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Abstract

Reproductive disorders that are common/increasing in prevalence in human males may arise because of deficient androgen
production/action during a fetal ‘masculinization programming window’. We identify a potentially important role for
Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) in Leydig cell (LC) steroidogenesis that may
partly explain this. In rats, fetal LC size and intratesticular testosterone (ITT) increased ,3-fold between e15.5-e21.5 which
associated with a progressive decrease in the percentage of LC expressing COUP-TFII. Exposure of fetuses to dibutyl
phthalate (DBP), which induces masculinization disorders, dose-dependently prevented the age-related decrease in LC
COUP-TFII expression and the normal increases in LC size and ITT. We show that nuclear COUP-TFII expression in fetal rat LC
relates inversely to LC expression of steroidogenic factor-1 (SF-1)-dependent genes (StAR, Cyp11a1, Cyp17a1) with
overlapping binding sites for SF-1 and COUP-TFII in their promoter regions, but does not affect an SF-1 dependent LC gene
(3b-HSD) without overlapping sites. We also show that once COUP-TFII expression in LC has switched off, it is re-induced by
DBP exposure, coincident with suppression of ITT. Furthermore, other treatments that reduce fetal ITT in rats
(dexamethasone, diethylstilbestrol (DES)) also maintain/induce LC nuclear expression of COUP-TFII. In contrast to rats, in
mice DBP neither causes persistence of fetal LC COUP-TFII nor reduces ITT, whereas DES-exposure of mice maintains COUP-
TFII expression in fetal LC and decreases ITT, as in rats. These findings suggest that lifting of repression by COUP-TFII may be
an important mechanism that promotes increased testosterone production by fetal LC to drive masculinization. As we also
show an age-related decline in expression of COUP-TFII in human fetal LC, this mechanism may also be functional in
humans, and its susceptibility to disruption by environmental chemicals, stress and pregnancy hormones could explain the
origin of some human male reproductive disorders.
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Introduction

Phenotypic masculinization is a pivotal event in mammalian

development, diverting the fetus from the female ‘set-up’

programme of development. The key driver of this process is

testosterone produced by the fetal Leydig cells (LC) [1]. This

occurs early in fetal development, immediately after testis

differentiation, in what has been termed the masculinization

programming window (MPW; e15.5–e18.5 in the rat) [1,2]. The

level of androgen production/action in the MPW critically

determines later reproductive development and final size of all

male reproductive organs in the rat [2,3,4,5], although androgen

production after the MPW is important for reproductive organ

differentiation and growth [1,4,5]. Deficiency in androgen pro-

duction/action within the MPW results in ‘testicular dysgenesis

syndrome (TDS)’ disorders such as hypospadias, cryptorchidism

and reduced testis size/sperm production in rats [1,3,4,5] and

humans [6,7,8].

Therefore, regulation of testosterone production by fetal LC

within and after the MPW is fundamentally important for normal

male development, yet the mechanisms involved are largely

unknown (Fig. 1A). In rodents, it has been presupposed that

unknown paracrine mechanisms stimulate LC steroidogenesis

during this period, as secretion of the main physiological LC

stimulator, luteinizing hormone (LH), does not begin until after the

MPW, and knockout of either LHb or its receptor does not impair

masculinization [1]. In contrast, in humans/primates, inactivating

mutations of the LH receptor, although not of LH, impair

masculinization [1]. This is because the primate placenta produces

an LH-like chorionic gonadotropin (CG) that stimulates fetal LC,

whereas the rodent placenta does not [1]. However, even in

humans, the balance of evidence points to CG not being the sole

driver of fetal LC steroidogenesis during the presumptive MPW, so
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that (unidentified) local stimulatory factors may also play a role [1].

Consequently, ignorance about the regulation of fetal testis

steroidogenesis in and around the MPW is a major obstacle to

identifying how normal masculinization is driven and what can

impact this to induce TDS/masculinization disorders.

We have developed an animal model for TDS involving fetal

exposure to the ubiquitous environmental chemical, dibutyl

phthalate (DBP) [9]. Exposure of pregnant rats to DBP suppresses

fetal LC steroidogenesis before and after the MPW because of the

down-regulation of several genes that play critical roles in LC

steroidogenesis, all of which are regulated by steroidogenic factor 1

(SF-1) [10,11,12,13,14,15]. However, SF-1 expression itself is

unaffected by DBP exposure and not all SF-1-dependent genes

expressed in the fetal testis are impacted [12]. Whilst searching for

an explanation for the latter observations, we identified an

important role for chicken ovalbumin upstream promoter

transcription factor II (COUP-TFII; also known as NR2F2).

