publication). The code used to generate the exact FLOW-MAP graphs, the
single-cell clustering, the calculation of SNAI/Ic indices for individual cell clusters, and
the correlation network analysis is available upon request.
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