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Abstract
Lysine acetylation is a major post-translational modification. It plays a vital role in numerous

essential biological processes, such as gene expression and metabolism, and is related to

some human diseases. To fully understand the regulatory mechanism of acetylation, identi-

fication of acetylation sites is first and most important. However, experimental identification

of protein acetylation sites is often time consuming and expensive. Therefore, the alterna-

tive computational methods are necessary. Here, we developed a novel tool, KA-predictor,

to predict species-specific lysine acetylation sites based on support vector machine (SVM)

classifier. We incorporated different types of features and employed an efficient feature

selection on each type to form the final optimal feature set for model learning. And our pre-

dictor was highly competitive for the majority of species when compared with other meth-

ods. Feature contribution analysis indicated that HSE features, which were firstly

introduced for lysine acetylation prediction, significantly improved the predictive perfor-

mance. Particularly, we constructed a high-accurate structure dataset of H.sapiens from
PDB to analyze the structural properties around lysine acetylation sites. Our datasets and a

user-friendly local tool of KA-predictor can be freely available at http://sourceforge.net/p/ka-

predictor.

Introduction
Acetylation is one of the most significant post-translational modifications of proteins, and
plays an important role in various cellular processes [1–3], such as cytokine signaling, tran-
scriptional regulation and apoptosis. Acetylation typically occurs on lysine residues describing
a process of introducing an acetyl group (CH3CO-) into the side chain of an amino acid in a
protein. This reaction is a reversible modification relying heavily on various enzymes. Lysine
acetylation is catalyzed by histone acetyltransferases (HATs) or lysine acetyltransferases
(KATs), which transfer the acetyl-group to the epsilon-amino group of a lysine residue (Fig
1D), while lysine deacetylation by histone deacetylases (HDACs) or lysine deacetylases
(KDACs) that remove the acetyl-groups[4].
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Acetylation has a considerable impact on gene expression and metabolism[6], and is also
related to some human diseases[7,8]. For example, signal transducer and activator of transcrip-
tion 3 (STAT3) is a transcription factor. The lysine acetylation of STAT3 is of key importance
in the DNA-binding and the transcription for the oncogenic activity which is related to many
cancers such as pancreatic cancer[9] (Fig 1). In addition, the level of acetylated STAT3 is rela-
tively high in cancer cells[10]. Therefore, it may be a potential and promising strategy to target
acetylated STAT3 in cancer therapy.

Since the acetylation plays an important role in the cell biology and diseases treatment, it is
really essential to understand the regulatory mechanism of acetylation. Thus, the first step is to
identify the acetylation sites. Various experimental methods have been developed to identify
the potential lysine acetylation sites of a protein, such as radioactivity detection[11], mass spec-
trometry[12], and chromatin immunoprecipitation (ChIP)[13]. However, these experimental
methods are usually time consuming and expensive. Therefore, the alternative computational
methods are necessary for high-throughput identification of protein acetylation sites.

Currently, a large variety of computational methods have been proposed to predict acetyla-
tion sites based on the protein sequences. The majority of these methods are based on SVM
classifier. For example, LysAcet [14], N-Ace [15], Ensemble-Pail [16], PLMLA [17], PSKA-
cePred [18], and BRABSB [19] which also combined bi-relative adapted binomial score Bayes.
Additionally, the cluster based method, PredMod [20], combined experimental methods with
sequences clustering analysis within histones. The logistic regression based method, LAceP
[21], utilized logistic regression classifiers and integrated different biological features for lysine
acetylation site prediction. The random forest based method, SSPKA [22], which firstly used
functional features, was developed for species-specific lysine acetylation prediction. Particu-
larly, Phosida [23,24] was firstly proposed as a well-known database containing various

Fig 1. The importance of acetylation of STAT3 (pdb:1BG1) and lysine acetylation equation. (A) Jak-
STAT signaling pathway, including phosphorylation and acetylation. (B) The schematic diagram of HSE. An
acetyl group (CH3CO-) from Ace-CoA replaces the hydrogen atom in the epsilon-amino group (-NH3

+)(blue)
of side chain (red) of lysine residue, and the side chain of Lys685 is located at the upper half sphere which
contains Cβ atom. (C) DNA binds to STAT3 homo-dimer, and surface of STAT3 is colored by CHOPS[5]
score, a convex measure of protein surface. (D) Lysine acetylation equation.

doi:10.1371/journal.pone.0155370.g001
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species-specific post-translational modification sites, and then developed into a high-accuracy
species-specific acetylation site predictor.

Of note, there are several limitations in these methods. Firstly, for different species, the
majority of existing methods just utilized an overall model to predict acetylation sites, without
systematically discussing the differences of sequence and structure information among species.
As we all known, different species may have different sequences or structures properties owing
to different functional mechanism. Therefore, modelling based on different species may make
improvements to acetylation prediction. Secondly, the methods in most of the papers only
incorporated a small field of features, which would ignore some useful information, such as
various predicted structural features. Finally, the sliding window strategy is often applied in
feature extraction for obtaining the local information surrounding the lysine acetylation sites.
Many studies only investigated a certain local sliding window in modeling. However, different
sliding windows may have distinct prediction performances. Optimizing sliding window size is
obviously helpful for selecting features and improving prediction performance.