COUP-TFII is a widely expressed orphan nuclear receptor of the

steroid/thyroid family [16]. Moreover, prepubertal deletion of

COUP-TFII in the mouse results in failure of adult LC to

differentiate, leading to near absence of testosterone production

and infertility [17], implying a key role in (adult) LC development.

The initial aim of the present studies was to evaluate if

a mechanism involving COUP-TFII expression in fetal LC could

explain the steroidogenic effects of DBP exposure in the rat, which

our findings suggest it does. However, in so doing, wider

implications emerged, namely evidence that regulation of LC

steroidogenesis in and after the MPW may not be under

stimulatory control by paracrine mechanisms, but rather may be

actively repressed (by COUP-TFII) and that lifting of this

repression is crucial for expansion of LC steroidogenic function

during and after the MPW. We show that various treatments that

impair fetal LC steroidogenesis in rats all maintain or induce

COUP-TFII expression in fetal LC, and that prevalence of

COUP-TFII expression in fetal LC in rats and mice is inversely

related to ITT in every situation investigated. Vulnerability of this

local mechanism to disruption by endogenous and exogenous

factors could potentially explain why disorders (TDS) stemming

from mild deficiency in androgen action in the MPW are common

in humans.

Results

DBP exposure of fetal rats and the induction of later TDS
disorders
To characterize the relationship between COUP-TFII and

steroidogenesis, we initially utilized an established DBP treatment

regime (500 mg/kg/day from e13.5–e21.5) that induces a major

Figure 1. Critical importance of local (unknown) factors in the regulation of testosterone production by fetal Leydig cells in the rat
during the masculinization programming window (A) and downstream effects of impairment of testosterone production by fetal
exposure to dibutyl phthalate (DBP; 500 mg/kg/day from e13.5–e21.5) (B).
doi:10.1371/journal.pone.0037064.g001

COUP-TFII Function in Fetal Leydig Cells
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reduction in intratesticular testosterone (ITT) at e21.5 (see below),

leading to a high incidence of TDS-like disorders in adulthood

(Fig. 1B).

DBP effects on intratesticular testosterone, LC number
and nuclear/cytoplasmic volume
In control animals, intratesticular testosterone (ITT), corrected

for the number of LC per testis (see below), significantly and

progressively increased between e15.5 and e19.5/e21.5. No such

increase occurred in testes of DBP-exposed animals (Fig. 2A). We

performed stereological quantification of LC number (Fig. 2B) and

cytoplasmic volume per LC (Fig. 2D), which both increased ,3-

fold between e15.5 and e21.5 in control animals with a smaller

increase in LC nuclear volume (Fig. 2C). DBP exposure had no

effect on the number of fetal LC at any age (Fig. 2B), but

prevented the normal age-dependent increase in LC cytoplasmic

volume (Fig. 2D) and nuclear volume (Fig. 2C). The increase in

LC cytoplasmic volume in controls between e15.5 and e21.5 and

its prevention by DBP exposure (Fig. 2D) paralleled the observed

changes in ITT (Fig. 2A).

DBP-exposure down-regulates mRNA expression of
selected SF-1-regulated steroidogenic genes
Previous studies have demonstrated the suppression of steroido-

genic enzyme gene expression, such as StAR, Cyp11a1 and

Cyp17a1, in the fetal rat testis after exposure to DBP

[10,11,12,13,14,15]. We therefore used quantitative real-time

PCR to evaluate steroidogenic enzyme gene expression in e21.5

control and DBP-exposed animals, when ITT suppression is

maximal (Fig. 2A). Exposure to DBP reduced the mRNA

expression of Cyp11a1, StAR and Cyp17a1 (Figs. 3A–C), whereas

mRNA expression for 3b-HSD was unaffected (Fig. 3D). We have

previously published that these genes are all SF-1-regulated [12]

and analysis of their promoter regions revealed that the DBP-

affected genes (Cyp11a1, StAR and Cyp17a1) all have overlapping

SF-1/COUP-TFII binding sites in their promoters, whereas 3b-
HSD only has an SF-1 binding site (Table 1). Another gene with

SF-1 and COUP-TFII binding sites, but expressed in Sertoli cells

is Amh (Table 1). Exposure to DBP did not affect Amh mRNA

expression (Fig. 3I). These gene expression studies utilized whole

testes, but the genes analyzed are cell-specific in the fetal testis, as

confirmed by immunoexpression studies comparing Cyp11a1

(Figs. 3E,F), 3b-HSD (Figs. 3G,H) and Amh (Figs. 3J,K), which

also confirmed selective suppression by DBP of Cyp11a1 but not

the latter two.

