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Abstract

All organisms encode enzymes that replicate, maintain, pack, recombine, and repair their genetic material. For this

reason, mutation rates and biases also evolve by mutation, variation, and natural selection. By examining metagenomic

time series of the Lenski long-term evolution experiment (LTEE) with Escherichia coli (Good BH, McDonald MJ, Barrick JE,

Lenski RE, Desai MM. 2017. The dynamics of molecular evolution over 60,000 generations. Nature 551(7678):45–50.),

we find that local mutation rate variation has evolved during the LTEE. Each LTEE population has evolved idiosyncratic

differences in their rates of point mutations, indels, and mobile element insertions, due to the fixation of various hyper-

mutator and antimutator alleles. One LTEE population, called Araþ3, shows a strong, symmetric wave pattern in its

density of point mutations, radiating from the origin of replication. This pattern is largely missing from the other LTEE

populations, most of which evolved missense, indel, or structural mutations in topA, fis, and dusB—loci that all affect DNA

topology. The distribution of mutations in those genes over time suggests epistasis and historical contingency in the

evolution of DNA topology, which may have in turn affected local mutation rates. Overall, the replicate populations of the

LTEE have largely diverged in their mutation rates and biases, even though they have adapted to identical abiotic

conditions.
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Introduction

Loci that modify DNA repair and recombination modify the

evolutionary process. Therefore, one might ask whether nat-

ural selection adaptively tunes mutation and recombination

rates. This idea—that second-order selection adaptively modi-

fies the evolutionary process itself—is debated (Tenaillon et al.

2001; Lynch et al. 2016). Nonetheless, populations of

Escherichia coli, engineered to have constitutive sexual recom-

bination and elevated mutation rates, adapt faster than
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control populations in the laboratory (Cooper 2007; Peabody

et al. 2016, 2017).

To study second-order selection on mutation rates, one

can use experimental evolution. By running experiments in

which replicate populations evolve under controlled condi-

tions, with different starting mutation rates, one can ask

whether particular mutation rates are favored over others

(Chao et al. 1983; Loh et al. 2010; Sprouffske et al. 2018).

Here, we use metagenomic time series data from the Lenski

long-term evolution experiment (LTEE) with E. coli to study

how mutation rates evolve in real time.

In the LTEE, 12 populations of E. coli, descended from a

common ancestral strain, have adapted for more than 73,000

generations to carbon-limited minimal media. Six of the pop-

ulations are labeled Araþ, whereas the other six are labeled

Ara�, based on the presence or absence of an evolutionarily

neutral arabinose marker (Lenski et al. 1991). The LTEE pop-

ulations are strictly asexual. Some populations have evolved

defects in DNA repair which vastly increase their point muta-

tion rates. The causative hypermutator alleles likely went to

fixation by linkage with highly beneficial mutations, rather

than being beneficial per se (Sniegowski et al. 1997;

Tenaillon et al. 2016). We refer to the LTEE populations that

have evolved large increases in point mutation rates as

“hypermutator populations,” and refer to the others as

“nonmutator populations.”

Molecular evolution in the hypermutator populations of

the LTEE is dominated by “genetic draft,” in which large

numbers of nearly neutral passenger mutations hitchhike

with a small number of beneficial driver mutations (Neher

2013). This phenomenon has obscured the genomic signa-

tures of adaptation in those populations (Tenaillon et al. 2016;

Couce et al. 2017; Good et al. 2017; Maddamsetti et al.

2017). In this regime, also called “emergent neutrality”

(Schiffels et al. 2011), the evolutionary dynamics inferred

from whole-population samples of the hypermutator popula-

tions (Good et al. 2017) provides good data on mutation rates

and biases, even though natural selection drives the dynamics.

Here, we examined LTEE metagenomics data (Good et al.

2017) for mutation rate variation and biases over the chro-

mosome (Foster et al. 2013; Paul et al. 2013; Jee et al. 2016;

Niccum et al. 2019).