Aiming at these limitations, we developed a novel tool to predict species-specific lysine acet-
ylation sites named as KA-predictor (lysine (K) Acetylation predictor) based on a support vec-
tor machine (SVM) classifier. In this study, we incorporated a large variety of features
consisting of sequence-based features, physicochemical and biochemical properties features,
predicted structural features and evolutionary information features. Particularly, the HSE fea-
tures, which belonged to predicted structural features, were firstly introduced for lysine acetyla-
tion prediction and turned out to be fundamentally important in improving the predictive
performance. Our predictor was designed for four species, i.e., H. sapiens,M.musculus, E. coli,
and S. typhimurium. In addition, a sliding window strategy was applied in our study and the
optimization of the sliding window sizes was used for selecting features and improving predic-
tion performance. Furthermore, the prediction performances of our approach were compared
with the latest methods in independent test set. The results indicated that our predictor was
highly competitive for the majority of species when compared with other existing methods.
Particularly, we firstly constructed a high-accurate structure dataset of H.sapiens to analyze the
structural properties around lysine acetylation sites. A user-friendly local tool of KA-predictor
can be freely downloaded at http://sourceforge.net/p/ka-predictor for the wider scientific com-
munity. A flowchart of the KA-predictor approach was given in Fig 2.

Materials and Methods

Datasets
In this study, we used the datasets from the study of SSPKA[22] which consisted of 1,936 non-
redundant acetylation proteins with 3,956 acetylation sites of six species, i.e., H. sapiens,M.
musculus, E. coli, S. typhimurium, S. cerevisiae and R. norvegicus, ranging from prokaryotes to
eukaryotes. These datasets were extracted from multiple public resources including CPLA[25]
(http://cpla.biocuckoo.org/), N-Ace[15] (http://N-Ace.mbc.NCTU.edu.tw/), Phosida[23]
(http://www.phosida.com/), ASEB[26] (http://cmbi.bjmu.edu.cn/huac) and PhosphoSitePlus
[27] (http://www.phosphosite.org). And these datasets had excluded the redundant sequences
at the 30% identity level using CD-HIT[28] software. In order to consider the background pro-
teins relative to acetylated proteins, SSPKA also provided a dataset of non-acetylated proteins
(proteins that were not shown to be acetylated to date).

Here, we did not utilized the sequence data of non-acetylated proteins in SSPKA because
the dataset contained some deleted or duplicated sequences and was of little reliability. Addi-
tionally, the data of S. cerevisiae and R. norvegicus was removed from our analysis because
these two species had too few samples for training model (Table 1). Also, we discarded two
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protein sequences of A2ASS6 and Q8WZ42 in the training dataset since these two sequences
are too long to run PSI-BLAST for calculating certain features such as PSSM. Finally, our data-
set incorporated 1,870 of acetylation proteins with 3,790 acetylation sites of four species. In
detail, the positive samples (i.e., acetylation sites) in the training dataset of our method were
the same as the SSPKA method. To perform 5-fold cross-validation, the balanced negative
samples (i.e., non-acetylation sites) were randomly extracted with the ratio of 1:1 of positive
versus negative samples. (In fact, the amount of lysine acetylation sites is relatively small when
compared with the amount of non-acetylated lysine residues in sequences.) For fair compari-
son, we used the identical positive and negative samples with SSPKA on independent test set.
Since high similar data would lead to overestimate the accuracy of a method [29–32], we exam-
ined that the sequences in the training dataset were non-redundant with a threshold of 30%
identity using the BlastClust tool. Furthermore, we examined that there were also non-redun-
dancy between the sequences in training dataset and sequences in independent test set, so the
independent test set was really independent from our training dataset. Table 1 showed the sta-
tistics of training dataset and independent test set among four species.

Particularly, we constructed a high-accurate structure dataset of H.sapiens from Protein
Data Bank (PDB) [33–35] to analyze the structural properties around lysine acetylation sites.
ForH. sapiens, we collected 592 PDB structure records corresponding to sequences in our
training dataset and independent test set. Because the incomplete or inaccurate structures were
poor for structural properties analysis, we selected a subset of these PDB structures if the length
of the PDB structure was longer than the 90% of the true length of corresponding sequence
and resolution of the structure was less than 3Å. Finally, we obtained 118 PDB structures and
then eliminated noises by manually aligning these structures to the corresponding sequences.

Fig 2. Flow chart of the KA-predictor approach, which includes feature calculation, feature selection
andmodel training. Flowchart of training dataset is shown in grey arrow, and flowchart of test set is shown in
black arrow. For training dataset, firstly, collecting 14 subtypes of features based on the training dataset by
various tools, such as PSIBLAST and spider-HSE. Subsequently, ranking each type of features by the
Pearson Correlation Coefficient (PCC) and conducting stepwise feature selection for each type. The 5-fold
cross-validation was applied to feature selection by evaluating the performance on the training dataset. A
support vector machine (SVM) classifier, LibSVM, was utilized to train parameters and build an accuracy
prediction model. For independent test set or an input sequence for user, firstly conducting feature calculation
and then selecting the same features as training dataset, finally utilizing the models trained on the training
dataset to obtain the predicted output.

doi:10.1371/journal.pone.0155370.g002
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Our high-accurate H.sapiens structure dataset included 308 lysine acetylation sites from 118
PDB structures. The reason for not constructing structure dataset for other species is that the
experimentally determined crystal structures for other species were much fewer than H.sapiens
and insufficient dataset would reduce the reliability of the analysis of structural properties. The
datasets can be downloaded at http://sourceforge.net/p/ka-predictor.

Features
In this study, we incorporated a large variety of features to predict acetylation sites. These fea-
tures included four types: sequence-based features, physicochemical and biochemical proper-
ties features, predicted structural features and evolutionary information features. These can be
further divided into 14 subtypes: LC, PWAA, EBGW, CKSAAP, KNN, ACC, PC-PseACC,
AAindex, SS, RSA, Disorder, HSE, PSSM and HH (see below). Particularly, we firstly intro-
duced the predicted half sphere exposure (HSE) as a type of features, which turns out to be fun-
damentally important in acetylation prediction. Additionally, we used a novel HMM-based
tool, HHblits[36], to build protein multiple-sequence alignments (MSAs) for deriving posi-
tion-specific scoring matrix and evolutionary conservation score, which is considered some-
what faster compared to PSI-BLAST[37]. A sliding window strategy was applied in feature
extraction for obtaining the local information surrounding the lysine acetylation sites.