Figure 2. Effect of in utero exposure of rats to vehicle (control) or dibutyl phthalate (DBP: 500 mg/kg/day) on age-dependent
changes in intratesticular testosterone levels per 106 fetal fetal Leydig cells (A), Leydig cell number per testis (B), Leydig cell
nuclear volume (C) and Leydig cell cytoplasmic volume (D). Values in A are Means 6 SEM for 5–12 animals at each age (minimum of 3 litters
per group). Values in B–D are Means 6 SEM for 4–8 animals in each group (minimum of 3 litters per group). *p,0.05, **p,0.01, ***p,0.001, in
comparison with respective controls; other comparisons are indicated by capped lines.
doi:10.1371/journal.pone.0037064.g002
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Dose-dependent effects of DBP on COUP-TFII expression
and ITT in fetal LC
Since the LC-expressed genes down-regulated after DBP-

exposure all have overlapping SF-1/COUP-TFII binding sites in

their promoters, we studied the expression of COUP-TFII in testes

of control and DBP-exposed animals. Pregnant female rats were

treated with different doses of DBP (20, 100 and 500 mg/kg/day)

and the testes were examined at e21.5 (Fig. 4). Real-time PCR

analysis of COUP-TFII mRNA expression in whole fetal testes

showed no change between control and DBP-exposed animals

(Fig. S1), presumably because COUP-TFII is abundantly

expressed in several cell types in the fetal testis other than the

fetal LC (see below). We therefore utilized confocal microscopy

and high resolution tiled images of complete testis cross-sections to

investigate LC-specific COUP-TFII expression at e21.5 (Fig. 4A),

which we quantified stereologically (Fig. 4B,C). Most fetal LC in

fetuses exposed to 20 mg/kg/day DBP (DBP-20) were COUP-

TFII immunonegative at e21.5, as in controls, whereas in fetuses

exposed to 100 or 500 mg/kg/day (DBP-100 and DBP-500,

respectively) COUP-TFII was expressed in ,70% and ,85% of

fetal LC nuclei respectively (Fig. 4B,C). This dose-dependent effect

of DBP on the percentage of fetal LC expressing nuclear COUP-

TFII was inversely related to suppression of ITT (Fig. 4D). Some

non-Leydig interstitial cells appeared to express COUP-TFII in

their cytoplasm rather than the nucleus (Fig. 4B). However, this is

a processing artifact that results in aberrant nuclear morphology

Figure 3. Effect of in utero exposure of rats to vehicle (control) or dibutyl phthalate (DBP: 500 mg/kg/day) on steroidogenic enzyme
and anti-Müllerian hormone gene expression in testes at e21.5. (A) cytochrome P450, family 11, subfamily a, polypeptide 1 (Cyp11a1), (B)
Steroidogenic acute regulatory protein (StAR), (C) cytochrome P450, family 17, subfamily a, polypeptide 1 (Cyp17a1), (D) hydroxy-delta-5-steroid
dehydrogenase, 3 beta- and steroid delta-isomerase 1 (3b-HSD), (I) Anti-Müllerian hormone (Amh). Values are Means 6 SEM for 19–22 animals per
group (minimum of 5 litters per group). *p,0.05, **p,0.01, in comparison with respective control. (E–F) Immunohistochemistry for Cyp11a1 on e21.5
testis sections isolated from control (E) and DBP-500-exposed (F) animals. (G–H) Immunohistochemistry for 3b-HSD on e21.5 testis sections isolated
from control (G) and DBP-500-exposed (H) animals. (J–K) Immunohistochemistry for Amh on e21.5 testis sections isolated from control (J) and DBP-
500-exposed (K) animals. Scale bars E–H= 20 mm.
doi:10.1371/journal.pone.0037064.g003
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(such that a central intranuclear vacuole appears to be the

nucleus), as illustrated by comparing COUP-TFII expression with

that of the nuclear-specific counterstain (DAPI; Fig. S2), confirm-

ing that COUP-TFII expression is confined to the nucleus in all

cells in which it is expressed in the fetal testis.