Results

Cumulative Number of Observed Mutations in Each
Population Reveals Dynamics Caused by Both
Hypermutator and Antimutator Alleles

We examined the number of observed mutations over time in

each LTEE population (figs. 1 and 2, supplementary figs. S1–

S3, Supplementary Material online). These results show that

mutation rates have evolved idiosyncratically over the LTEE.

Figure 1A shows the number of point mutations over time in

each population. The rate of observed point mutations de-

creased in three of the six hypermutator populations (Ara�2,

Araþ3, and Araþ6). The decrease in the rate of molecular

evolution in these populations was previously ascribed to the

evolution of antimutator alleles (Tenaillon et al. 2016; Good

et al. 2017). Although antimutator alleles of mutY compen-

sating for defects in mutT have been reported in Ara�1

(Wielgoss et al. 2013), the change in slope observed at

40,000 generations in Ara�1 is subtle compared with the

slope changes in Ara�2, Araþ3, and Araþ6.

Figure 1B shows the number of observed indel mutations

over time in each population. Five of the six point-mutation

hypermutator populations also show an indel hypermutator

phenotype. These five populations all evolved defects in mis-

match repair (MMR) (table 1 and fig. 4). The exception is

Ara�1, which evolved a frameshift mutT allele (table 1 and

fig. 3) that induces a high point mutation rate, absent a cor-

responding indel hypermutator phenotype.

The hypermutator dynamics in Ara�2 are particularly strik-

ing. An antimutator allele eventually fixes, and reverts both

the point and indel hypermutator phenotype back to ances-

tral or near ancestral levels (fig. 1A and B). The hypermutator

phenotype is caused by phase variation of a (TGGCGC)3 re-

peat in mutL (table 1). Reversions to the triplet state reverse

the hypermutator phenotype. The number of new point and

indel mutations in Ara�2 (supplementary figs. S1 and S2,

Supplementary Material online) fluctuates with the allele fre-

quency dynamics of this mutL repeat (fig. 4). Although fixa-

tions are usually irreversible in large asexual populations,

phase variation is an exception: polymerases often slip on re-

petitive sequences, causing those repeats to expand or con-

tract at relatively high rates (Moxon et al. 2006).

At first glance, figure 1B seems to show that Araþ6 fixed a

mutation reverting the indel hypermutator phenotype.

However, a close examination of the indel mutation rate

and allele frequency dynamics in Araþ6 reveals that a

super-hypermutator clade evolved within the first 1,000 gen-

erations (supplementary fig. S2, Supplementary Material on-

line). Additional evidence for the super-hypermutator clade

comes from the evolution and extinction of an A:T!G:C

and G:C!A:T hypermutator phenotype (fig. 2) that parallels

the evolution of the indel hypermutator phenotype. This

super-hypermutator clade carries a frameshift allele of the

MMR gene mutS (table 1 and fig. 4), is distinguished by

marker alleles of the nucleotide excision repair genes uvrA

and uvrB (fig. 3), and persists at low frequency until going

extinct by 20,000 generations (figs. 3 and 4, supplementary

fig. S2, Supplementary Material online). The majority clade in

Araþ6 evolved a mutation in mutT at 4,750 generations (ta-

ble 1 and fig. 3) that causes a point mutation hypermutator

phenotype without causing an indel hypermutator pheno-

type. The coexistence of clades with different hypermutator

phenotypes, and the eventual extinction of the super-
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hypermutator clade, most reasonably explains the loss of the

indel hypermutator phenotype from Araþ6.