Sequence-based features. Location Coding (LC). For the sites located in the N-terminal,
C-terminal or the middle of a sequence, we used 3-bit binary to encode this terminal informa-
tion, i.e. N-terminal for 100, C-terminal for 001, middle for 010.

Position Weight Amino Acid Composition (PWAA). Position weight amino acid composi-
tion (PWAA) [17,38] is designed to avoid losing the sequence-order information of amino acid
residues around certain sites. The position information of an amino acid in the sliding window
can be calculated by the following formula:

Ci ¼
1

LðLþ 1Þ
XL

j¼�L

xi;jðjþ
jjj
L
Þ

where L denotes the number of upstream residues or downstream residues from the central
site in the sliding window, xi,j = 1 if ai is the j-th residue in the sliding window, otherwise
xi,j = 0.

Table 1. Statistics of acetylated proteins and sites information in training dataset and independent test set among four species, i.e.H. sapiens,M.
musculus, E. coli, and S. typhimurium. (The non-acetylated sites were selected at the ratio of 1:1 compared to acetylated sites.) Additionally, the statistics
data of S. cerevisiae and R. norvegicuswas marked with asterisk (*) which means that we removed them from our analysis because these two species had
too few samples for training model.

Species Training dataset Independent test set

Acetylated proteins Acetylated sites Acetylated proteins Acetylated sites

H. sapiens 930 1885 190 477

M. musculus 341 744 84 188

E. coli 119 195 24 51

S. typhimurium 147 200 35 50

S. cerevisiae* 35 69 9 17

R. norvegicus* 15 52 5 19

Total 1537 3024 333 766

doi:10.1371/journal.pone.0155370.t001
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Encoding Based on Grouped Weight (EBGW). Encoding based on grouped weight (EBGW)
[17,38,39] is an encoding scheme of the amino acid sequence based on the hydrophobicity and
charged character of amino acid residues.

Firstly, 20 amino acid residues were divided into four different classes as follows: hydropho-
bic group C1 = {A,F,G,I,L,M,P,V,W}, polar group C2 = {C,N,Q,S,T,Y}, positively charged group
C3 = {H,K,R}, and negatively charged group C4 = {D,E}. Then, we calculated three binary
sequences of a certain sliding window:

H1ðajÞ ¼
1 if aj 2 C1 [ C2

0 if aj 2 C3 [ C4

(

H2ðajÞ ¼
1 if aj 2 C1 [ C3

0 if aj 2 C2 [ C4

(

H3ðajÞ ¼
1 if aj 2 C1 [ C4

0 if aj 2 C2 [ C3

(

where aj represents the j-th residue in the sliding window sequence.
For each binary sequence, we could calculate K feature values based on K sub-sequences

increasing in length as follows:

XðkÞ ¼ sumðkÞ
IntðN � k=KÞ ; k ¼ 1; 2; . . .;K

Where the function sum(k) gives the number of 1 in the k-th sub-sequence, Int(N�k/K)
denotes the length of the k-th sub-sequence, the Int() rounds a number to the nearest integer
and N is the length of the sliding window sequence. Here, we made K = 5.

CKSAAP. The CKSAAP[40] encoding scheme means the composition of k-spaced residue
pairs in the sliding window. In this study, we took k = 0. Therefore, there were 400 composi-
tions of 0-spaced residue pairs, which could be calculated by

NAA

NTotal

;
NAC

NTotal

;
NAC

NTotal

; . . .;
NYY

NTotal

� �
400

where the NTotal represents the total number of residue pairs in the sliding window, and the
NXX is the number of the residue pair XX in the sliding window.

K Nearest Neighbors (KNN) Score. To take advantage of the cluster information of local
sequence fragments for predicting acetylation sites, we took a K nearest neighbors (KNN)
score algorithm [18,41].

Firstly, we found the K nearest neighbors of a residue in both positive and negative datasets
(training dataset was used in this paper). In detail, the distance between two local sequence
fragments S1 and S2 defined as:

DðS1; S2Þ ¼ 1�

Xn

i¼�n

simðS1ðiÞ; S2ðiÞÞ

2Lþ 1

simða; bÞ ¼ Mða; bÞ �minðMÞ
maxðMÞ �minðMÞ
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where a and b are the two amino acid residues,M represents the substitution matrix of BLO-
SUM62[42], and the sliding window size is 2L+1.

After that, the corresponding KNN score was then extracted as follows: (i) Calculate the
average distance from the sequence fragment S to the training dataset (contain the positive and
negative datasets); (ii) Sort the neighbors by the distances and choose the K nearest neighbors;
(iii) Calculate the percentage of positive neighbors in its K nearest neighbors as the KNN score.

Last, we chose five different K values, i.e., 1/2, 1/4, 1/8, 1/16 and 1/32 of the size of the train-
ing dataset.

Auto-cross covariance (ACC). Pse-in-One [43] is a recently constructed web server for
users to generate all the possible pseudo components for DNA, RNA, and protein sequences,
which combined different kinds of approaches [44–46]. In this paper, we used a combination
of auto covariance and cross covariance measure based on the sliding window as features for
lysine acetylation prediction.

Parallel correlation pseudo amino acid composition (PC-PseAAC). PC-PseAAC[47] is an
approach incorporating the contiguous local sequence-order information and the global
sequence-order information. Here, we calculated these features from Pse-in-One[43] as fea-
tures for lysine acetylation prediction.

Physicochemical and biochemical properties features. AAindex. AAindex database[48]
provides numerical indices that describe various physicochemical and biochemical properties
of amino acids. For each index, we could express the physicochemical and biochemical infor-
mation in the sliding window with 2L+1amino acid residues by the following formula:

A ¼ 1

2Lþ 1

XL

j¼�L

pj

where pj is the index value of the j-th residue in the sliding window.
Additionally, Atchley et al.[49] summarized five highly representative indices, i.e., electro-

static charge, codon diversity, molecular volume, secondary structure and polarity, based on
the AAindex database. We also used this information to encode each amino acid residue for
determining the acetylation sites in this study.