Age-dependent switching off of COUP-TFII nuclear
immunoexpression in fetal LCis prevented by DBP-
exposure
We then examined COUP-TFII expression in fetal LC during

normal development and how this was affected by exposure to

500 mg/kg/day DBP. At e15.5, testes from both control and

DBP-exposed fetuses expressed nuclear COUP-TFII in .85% of

fetal LC (3b-HSD immunopositive cells) (Fig. 5A,C). From e17.5

onwards in controls, the percentage of LC expressing nuclear

COUP-TFII progressively declined, such that by e21.5,10% of

LC were COUP-TFII-immunopositive. This correlated inversely

to the significant and progressive increase in ITT between e15.5

and e19.5/e21.5 in control animals (Fig. 2A). In contrast, in DBP-

exposed animals, COUP-TFII expression in fetal LC persisted

unchanged from e15.5 to e21.5 (Fig. 5A,C), which correlated with

prevention of the normal ITT increase after DBP-exposure

(Fig. 2A). COUP-TFII expression in interstitial cells other than

fetal LC did not change detectably with fetal age or DBP

treatment.

Late gestational exposure to DBP re-induces COUP-TFII
nuclear expression in fetal LC and reduces ITT
Several studies in the literature have shown that transfection of

COUP-TFII into steroidogeneic cells results in antagonism of SF-1

action [18,19,20,21,22,23], consistent with our observations. We

therefore sought to obtain direct evidence for this in fetal rat LC

by using a Lentivirus encoding COUP-TFII (Lv-COUP-TFII) to

over-express COUP-TFII in isolated fetal testicular cells at e17.5

and thereby cause a reduction in StAR, Cyp11a1 and Cyp17a1

mRNA expression and testosterone production. Unfortunately,

this ex vivo approach resulted in cell death after infection with LV-

COUP-TFII (data not shown). There are also inherent problems

with applying similar approaches to the ex vivo culture of fetal LC,

which rapidly (,48 h) lose their steroidogenic function after

isolation [24]. Therefore, to provide more definitive evidence that

nuclear COUP-TFII expression in fetal LC was associated causally

with reduced ITT, DBP treatment was delayed until a time-point

(e19.5–e20.5; = late treatment window) when ,80% of LC have

normally switched off nuclear expression of COUP-TFII (Fig. 5).

This ‘late window’ exposure to DBP-500 re-induced COUP-TFII

expression in ,70% of the fetal LC at e21.5 (Fig. 6D,E), while

control (corn oil-exposed) animals only expressed COUP-TFII in

a minority of fetal LC (Fig. 6B,E). Late window exposure to DBP-

500 also resulted in a .50% reduction in ITT compared with

controls (Fig. 6F).

The above results are consistent with cause and effect between

DBP-induction or prolongation of COUP-TFII expression in fetal

LC and suppression of ITT. We therefore investigated whether

other treatments which have been shown to reduce fetal

testosterone production in rats might target the same mechanism.

Effects of exposure to DBP 6 Dex on fetal LC nuclear
expression of COUP-TFII and ITT
We have previously shown that in utero exposure to the synthetic

glucocorticoid dexamethasone (Dex) amplifies the suppressive

effects of DBP on fetal testis ITT and may thus induce more severe

TDS disorders [3]. Dex exposure alone (e13.5–e20.5) increased

the percentage of fetal LC expressing COUP-TFII at e21.5 to

50% compared with ,8% in vehicle-exposed controls (Fig. 7A,B).

In comparison, exposure to DBP-500 increased the proportion of

COUP-TFII-positive LC to ,85%, and co-exposure to both

DBP-500 + Dex caused a similar magnitude of change (Fig. 7A,B).

The DBP 6 Dex-induced changes in COUP-TFII expression in

LC again showed a striking inverse relationship to ITT (Fig. 7C)

(r2 = 0.89, p,0.0001, linear regression analysis between left testis

ITT and right testis percentage of COUP-TFII positive fetal LC).

Exposure to DBP 6 Dex reduced the mRNA expression of

Cyp11a1, StAR and Cyp17a1 (Fig. S3A–C), with the degree of

suppression paralleling the percentage of fetal LC that expressed

COUP-TFII in their nuclei (Fig. 7B). In contrast to the effects on

Cyp11a1, StAR and Cyp17a1, DBP 6 Dex exposure had no effect

on the expression of another LC-specific gene 3b-HSD (Fig. S3D).