Figure 1C shows the number of observed structural muta-

tions over time. As described in the original report for this data

set (Good et al. 2017), structural mutations (or structural var-

iants, sv) are defined by junctions between two distinct loca-

tions in the reference genome. The vast majority of these

structural mutations are caused by insertion sequence (IS)

transpositions. Three of the canonical nonmutator popula-

tions (Ara�5, Ara�6, and Araþ1) show an IS hypermutator

phenotype. The IS hypermutator phenotype in Araþ1 was

reported previously (Papadopoulos et al. 1999; Tenaillon

et al. 2016). In contrast, only one of the canonical hypermu-

tator populations, Ara�3, shows an IS hypermutator pheno-

type. The rate of observed structural mutations in Ara�3

shows three different slopes. Ara�3 evolved an IS
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FIG. 1.—Divergent evolution of mutation rates in the LTEE. Each panel shows the cumulative number of observed mutations, subdivided by mutation

class, over time in each LTEE population. The top six panels show the nonmutator LTEE populations, and the bottom six panels show the hypermutator LTEE

populations. (A) Point mutations are shown in red. (B) Indel mutations are shown in purple. (C) sv associated with transposons are shown in green, whereas

those that are not associated with transposons are shown in gray.
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hypermutator phenotype very early in the LTEE. Around

30,000 generations, the IS rate intensifies, either due to ge-

netic evolution, or as a consequence of stress induced by the

citrate metabolic innovation that evolved around that time

(Blount et al. 2012, 2020). Finally, the IS rate decreases

around 45,000 generations. More than 100 mutations go

to fixation in the selective sweep at 45,000 generations in

Ara�3, including mutations in the DNA repair genes recR,

recE, ligA, uvrA, and ybaZ. The distinct IS rates observed in

Ara�3 may, in part, reflect clonal interference between

deeply diverged, competing lineages in that population

(Blount et al. 2012; Leon et al. 2018), especially if those line-

ages have different IS transposition rates.

We also examined the spectrum of point mutations in each

hypermutator population over time (fig. 2). Ara–1 and Araþ6

show a high frequency of A:T!C:G transversion mutations,

characteristic of defects in mutT (Tajiri et al. 1995; Fowler et al.

2003; Wielgoss et al. 2013). Ara–2, Ara–3, Ara–4, and

Araþ3, which all have defects in MMR (table 1 and fig. 4),

show a high frequency of A:T!G:C and G:C!A:T muta-

tions. These findings are consistent with genomic analyses

of LTEE hypermutators (Couce et al. 2017). Furthermore,

Ara�1, Ara�3, and Araþ6 all show late increases in the

frequency of G:C!T:A transversion mutations, characteristic

of defects in mutY (Tajiri et al. 1995; Fowler et al. 2003;

Wielgoss et al. 2013).

In examining mutT, we noticed that two of the three

cases of mutT alleles arising to high frequency in the LTEE

occur on an uvrA background (Ara�2 and Araþ6), whereas

the third, in Ara�1, occurs on an uvrC background (fig. 3).

The mutT allele in Ara�2 does not cause the characteristic

mutT A:T!C:G hypermutator phenotype found in Ara�1

and Araþ6 (fig. 2), so its association with uvrA may be co-

incidental. However, the same uvrA substitution that goes to

fixation with mutT in Araþ6 also occurs in a 40,000 gener-

ation isolate from the Ara�1 population called REL10939

(Tenaillon et al. 2016), which suggests that this particular

uvrA allele may be beneficial in those contexts.

Furthermore, it has been reported that uvrA/mutT and

uvrB/mutT double knockouts have a substantially lower mu-

tation rate than mutT knockouts, in the presence of hydro-

gen peroxide (Hori et al. 2007). Based on these observations,

we hypothesize that the mutT alleles that successfully went

to fixation in the LTEE may have evolved on an uvrABC ge-

netic background that reduced the intensity of the mutT

hypermutator phenotype.
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Gene-Orientation Mutation Bias Evolves in the LTEE

Several reports indicate that mutation rates differ between

the leading and lagging strands of the DNA replication bubble

(Lee et al. 2012; Paul et al. 2013). Potential causes include

asymmetry in nucleotide composition around the replication

origin (GC skew) (Mar�ın and Xia 2008), context-dependent

mutation rates that are asymmetric around the replication

origin (Sung et al. 2015), and head-on collisions between

the replication and transcription molecular machinery (Paul

et al. 2013). Such reports motivated us to ask whether the

LTEE metagenomics data showed evidence of gene-

orientation mutation biases, such that genes oriented with

(or against) the leading or lagging strand of DNA synthesis

have different mutation rates.