Predicted structural features. Predicted Secondary Structure (SS). PSIPRED[50] is a neu-
ral-network-based secondary structure prediction tool, which shares a relatively high accuracy.
Its outputs have three kinds of secondary structures: H (alpha-helix), E (beta-strand) and C
(coil). In this paper, we used 3-bit binary to encode these three types, i.e. H for 100, E for 001,
C for 010.

Predicted Solvent Accessibility (RSA). SPINE-X[51] is an accurate multistep neural-net-
work method which can predict secondary structure, solvent accessibility and backbone torsion
angles. In this paper, we used the values of RSA, psi and phi as features for lysine acetylation
prediction.

Predicted Disorder Scores. DISOPRED2 [52,53] is proposed for recognizing natively disor-
dered regions based on amino acid sequence. Based on the predicted values of this method,
each residue can be divided into two types: disordered and ordered. In this paper, we used 1-bit
binary to encode the feature, i.e. disorder for 1 and order for 0.

Predicted Half Sphere Exposure (HSE). Half sphere exposure (HSE) is firstly introduced by
Hamelryck[54] to measure the solvent exposure of a protein, which plays a fundamentally
important role in predicting discontinuous B-cell epitopes[5,55]. The measure means the num-
ber of Cα atoms in two half spheres around a residue's Cα atom. On the one hand, HSE can be
classified as HSEA and HSEB based on whether only the information about the Cα atoms is
available. On the other hand, it can be also divided into HSE-up (HSEU) and HSE-down
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(HSED) depending on the selected Cα atoms is in an up half-sphere (U) or a down half-sphere
(D). SPIDER-HSE[56] is a consistent performance method designed for predicting both HSEA
and HSEB of each residue in a certain protein.

Here, we firstly introduced each type of predicted HSE (i.e., HSEAU, HSEAD, HSEBU and
HSEBD) information in a sliding window to predict lysine acetylation sites, which turn out to
be fundamentally important in acetylation prediction.

Evolutionary information features. Position-Specific Scoring Matrix (PSSM) by PSI-BLAST.
Position-specific scoring matrix (PSSM) can be calculated from multiple sequence alignment
containing the evolutionary information of protein sequences. In this part, the PSSM for each
sequence was generated by PSI-BLAST[37] based on NR database. The PSI-BLAST program
can generate two types of position-specific scoring matrices, conservation scores and probabili-
ties of occurrences. We used both of them to encode for predicting lysine acetylation sites.

Additionally, we calculated the evolutionary conservation scores which is defined as:

ECSðiÞ ¼ �
X20
j¼1

pi;jlog2ðpi;jÞ

Where pi,j represents the probability of amino acid j at position i of the sliding window (the
sliding window size is 2L+1).

Position-Specific Scoring Matrix by HHblits (HH). HHblits[36] is an open-source, general-
purpose tool that can build protein multiple-sequence alignments (MSAs) by profile hidden
Markov models (HMMs), which is considered somewhat faster than PSI-BLAST. Here, we
employed this novel tool to obtain the probabilities of occurrence, and then calculated the evo-
lutionary conservation scores as mentioned above in prediction.

Support vector machine (SVM) classifier. Support vector machine (SVM) classifier was
widely used in the statistics and bioinformatics [57–63], especially for functional site prediction
such as acetylation, phosphorylation, ubiquitination and methylation [14–20,64–68]. SVM is a
supervised learning model for binary classification by mapping the input samples to a higher
dimensional space and searching a hyper-plane to distinguish the samples. In this paper, we
applied the widely used SVM classifier, LibSVM (https://www.csie.ntu.edu.tw/~cjlin/libsvm/),
to train parameters and build an accuracy prediction model. The version 3.14 of LibSVM was
utilized. A radial basis function (RBF) was used as the type of kernel function, and two parame-
ters, cost and gamma, were trained based on the parameter selection tool grid.py in LibSVM.
To select features and evaluate the performance of the models, 5-fold cross-validation was per-
formed. In statistical prediction, the independent dataset test, subsampling or K-fold crossover
test and jackknife test are the three cross-validation methods often used to check a predictor
for its accuracy [69]. However, among the three test methods, the jackknife test is deemed the
least arbitrary that can always yield a unique result for a given benchmark dataset [70]. Accord-
ingly, the jackknife test has been increasingly used and widely recognized by investigators to
examine the quality of various predictors [71–75]. However, for saving computational time,
the 5-fold cross-validation was used in the study.

Feature selection method based on different type of features
As irrelevant or redundant features may lead to an adverse impact on prediction[76], we per-
formed feature selection based on a large variety of features to remove redundant features and
improve prediction performance. These features incorporated four types: sequence-based fea-
tures, physicochemical and biochemical properties features, predicted structural features and
evolutionary information features. These can be further divided into 14 subtypes: LC, PWAA,
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EBGW, CKSAAP, KNN, ACC, PC-PseACC, AAindex, SS, RSA, Disorder, HSE, PSSM and
HH.

Firstly, we ranked each subtype of features by calculating the Pearson Correlation Coeffi-
cient (PCC) between each feature vector and the true classification index vector on training
dataset. Pearson Correlation Coefficient (PCC) measures the linear correlation between two
variables, giving a value between −1 and +1, where +1 represents total positive correlation, 0
represents no correlation, and −1 represents total negative correlation. It is widely used in the
statistics and sciences. In this step, we obtained 14 PCC-ranked lists corresponding to 14 sub-
types of features.