To further explore a possible link between COUP-TFII expression

and suppression of SF-1-dependent genes, we investigated whether

DBP 6 Dex exposure had any effect on the expression of the SF-1

target gene Amh in Sertoli cells, as COUP-TFII is absent from

Sertoli cells at all ages and treatments studied (Figs. 4,5,6,7). As

Table 1. An overview of SF-1, COUP-TFII and SF-1/COUP-TFII binding sites in the promoters of StAR, Cyp11a1, Cyp17a1, Hsd3b1 and
Amh.

Promoter binding sites (bp downstream of transcription start site)

Gene name NCBI accession number SF-1 binding site COUP-TFII binding site SF-1/COUP-TFII binding site

StAR NM_031558 2150 290*
2110

2460
2640
2760
21330

Cyp11a1 NM_017286 - - 250
21840

Cyp17a1 NM_012753 257 2278* 23859

Hsd3b1 (3b-HSD) NM_008293 21530 - -

Amh NM_012902 22529 22325 -

*: ‘‘weak’’ COUP-TFII binding site.
StAR = steroidogenic acute regulatory protein; Cyp11a1 = cytochrome P450, family 11, subfamily a, polypeptide 1; Cyp17a1 = cytochrome P450, family 17, subfamily a,
polypeptide 1; Hsd3b1 =hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1; Amh= anti-Müllerian hormone; SF-1 = steroidogenic factor-1;
COUP-TFII = chicken ovalbumin upstream promoter transcription factor II; bp =basepair.
doi:10.1371/journal.pone.0037064.t001
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shown in Figure S3E, Amh gene expression in Sertoli cells was

unaffected by DBP 6 Dex exposure. LHR-mediated drive to LC

steroidogenesis may become progressively important in late

gestation (beyond e18.5) in rats [1], but none of the treatments

significantly altered LHR gene expression at e21.5 (Fig. S4A); we

were unable to measure fetal LH levels due to lack of sufficient

blood.

Effects of fetal exposure of rats to DES on expression of
COUP-TFII, ITT and SF-1 target gene expression
Previous research has shown that in utero exposure of rats to

diethylstilbestrol (DES) results in reduced ITT [25]. Therefore, we

investigated whether the DES-induced decrease in ITT was

related to altered immunoexpression of COUP-TFII in the fetal

LC at e21.5. In utero exposure to DES resulted in an increase in the

percentage of COUP-TFII-positive LC when compared to

controls (Figs. 8A–C), which again correlated inversely with ITT

levels (Fig. 8D). Testes from DES-exposed males had significantly

Figure 4. Altered COUP-TFII expression in fetal rat Leydig cells after in utero exposure to vehicle (control) or to different doses of
dibutyl phthalate (DBP) and the relationship to intratesticular testosterone levels at e21.5. (A–B) Triple immunofluorescence for SMA
(blue), 3b-HSD (red) and COUP-TFII (green) on testis sections from representative vehicle (control) and DBP-exposed animals. Note that major
persistence of COUP-TFII expression in fetal Leydig cells is observed after exposure to DBP-100 and DBP-500 (100 and 500 mg/kg/day, respectively),
whereas DBP-20 (20 mg/kg/day) had a much smaller effect. Asterisks indicate Leydig cell aggregates that are predominantly immunopositive for
COUP-TFII. SC = seminiferous cords. Scale bar A = 200 mm, B = 20 mm. (C) Quantification of the percentage of COUP-TFII positive fetal Leydig cells in
vehicle (control) and DBP-exposed animals using tiled high resolution images as shown in panel A. Values are Means 6 SEM for 6–9 animals per
treatment group (minimum of 3 litters per group). **p,0.01, ***p,0.001, in comparison with respective control; other comparisons are indicated by
capped lines. (D) Corresponding intratesticular testosterone levels for the treatment groups in panels A and B. Values are Means 6 SEM for 4–21
animals per group (minimum of 3 litters per group). **p,0.01, ***p,0.001, in comparison with respective control.
doi:10.1371/journal.pone.0037064.g004
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Figure 5. Age-dependent alteration in COUP-TFII expression in fetal rat Leydig cells in vehicle-exposed control rats and after in
utero exposure to dibutyl phthalate (DBP; 500 mg/kg/day). (A–B) Triple immunofluorescence for SMA (blue), 3b-HSD (red) and COUP-TFII
(green) on fetal testis sections from vehicle (control) and DBP-exposed animals. Arrows in A indicate examples of individual Leydig cells positive for
COUP-TFII whereas asterisks indicate DBP-induced aggregates of Leydig cells which are predominantly COUP-TFII-immunopositive. SC = seminiferous
cords. Scale bar A= 20 mm, B = 200 mm. (C) Quantification of the percentage of COUP-TFII positive fetal Leydig cells in vehicle (control) and DBP-