Our null expectation is that the distribution of synonymous

mutations on each strand of the chromosome should be re-

lated to the amount of coding sequence on each strand (i.e.,

the density of genes multiplied by their length). Furthermore,

the spectrum of nucleotide substitutions on each strand

should reflect local G:C content in the ancestral LTEE clone

REL606: for example, G:C!A:T substitutions should be more

common in G:C-rich regions. Figure 5A shows this null expec-

tation. Both the amount of coding sequence and G:C content

per strand are asymmetric about the replication origin of

REL606. At the replication origin, one DNA strand switches

from leading to lagging, while its complement switches from

lagging to leading. This switch occurs because DNA replica-

tion is bidirectional, such that two replisomes move in oppo-

site directions from the replication origin. Even in the absence

of gene-orientation mutation bias, figure 5A shows that some

asymmetry in the distribution of synonymous mutations over

the replication origin is expected.

The observed distributions of synonymous mutations on

each strand of the chromosome are shown in figure 5B.

We separately analyzed MMR- and MutT-deficient hypermu-

tator populations. In both cases, the number of observed

mutations significantly differs between genes oriented with

or against the movement of the replisome, based on compar-

ing the expected ratio of mutations to the observed ratio of

mutations. The MMR-deficient hypermutator populations

show significantly more gene-orientation mutation bias than

expected (two-tailed binomial test: observed ratio of

2,066:2,664 mutations vs. expected ratio of

1,730,238:2,066,587 nucleotides; P¼ 0.0090), whereas the

MutT-deficient hypermutator populations show significantly

less gene-orientation bias than expected (two-tailed binomial

test: observed ratio of 947:1,033 mutations vs. expected ratio

of 1,730,238:2,066,587 nucleotides; P¼ 0.0446). Note that

these calculations do not account for the characteristic muta-

tion spectra of MMR- and MutT-deficient hypermutators

(fig. 5B). For example, the extreme rate of A:T!C:G muta-

tions seen in MutT-deficient hypermutators (Foster et al.

2015) should cause A:T rich genes to mutate faster than

A:T poor genes.

The Genomic Distribution of Observed Mutations in

Araþ3 Shows a Strong, Symmetric Wave Pattern over the

Origin of Replication

Multiple studies (Sharp et al. 1989; Lang and Murray 2011;

Foster et al. 2013; Dillon et al. 2018; Niccum et al. 2019) have

reported correlations between local mutation rates and dis-

tance from the origin of replication. One hypermutator LTEE

population, called Araþ3, shows a symmetric wave pattern

reflected over oriC (fig. 6). Indeed, the genomic distribution of

Table 1.

Putative Hypermutator and Antimutator Alleles Described in the Text

Population Gene DNA Repair Pathway Appearance Time (Generations) Position (bp) Mutation