Then, for each subtype of features, we took a stepwise feature selection based on the support
vector machine (SVM) classifier. At each round of stepwise feature selection, the next feature
from the PCC-ranked list was added to the model if the accuracy of 5-fold cross-validation
increased. After this step, we obtained the 14 optimal feature sets corresponding to 14 subtypes
of features and then combined them to form the final selected features which were used to
build model for predicting acetylation sites. The parameters of SVM classifier were trained
based on the training dataset, using the grid selection tool in LibSVM.

This feature selection method based on different types of features, combining PCC ranking
and stepwise feature selection, provides a practical approach for selecting a useful feature set.

Performance Evaluation
In this paper, we utilized the 5-fold cross-validation on the training dataset to select features
and build prediction models by SVM classifier. Then, we compared our predictor with other
existing methods on the independent test set. Matthews correlation coefficient (MCC), accu-
racy (ACC), sensitivity (SEN), specificity (SPE), precision (PRE) and area under the receiver
operating characteristic curve (AUC) were applied to evaluate performance of our acetylation
predictor on training dataset and independent test set. Among them, AUC is calculated by the
area under the receiver-operating characteristic (ROC) curve which is the major performance
to estimate a classifier or method. Others are defined as:

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

SEN ¼ TP=ðTP þ FNÞ

SPE ¼ TN=ðTN þ FPÞ

PRE ¼ TP=ðTP þ FPÞ
where TP, TN, FP and FN are defined as the numbers of true positives, true negatives, false pos-
itives and false negatives, respectively.

Results

Analysis of Compositional biases around acetylation sites
For different species, we adopted a web-based tool, Two Sample Logo[77], to present the com-
positional biases of sequences between acetylated and non-acetylated sites (Fig 3). Two Sample
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Logo is used to detect and visualize statistically significant differences in position-specific sym-
bol composition between two sets of aligned samples of amino acids or nucleotides.

As we can see from Fig 3, each logo contains 19 residue fragments with 9 upstream and 9
downstream, based on the total datasets and there were some significant differences among dif-
ferent species. For example, the hydrophobic residues glycine (G) was enriched for H. sapiens
andM.musculus; while the negatively charged residues, glutamic acid (E) and aspartic acid
(D), were depleted for these two species. Interestingly, the lysine (K) was enriched at upstream
fragment and depleted at downstream fragment for H. sapiens andM.musculus; while it was
enriched in both upstream and downstream fragment for S. typhimurium. The positively
charged residue arginine (R) was enriched at upstream fragment for H. sapiens andM.muscu-
lus, while it was depleted at downstream fragment for H. sapiens, E. coli and S. typhimurium.

Generally, the enriched residues and depleted residues had distinctly differences between
species. These observations suggested that lysine acetylation sites among different species have
distinct location-specific differences. Therefore, building a species-specific predictor was neces-
sary and significant.

Determination of the Sliding Window Sizes
Since different sliding windows may have distinct prediction performances, optimization of
the sliding window sizes is required for selecting features and training models. On the one
hand, if the sliding window was too long, a large amount of redundant information would be
included. On the other hand, if the sliding window was too short, a lot of valuable information
would lose. Thus, we took into account the window size varied from 11 to 19.

In this study, we used the predicted accuracy as index to evaluate the performance of the
sliding windows with different sizes. Support vector machine (SVM) classifier and 5-fold cross-
validation were carried out to build model and select feature based on each sliding window
size.

Fig 4 showed the predicted accuracy of each model based on different window size. For S.
typhimurium, the window size of 17 had the accuracy scores of 41.50%, while the accuracy
score of the window size of 19 was 44.00%. The results showed these two window sizes were
not stable. Therefore, we discarded the window sizes 17 and 19. The model with a window size
of 13 had a relatively higher accuracy for most species than the window size of 11 and 15. Only
forM.musculus, the predicted accuracy of window size of 13 was a little lower than the window
size of 11 and 15. Compared with the window size of 11, the model trained using the window
size of 13 improved 6.15%, 0.58% and 1.50% for E. coli,H. sapiens and S. typhimurium, respec-
tively. And compared with the window size of 15, the window size of 13 improved 2.56%,

Fig 3. The compositional biases around the acetylation sites compared to the non-acetylation sites
based on the two-sample logo[77].Only amino acid residues significantly enriched or depleted (t-test for p-
value < 0.05) around lysine acetylation sites are shown.

doi:10.1371/journal.pone.0155370.g003
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0.79% and 4.00% for E. coli,H. sapiens and S. typhimurium, respectively. According to these
results, the optimal sliding window size was selected as 13 in our study.

Predictive Capability of Different Types of Features
We integrated 14 subtypes of features and selected useful features from each type by combining
PCC ranking and stepwise feature selection. To evaluate the predictive capabilities of different
subtypes of features, we used the predicted accuracy as index. Here, we built 14 models corre-
sponding to 14 subtypes of features using support vector machine (SVM) classifier. And then,
we evaluated the performance of each model on training dataset and independent test set.

Fig 5A and Fig 5B showed the predicted accuracy of different models for four species based
on 14 subtypes of features. For sequence-based features, the model trained with KNN features
outperformed all of the others for all four species on training dataset; while the performances
of the IC features were relatively poor. Additionally, the AAindex features had relatively higher
accuracy scores for H. sapiens,M.musculus and S. typhimurium on training dataset. For pre-
dicted structural features, the accuracy score of the model trained by HSE features was rela-
tively higher on training dataset, especially forM.musculus. In contrast, the performances of
SS features and disorder features were relatively poor for H. sapiens. These results indicated
that the contributive features on the training dataset were predominantly KNN, AAindex, HSE
and PSSM. For independent test set, the accuracy score of AAindex features was the best forM.
musculus and S. typhimurium, while the accuracy score of KNN features was the best for E. coli
andH. sapiens. In contrast, the KNN features performed relatively poor for S. typhimurium.
For predicted structural features, the HSE features had a relatively high accuracy scores
with> 50% for all species; while the disorder features performed relatively poor. Interestingly,
PSSM features had slightly higher performance than HH features for H. sapiens, while PSSM
features were inferior to HH features forM.musculus on training dataset, suggesting that HH
features, enjoying the advantage of faster calculation, also played a significant role in improving
prediction performance as PSSM features.