Ara�1 uvrC Oxidative damage repair 26,250 1,972,086 Q183P

Ara�1 mutT Oxidative damage repair 26,250 114,034 (C)6!7

Ara�1 mutY Oxidative damage repair 28,750 2,988,792 L40W

Ara�1 mutY Oxidative damage repair 32,250 2,989,164 L164*

Ara�2 mutL MMR 2,250 4,375,786 (TGGCGC)3!4

Ara�2 uvrA Oxidative damage repair 12,250 4,251,585 A407T

Ara�2 mutT Oxidative damage repair 13,750 114,113 R89H

Ara�2 mutL MMR *This in-frame reversion

fixes at 42,250 generations

4,375,781 (TGGCGC)3!2

Ara�3 mutS MMR 34,750 2,753,768 Q606*

Ara�3 mutY Oxidative damage repair 48,250 2,989,624 D1 bp

Ara�4 mutL MMR 7,250 4,375,781 (TGGCGC)3!2

Araþ3 mutS MMR 2,750 2,752,473 þG

Araþ6 mutS MMR 1,250 2,752,473 þG

Araþ6 uvrA Oxidative damage repair 4,750 4,250,341 I821M

Araþ6 mutT Oxidative damage repair 4,750 114,034 (C)6!5

Araþ6 mutY Oxidative damage repair 31,750 2,988,917 Y82D

Araþ6 mutY Oxidative damage repair 49,750 2,989,297 C208W

Divergent Evolution of Mutation Rates and Biases GBE
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observed mutations in Araþ3 is significantly different from

the genomic distribution of observed mutations summed

over all hypermutator populations (two-sample

Kolmogorov–Smirnov test: D¼ 0.0567, P< 10�14). The

wave in Araþ3 has a trough-to-peak ratio of �25:75

(fig. 6). Excluding Araþ3, the genomic distribution of ob-

served mutations summed over the remaining MMR-

deficient LTEE populations shows a weak wave pattern,

whereas the populations with defects in mutT shows no ev-

idence of the wave pattern (fig. 7). The genomic distribution

of observed mutations in the MMR-deficient populations (ex-

cluding Araþ3) is significantly different from the genomic

distribution of observed mutations in the MutT-deficient pop-

ulations (two-sample Kolmogorov–Smirnov test:

D¼ 0.040916, P< 10�9).

Evidence for Epistasis and Historical Contingency in the

Evolution of DNA Topology

Why does a strong wave pattern only appear in Araþ3?

Others have hypothesized that local chromatin structure

affects local mutation rates (Foster et al. 2013; Niccum et al.

2019). Furthermore, DNA topology has evolved in parallel in

the LTEE, and artificially increasing DNA supercoiling is

FIG. 3.—Oxidative damage repair alleles in hypermutator LTEE populations. This visualization uses computer code from Good et al. (2017). Stars indicate

the time (and allele frequency) at which mutations are reliably estimated to appear in the time series. The allele frequency trajectories for all observed

mutations in the hypermutator populations are shown in gray. The allele frequency trajectories of de novo mutations (excepting synonymous mutations) in

oxidative damage repair genes (supplementary file 1, Supplementary Material online) are colored and labeled in each population.
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beneficial under LTEE conditions (Crozat et al. 2005, 2010).

Therefore, we hypothesized that mutations in genes that af-

fect DNA topology might affect the wave pattern. To test this

hypothesis, we examined the timing and distribution of muta-

tions in topA, fis, and dusB (yhdG). We focused on these

genes for several reasons. First, these loci show strong parallel

evolution in the LTEE (Crozat et al. 2010). Second, introducing

evolved alleles of topA and fis into the ancestral genome are

sufficient to confer a fitness benefit as well as additive

changes to DNA topology (Crozat et al. 2005). Finally, statis-

tical analysis of the pattern of evolution for dusB and fis in the

LTEE led to the discovery that dusB regulates fis expression

(Crozat et al. 2005, 2010). We excluded synonymous muta-

tions from this analysis. We counted both fixations and

mutations destined for extinction, because many beneficial

mutations go extinct in large asexual populations due to

clonal interference (Gerrish and Lenski 1998; Lang et al.

2013; Levy et al. 2015; Maddamsetti, Lenski, et al. 2015; Ba

et al. 2019).

All LTEE populations evolved missense, indel, or structural

mutations in topA, fis, and dusB within the first 10,000 gen-

erations, except two: Araþ2 and Araþ3 (fig. 8). The timing

and distribution of mutations in these genes across popula-

tions suggests epistasis and historical contingency (Good et al.

2017). The early arrival times for mutations in these genes

suggests that there is an early, limited window of opportunity

for those mutations to go to fixation. Quantitative evidence

comes from Araþ3, which has no missense, nonsense, indel,

FIG. 4.—MMR alleles in the hypermutator LTEE populations. This visualization uses computer code from Good et al. (2017). Stars indicate the time (and

allele frequency) at which mutations are reliably estimated to appear in the time series. The allele frequency trajectories for all observed mutations in the

hypermutator populations are shown in gray. The allele frequency trajectories of de novo mutations (except synonymous mutations) in MMR genes

(supplementary file 1, Supplementary Material online) are colored and labeled in each population.
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or structural mutations in topA, fis, and dusB whatsoever,

despite its strong hypermutator phenotype. The probability

of this event is P ¼ (1�(t/g))n, where t is the effective muta-

tional target size, g is the length of the chromosome

(g¼ 4,629,812), and n is the number of observed missense,

indel, and structural mutations in Araþ3 (n¼ 4,368). Given

the wave pattern in Araþ3, the effective mutational target

size of topA, fis, and dusB could be smaller than their com-

bined physical target size (3,861 bp), say if they occurred in

the trough of the wave. To take this into account, we parti-

tioned the chromosome into bins, counted mutations per bin,

and calculated the effective mutational target size by multi-

plying the physical target size (length) of topA, fis, and dusB

by the number of mutations per base pair in their respective

bins. These genes are significantly depleted of mutations in

Araþ3, for bin sizes ranging from 100 kb to the entire chro-

mosome (one-tailed randomization tests with 10,000 boot-

straps: P< 0.05 in all cases).

The distribution of synonymous mutations in topA, fis, and

dusB across the LTEE populations is interesting (supplemen-

tary fig. S4 and Supplementary Material online). A single, syn-

onymous A312A substitution in dusB went to fixation at

�4,000 generations in Araþ3, simultaneously with alleles in

the MMR genes mutS and mutH that apparently caused the

early hypermutator phenotype in this population. No other

synonymous mutations in dusB are observed in Araþ3.

Furthermore, there is evidence of parallel evolution at this

particular position in dusB. The same synonymous mutation

occurs in Araþ6, and another synonymous mutation, one

base pair downstream in the next codon, is the only synony-

mous mutation in topA, fis, or dusB observed in Ara�2 (sup-

plementary fig. S4, Supplementary Material online). This

parallelism suggests that positive selection may be acting on

these synonymous variants. Overall, it is striking how few syn-

onymous mutations in topA, fis, and dusB occur in the hyper-

mutator LTEE populations, which implies that synonymous

variants in these genes may not be evolving neutrally.

Indeed, STIMS (Maddamsetti and Grant 2020) finds a signif-

icant signal of purifying selection on synonymous mutations in

topA, fis, and dusB in Ara�1 and Ara�3 (one-tailed random-

ization test with 10,000 bootstraps: P< 0.0001).

We also examined the genes that encode the nucleoid-

binding protein HU and the terminus-organizing protein

MatP, as deletions of these loci were shown to affect the

FIG. 5.—Gene-orientation mutation bias evolves in the LTEE. The x axis is the reference genome, centered on the replication origin, partitioned into 46

equally sized bins of�100kb. In each labeled subfigure, top and bottom panels show genes occurring on each of the two strands of the chromosome, with

the arbitrary labels 1 and �1. (A) The nucleotide composition of genes on the two strands of the chromosome of the LTEE ancestral clone REL606. (B) The

genomic distribution of mutations within genes, summed over MMR-deficient LTEE populations (left panel) and MutT-deficient LTEE populations (right

panel).
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wave pattern (Niccum et al. 2019). Notwithstanding the rel-

evance of HU and MatP in Niccum et al. (2019), these genes

show limited evidence of parallel evolution in the LTEE (sup-

plementary fig. S5, Supplementary Material online).