As observed from Fig 5C, the number of selected optimal features differed, depending on
different species. For example, H. sapiens had the largest set of optimal features with a total of

Fig 4. Predicted accuracy of 5-fold cross-validation based on the training dataset for sliding window
size ranging from 11 to 19.

doi:10.1371/journal.pone.0155370.g004
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151 features, while E. coli had the smallest set with 78 features used to build model. The evolu-
tionary information features (PSSM and HH features) took a relatively large proportion for all
of the four species. Also, different species had distinct biases toward a certain type of features.
ForH. sapiens, the number of AAindex features was the largest. In contrast, the LC and disor-
der features were the smallest in number. Additionally, the number of CKSAAP was relatively
large forM.musculus and E. coli while it was relatively small for H. sapiens. These results indi-
cated that the contributive features for different species showed some significant differences.

More importantly, the predicted HSE features showed an outstanding performance on both
training dataset and independent test set. The accuracy scores on independent test set were
>50% for all of the species. For training dataset, the accuracy scores were also>50%. To exam-
ine the statistical significance of the HSE features between acetylation sites and non-acetylation
sites, we further performedWilcoxon signed-rank test based on training dataset (Table 2). The
results showed that the differences of the HSE features between acetylation sites and non-acety-
lation sites were statistically significant for most species.

Fig 5. Predictive Capability of Different Types of Features on training dataset and independent test
set. (A) Predicted accuracy of the models based on different types of features on training dataset for four
species. (B) Predicted accuracy of the models based on different types of features on independent test set for
four species. (C) The number of different types of features in the final selected featues set for four species.
(D) Histograms and fitted density curves of HSEBU values between acetylation sites and non-acetylation
sites onH. sapiens structure dataset. The histogram of acetylation sites is colored by pink and density curve
is colored by red while the histogram of non-acetylation sites is colored by yellow and density curve is colored
by black.

doi:10.1371/journal.pone.0155370.g005

Table 2. Wilcoxon signed-rank test comparison of the statistical significance of the HSE between the acetylation sites and non-acetylation sites
for all four species, i.e.,H. sapiens,M.musculus, E. coli and S. typhimurium. The tests were based on the training dataset. (p-value < 0.05 byWilcoxon
signed-rank test)

Species HSEAU HSEAD HSEBU HSEBD

H. sapiens 0.0050 2.1756e-18 0.0159 0.3466

M. musculus 0.0074 2.3397e-09 0.0012 8.3233e-08

E. coli 0.2886 0.1067 0.3876 0.8038

S. typhimurium 0.0436 0.0060 0.0096 0.0262

doi:10.1371/journal.pone.0155370.t002
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Furthermore, we calculated real HSEU (HSE in the upper half sphere) values with a sphere
radius of 13Å based on the structure dataset of H. sapiens to investigate the real differences of
the HSE features between acetylation sites and non-acetylation sites. The average of HSEAU
values for acetylation sites was 8.15, while for non-acetylation sites was 9.21. And the average
of HSEBU values for acetylation sites (9.72) was also significantly less than non-acetylation
sites (11.07) (p-value = 0.0027 by Wilcoxon signed-rank single side test). Some of the results
were shown in Fig 5D. As mentioned before, acetylation is a process that an acetyl group
(CH3CO-) from Ace-CoA replacing the hydrogen atom in the epsilon-amino group (-NH3

+)
of side chain of lysine residue, and the side chain of lysine residue is located at the upper half
sphere which contains Cβ atom (Fig 1B). Therefore, we investigated the HSEU values in this
part. The lower HSEU value meant less neighbor residues around lysine residue in the upper
half sphere, which may result in more opportunity for the transferring an acetyl group
(CH3CO-) to the epsilon-amino group (-NH3

+) of lysine residue, i.e., improving the ability of
acetylation. Therefore, as shown in Fig 5D, the HSEU values for acetylation sites were signifi-
cantly lower. This may be why predicted HSE can be a potential type of features for predicting
acetylation site.

Prediction Performance on Training Dataset
We evaluated the prediction performance of our models based on the final selected features.
The 5-fold cross-validation was used to evaluate the performance on the training dataset. The
predicted performances were presented in Table 3. SVMmodels for all four species displayed
relatively good performance with AUC scores ranging from 0.723 to 0.787. Among these spe-
cies, the performances of the models for E. coli were the best with AUC scores of 0. 787. And
the AUC score of H. sapiens was 0.737, while the performance ofM.musculus was a little poor,
with the AUC scores of 0.723.M.musculus had the poorest MCC, ACC, SEN, SPE and PRE
scores of 0.342, 0.671, 0.685, 0.657 and 0.667 respectively. These results indicated that our pre-
dictor provided a good predictive ability on the training dataset.

Independent test set and Comparison with Existing Methods
To further evaluate the performance of our predictor, we made comparison with the other
existing methods on the independent test set. Here we put our independent test sets into 7 pre-
viously developed methods: LysAcet[14], ensemblePail[16], Phosida[23,24], PLMLA[17],
PSKAcePred[18], BRABSB[19] and SSPKA[22]. As we utilized the same independent test set
as SSPKA, the performance of other exiting methods were from SSPKA[22]. The comparison
results of our predictor with other existing methods based on independent test set were shown
in Table 4. As we can see, our predictor outperformed the majority of other methods for differ-
ent species, such asM.musculus and E. coli. Particularly, our predictor achieved AUC score of
0.713 forM.musculus and 0.734 for E. coli, which was significantly higher than the others.

However, our method performed slightly lower AUC score than PLMLA and lower ACC
score than BRABSB on independent test set. The reason was that the independent test set used

Table 3. The prediction performance of KA-predictor based on 5-fold cross-validation on training dataset.

Species MCC ACC SEN SPE PRE AUC

H. sapiens 0.351 0.676 0.679 0.673 0.675 0.737

M. musculus 0.342 0.671 0.685 0.657 0.667 0.723

E. coli 0.416 0.708 0.687 0.728 0.717 0.787

S. typhimurium 0.386 0.693 0.720 0.665 0.682 0.756

doi:10.1371/journal.pone.0155370.t003
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in this paper was not blind to the training dataset of these two methods. Also, in order to
remove interference made by homologous sequences and avoid overestimation, different meth-
ods selected different cutoff from 25% to 40%. For example, our independent test set for H.
sapiens had 190 acetylation proteins, however, 107 sequences among these had the identity of
>30% with the training set of BRABSB and 116 for PLMLA. For fair comparison, we used the
rest sequences (83 for BRABSB and 74 for PLMLA) to compare the prediction performance
with PLMLA and BRABSB, respectively. As shown in Fig 6,, our predictor apparently outper-
formed these two methods. When compared to BRABSB, our predictor achieved a MCC score
of 0.243 and an ACC score of 0.621 while 0.134 and 0.562 for BRABSB, respectively. For
PLMLA, the MCC score of our predictor was 0.180 when compared to 0.096 for PLMLA, and
the ACC score of our predictor was 0.590 when compared to 0.546 for PLMLA.

In addition, the results of S. typhimurium were a little poor when compared with some
methods. As mentioned above, different methods selected different samples as training dataset

Table 4. Performance comparison of our predictor with other existing methods on independent test set. As we utilized the same independent test set
as SSPKA, the performance of other exiting methods are from SSPKA[22].

Species Methods MCC ACC SEN SPE PRE AUC

H. sapiens PLMLA 0.296 0.648 0.633 0.663 0.667 0.689

Phosida 0.136 0.568 0.553 0.583 0.585 0.597

LysAcet 0.120 0.558 0.503 0.616 0.583 0.552

ensemblePail 0.076 0.535 0.457 0.618 0.560 0.534

PSKAcePred 0.111 0.556 0.553 0.558 0.571 0.556

BRABSB 0.275 0.637 0.612 0.663 0.659 0.645

SSPKA 0.214 0.600 0.482 0.725 0.652 0.606

Our Predictor 0.257 0.629 0.696 0.558 0.626 0.657

M. musculus PLMLA 0.182 0.590 0.521 0.659 0.609 0.604

Phosida 0.035 0.517 0.516 0.519 0.522 0.525

LysAcet 0.137 0.568 0.590 0.546 0.569 0.590

ensemblePail 0.104 0.550 0.431 0.670 0.570 0.555

PSKAcePred 0.282 0.635 0.511 0.762 0.686 0.652

BRABSB 0.172 0.584 0.511 0.659 0.604 0.592

SSPKA 0.222 0.611 0.638 0.584 0.609 0.661

Our Predictor 0.314 0.657 0.648 0.665 0.663 0.713

E. coli PLMLA 0.255 0.627 0.608 0.647 0.633 0.675

Phosida 0.258 0.627 0.706 0.549 0.610 0.662

LysAcet 0.045 0.520 0.275 0.765 0.538 0.440

ensemblePail -0.064 0.471 0.275 0.667 0.452 0.452

PSKAcePred 0.020 0.510 0.412 0.608 0.512 0.492

BRABSB 0.118 0.559 0.510 0.608 0.565 0.582

SSPKA 0.321 0.657 0.549 0.765 0.700 0.687

Our Predictor 0.375 0.686 0.745 0.627 0.667 0.734

S. typhimurium PLMLA 0.101 0.550 0.600 0.500 0.545 0.520

Phosida 0.000 0.500 0.560 0.440 0.500 0.442

LysAcet 0.100 0.550 0.560 0.540 0.549 0.514

ensemblePail 0.000 0.500 0.280 0.720 0.500 0.491

PSKAcePred 0.120 0.560 0.560 0.560 0.560 0.504

BRABSB 0.042 0.520 0.360 0.680 0.529 0.495

SSPKA 0.222 0.610 0.540 0.680 0.628 0.581

Our Predictor 0.040 0.520 0.560 0.480 0.519 0.542

doi:10.1371/journal.pone.0155370.t004

Lysine Acetylation Site Prediction

PLOS ONE | DOI:10.1371/journal.pone.0155370 May 16, 2016 14 / 21



and independent test set. The training set of some existing methods may contain the informa-
tion of our independent test set which results in the improvement of the performance for some
methods.

These results have clearly indicated that our predictor was highly competitive when com-
pared with other methods in predicting the acetylation sites for the majority of species.

Comparison of different feature selection methods
Max-Relevance-Max-Distance (MRMD) [78] is a feature ranking method, which includes two
main part of the decision: measuring the relevance between features in a subset by Pearson’s
correlation coefficient (PCC), and calculating the redundancy among features in a subset
through Euclidean distance, Cosine distance and Tanimoto. Minimum Redundancy Maximum
Relevance (mRMR) was proposed for processing microarray data and then applied into other
field [79,80]. The approach selects the features having minimal redundancy which means a
new selected feature should have least redundancy in the remaining of features, as well as the
maximal relevance which means selected feature should have the strongest relevance to the tar-
get type. The mutual information (MI), well known in probability theory and information the-
ory, is a measure of the mutual dependence between the two variables.