Synonymous Nucleotide Diversity in Natural E. coli

Populations Does Not Predict Mutation Rate Variation in

the LTEE

Finally, we used the LTEE metagenomic data to revisit previous

work, which found that the distribution of synonymous

mutations in the LTEE does not reflect patterns of synony-

mous variation among natural E. coli isolates (Maddamsetti

et al. 2015). During our reanalysis, we found a potential cod-

ing error affecting the results of the Kolmogorov–Smirnov test

reported in that paper. Therefore, we used Poisson regression

to ask whether the estimates of synonymous nucleotide di-

versity hs published in Martincorena et al. (2012), when

treated as gene-specific estimates of the point-mutation

rate per base pair, predict the distribution of synonymous

mutations observed in the LTEE. A null model in which muta-

tions occur uniformly over the chromosome (Akaike’s
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FIG. 6.—One hypermutator LTEE population, Araþ3, shows a strong wave pattern of mutation rate variation centered on the replication origin. Each

panel shows the genomic distribution of mutations observed in each hypermutator LTEE population in the metagenomics data. The x axis is the reference

genome, centered on the replication origin, partitioned into 46 equally sized bins of �100 kb. Indels are in purple, missense mutations are in dark blue,

noncoding mutations are blue green, nonsense mutations are sea green, sv are green, and synonymous mutations are yellow.
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Information Criterion, AIC ¼ 8,529.6) fits the data far better

than the hs model (AIC¼ 9,171.3). When we fit both models

to Araþ3, we again find that the null model is better than the

hs model at predicting the observed distribution of synony-

mous mutations (AIC ¼ 2,168.2 for null model vs. AIC ¼
2,190.8 for hs model). This finding validates the conclusions

reported in Maddamsetti et al. (2015), despite the potential

problems in that analysis.

Discussion

By examining the distribution of observed mutations over

more than 60,000 generations of the LTEE (Good et al.

2017), we find that mutation rates and biases have diverged

idiosyncratically, despite identical abiotic conditions. One LTEE

population, Araþ3, shows strong evidence of the wave pat-

tern in mutation rate variation. Similar patterns have been

seen in mutation accumulation experiments with MMR-

deficient strains of E. coli as well as in Vibrio bacteria (Dillon

et al. 2018; Niccum et al. 2019). Our result shows that geno-

mic biases in mutation rates evolve dynamically on laboratory

timescales. It is likely that the identity and effects of many

hypermutator and antimutator alleles in the LTEE remains un-

known. For instance, we do not know what alleles, if any,

cause the apparent late decrease in mutation rate seen in

Araþ3. Experiments are needed, both to discover those un-

known alleles, and to test for genetic interactions that mod-

ulate mutation rates in the LTEE, as we have hypothesized for

alleles of uvrABC and mutT.

The divergence in the rates, biases, and spectra of muta-

tions across replicate populations in this simple long-term evo-

lution experiment makes one wonder about the scope of

natural variation in mutation rates, biases, and spectra. An

evolution experiment with replicate mouse microbiomes has

indicated that microbial evolution in the gut is probably char-

acterized by long-term maintenance of intraspecies genetic

diversity, including mutation rate polymorphism (Ramiro et al.

2020). Phylogenomic studies have also found extensive evi-

dence for horizontal gene transfer in DNA repair genes

(Denamur et al. 2000), which suggests that polymorphism

in DNA repair genes may cause extensive natural variation

in mutation and recombination rates within and across bac-

terial (meta-) populations and communities.

We find statistical evidence for historical contingency and

epistasis in the evolution of DNA topology in the LTEE, and for

Araþ3 in particular. These findings suggest a relationship be-

tween local DNA topology and local mutation rate variation,

consistent with the experiments reported by Niccum et al.

(2019). These findings immediately suggest the need for

experiments to test whether local DNA topology causes local

mutation rate variation, and to test whether local DNA topol-

ogy affects strand-specific and gene-orientation mutation

biases.

A comparison of synonymous genetic variation estimated

from natural E. coli isolates to the distribution of observed

synonymous mutations in the LTEE confirms the conclusion

of earlier work (Maddamsetti et al. 2015) using richer data,
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FIG. 7.—MMR-deficient LTEE populations (excluding Araþ3) show a weak wave pattern, whereas MutT-deficient LTEE populations show no wave

pattern. The left panel shows the genomic distribution of mutations observed in Ara�2, Ara�3, and Ara�4. The right panel shows the genomic distribution

of mutations observed in Ara�1 and Araþ6. The x axis is the reference genome, centered on the replication origin, partitioned into 46 equally sized bins of

�100 kb. Indels are in purple, missense mutations are in dark blue, noncoding mutations are blue green, nonsense mutations are sea green, sv are green,

and synonymous mutations are yellow.
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FIG. 8.—The strong wave pattern in Araþ3 anticorrelates with mutations (excluding synonymous changes) in the DNA topology genes topA, fis, and

dusB. This visualization uses computer code written by Good et al. (2017). The allele frequency trajectories for all observed mutations in the 12 LTEE

populations are shown in gray. The allele frequency trajectories of de novo mutations in topA, fis, and dusB (excepting synonymous mutations) are colored

and labeled in each population.
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and is consistent with other reports as well (Lee et al. 2012;

Chen and Zhang 2013; Lynch et al. 2016). In sum, gene-

specific variation in synonymous nucleotide diversity hs, esti-

mated from natural isolates of E. coli, does not predict the

genomic distribution of synonymous mutations observed in

the LTEE. In any case, the other results that we have pre-

sented, in addition to prior reports (Foster et al. 2013; Paul

et al. 2013; Sung et al. 2015; Jee et al. 2016; Niccum et al.

2019), strongly indicate that mutation rates vary over the

E. coli chromosome.

These results add to the robust debate on the causes and

consequences of mutation rate evolution. It is clear that a

deeper understanding of the relationships among chromatin

structure, genomic variation in mutation and recombination

rates, and natural selection, and their consequences for short-

and long-term genome evolution, will be a fruitful goal for

further research.

Materials and Methods

Preprocessed LTEE metagenomic data, and associated analysis

and visualization code was downloaded from: https://github.

com/benjaminhgood/LTEE-metagenomic. Analysis codes are

available from: https://github.com/rohanmaddamsetti/LTEE-

purifying-selection/blob/master/mutation-rate-analysis.R and

https://github.com/rohanmaddamsetti/LTEE-purifying-selec-

tion/blob/master/metagenomics-library.R. We systematically

examined DNA repair genes in E. coli (Eisen and Hanawalt

1999; Lee et al. 2016; Deatherage et al. 2018), as well as

annotated DNA polymerases, and other proteins of the repli-

some. A table of these genes and their annotations is in sup-

plementary data file 1, Supplementary Material online. We

cross-checked the evolutionary dynamics of alleles of these

genes in the LTEE metagenomic data against the observed

changes in mutation rates and spectra in each LTEE popula-

tion. We also examined the LTEE genomic data (Tenaillon

et al. 2016) for mutations in these genes, using the R Shiny

web app interface at www.barricklab.org/shiny/LTEE-Ecoli. In

this manner, we curated a list of putative hypermutator and

antimutator alleles in the LTEE (table 1). Those alleles, and

alleles of other genes in their respective DNA repair pathways,

are shown in figures 3 and 4. Figure 3 shows the evolutionary

dynamics of alleles in genes encoding base excision repair,

nucleotide excision repair, and degradation of oxidized nucle-

otide triphosphates. Figure 4 shows the evolutionary dynam-

ics of alleles in genes encoding DNA MMR. Data sets and

analysis codes to replicate the findings and figures in this pa-

per are available on the Dryad Digital Repository (DOI: https://

doi.org/10.5061/dryad.kprr4xh2z.).
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