As already described in the above, we ranked different type of features by calculating the
Pearson Correlation Coefficient (PCC) between each feature and the true classification on
training dataset. In order to understand the influence of different feature selection methods for
prediction, we compared the performances of models built based on different feature selection
methods on independent test set (Table 5). The PCC method performed excellently on most of
the species, especially for H. sapiens andM.musculus. The MRMD had the best MCC score of
0.394 for E. coli and the best AUC score of 0.561 for S. typhimurium, while it performed worst
for H. sapiens. The models based on the mRMR method performed worst for S. typhimurium,
and MI method had relatively poor performance for E. coli. These results indicated that rank-
ing features based on PCC can be helpful to selecting essential features for lysine acetylation
prediction and improving the accuracy of predicting lysine acetylation sites.

Comparison of different classifiers
In this paper, we used the LibSVM classifier to predicting lysine acetylation sites. However,
ensemble classifier was generally considered to outperform a simple classifier. So I compared
the performance with a latest ensemble classifier, libD3C[81] employing two types of selective

Fig 6. Further Comparison of our predictor with PLMLA and BRABSB forH.sapiens. (A) Comparison of
our predictor with PLMLA. (B) Comparison of our predictor with BRABSB.

doi:10.1371/journal.pone.0155370.g006
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ensemble techniques, which are a combination of the ensemble pruning based on k-means
clustering and dynamic selection and circulating combination. We applied the LibD3C to select
features and build prediction model by the same methods as LibSVM. The comparison results
of the LibSVM and LibD3C classifier based on independent test set were shown in Table 6.
The performance of these two classifiers is pretty close. And LibSVM performed relatively bet-
ter than LibD3C in H. sapiens, E. coli and S. typhimurium. ForM.musculus, the LibD3C classi-
fier shared a comparable performance with LibSVM.

Conclusion and Discussion
In this study, we developed a novel predictor, KA-predictor, which has significantly improved
the prediction performance of species-specific lysine acetylation sites across four different spe-
cies, i.e., H. sapiens,M.musculus, S. typhimurium and E. coli, by combining a variety of fea-
tures. We incorporated different types of features and employed an efficient feature selection
on each type to form the final optimal feature set for model learning. We evaluated the predic-
tion performance of our models based on the final selected features. The training dataset
showed a relatively good performance based on the 5-fold cross-validation. Additionally, the

Table 5. Performance comparison of different feature selection methods on independent test set.

Species Selection Methods MCC ACC SEN SPE PRE AUC

H. sapiens MRMD 0.180 0.591 0.667 0.511 0.592 0.625

mRMR 0.196 0.599 0.652 0.542 0.603 0.632

MI 0.230 0.616 0.690 0.538 0.614 0.653

PCC 0.257 0.629 0.696 0.558 0.626 0.657

M. musculus MRMD 0.255 0.627 0.670 0.584 0.621 0.686

mRMR 0.303 0.651 0.660 0.643 0.653 0.705

MI 0.206 0.603 0.601 0.605 0.608 0.683

PCC 0.314 0.657 0.648 0.665 0.663 0.713

E. coli MRMD 0.394 0.696 0.745 0.647 0.679 0.698

mRMR 0.257 0.627 0.686 0.569 0.614 0.689

MI 0.137 0.569 0.608 0.529 0.564 0.598

PCC 0.375 0.686 0.745 0.627 0.667 0.734

S. typhimurium MRMD 0.062 0.530 0.640 0.420 0.525 0.561

mRMR -0.201 0.490 0.620 0.360 0.492 0.503

MI 0.081 0.540 0.600 0.480 0.536 0.508

PCC 0.040 0.520 0.560 0.480 0.519 0.542

doi:10.1371/journal.pone.0155370.t005

Table 6. Performance comparison of LibSVM and LibD3C on independent test set.

Species Classifiers MCC ACC SEN SPE PRE

H. sapiens LibD3C 0.165 0.584 0.652 0.511 0.587

LibSVM 0.257 0.629 0.696 0.558 0.626

M. musculus LibD3C 0.314 0.657 0.691 0.622 0.650

LibSVM 0.314 0.657 0.648 0.665 0.663

E. coli LibD3C 0.281 0.637 0.745 0.529 0.613

LibSVM 0.375 0.686 0.745 0.627 0.667

S. typhimurium LibD3C 0 0.500 0.560 0.440 0.500

LibSVM 0.040 0.520 0.560 0.480 0.519

doi:10.1371/journal.pone.0155370.t006
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results on the independent test set indicated that KA-predictor was able to perform competi-
tively, compared with existing tools. Feature contribution analysis indicated that HSE features,
firstly introduced for lysine acetylation prediction, significantly improve the predictive perfor-
mance. In addition, we compared different kinds of feature selection methods and different
classifiers with ours. The results indicated that ranking features based on PCC and utilizing
LibSVM classifier can be helpful to improving the accuracy of predicting lysine acetylation
sites. Particularly, we constructed a high-accurate structure dataset ofH.sapiens from PDB to
analyze the structural properties around lysine acetylation sites. Moreover, a user-friendly tool
was freely available at http://sourceforge.net/p/ka-predictor.

Although our predictor can perform accurately according to the above results, some issues
must still be addressed in future work. Firstly, the number of negative samples (i.e. non-acetyla-
tion sites) was much larger than that of positive samples (i.e. acetylation sites) resulting in the
problem of imbalanced learning. We randomly sampled a subset from the negative samples
with a ratio of 1:1 of positive versus negative samples to form a relatively balanced training
dataset. However, the information loss brought by random under-sampling will weaken the
prediction performance. Ensemble learning method to reduce the impact of under-sampling is
crucial for improving the prediction performance. Secondly, we used datasets from SSPKA[22]
proposed about 2 years ago. There may have some new data in different databases. Also, the
independent test set used in this paper was really blind to the training dataset, but may not be
independent to other existing predictors. Hence, making full use of new data and constructing
a test set that is truly independent to each predictor are important. Finally, a lot of other amino
acid residues can be also acetylated such as, Alanine (A), Glycine (G), Methionine (M), Serine
(S) and Threonine (T). In the future work, we can take into account the prediction of acetyla-
tion of these amino acids.
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