COUP-TFII Function in Fetal Leydig Cells
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exposed animals using tiled high resolution images as shown in panel B. Values are means 6 SEM for 5–8 animals at each age (minimum of 3 litters
per group). ***p,0.001, in comparison with respective control; other comparisons are indicated by capped lines.
doi:10.1371/journal.pone.0037064.g005

Figure 6. Altered COUP-TFII expression in fetal rat Leydig cells after in utero exposure to vehicle (control) or to 500 mg/kg/day
dibutyl phthalate (DBP) from e19.5-e20.5 (late treatment window) and the relationship to intratesticular testosterone levels at
e21.5. (A–D) Triple immunofluorescence for SMA (blue), 3b-HSD (red) and COUP-TFII (green) on testis sections from representative vehicle (control)
and DBP-exposed animals on high resolution tiled images (A and C) and at higher power (B and D). Asterisks in panel D indicate Leydig cell
aggregates that are predominantly immunopositive for COUP-TFII. SC= seminiferous cords. Scale bars in A and C= 200 mm, in B and D= 20 mm. (E)
Quantification of the percentage of COUP-TFII positive fetal Leydig cells in animals from the treatment groups shown in panels A–D. Values are Means
6 SEM for 8–10 animals per treatment group (minimum of 3 litters per group). ***p,0.001, in comparison with respective control. (F) Corresponding
intratesticular testosterone levels for the treatment groups in panels A–D. Values are Means6 SEM for 18–20 animals per group (minimum of 3 litters
per group). ***p,0.001, in comparison with respective control.
doi:10.1371/journal.pone.0037064.g006
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reduced expression of SF-1 target genes in fetal LC, Cyp11a1

(Fig. 8E), StAR (Fig. 8F) and Cyp17a1 (Fig. 8G), whereas the SF-1

target gene in Sertoli cells, Amh, was unaffected by DES treatment

(Fig. 8H). The more pronounced suppression of both ITT and LC

gene expression found after DES treatment, when compared with

that found after DBP treatment (Fig. 2,3), is probably explained by

the pronounced suppression of LHR expression found at e21.5 in

DES-exposed animals (thus limiting LH-stimulation of the LC),

a change not found after DBP exposure (Fig. S4).

DBP exposure of mice does not alter COUP-TFII nuclear
expression in fetal LC and has no effect on ITT, whereas
exposure to DES does
In contrast to rats, gestational exposure of mice to DBP has no

effect on ITT (Fig. 9D) or on LC steroidogenic enzyme expression

[26,27], a species difference that is unexplained. We investigated if

a species-specific difference in the effect of DBP on nuclear

expression of COUP-TFII in fetal LC might explain this. At e18.5

in mice (equivalent to e21.5 in rats) gestational exposure to DBP-

500 (treatment since e11.5) did not alter the percentage of fetal LC

nuclei that were immunopositive for COUP-TFII; the percentage

remained low as in vehicle-exposed controls (Fig. 9A–C), in

contrast to the results in DBP-exposed rats (Figs. 4B,5C).

However, as previously reported [28], we found that exposure of

pregnant mice to diethylstilbestrol (DES) resulted in a reduction in

ITT in male fetuses. In mice, as in rats (Fig. 8), DES-exposure

resulted in 40% of the fetal LC being positive for COUP-TFII

compared to 12% in controls (Fig. 9E–G). This correlated

inversely with ITT after DES-exposure which was reduced by 7-

fold in DES-exposed animals when compared with controls

(Fig. 9H).

COUP-TFII expression in human fetal LC is down-
regulated during development
To evaluate whether these findings in rodents are relevant in

humans, we quantified fetal LC expression of nuclear COUP-TFII

in testes from late 1st trimester, early 2nd trimester and late 2nd

trimester samples. This showed that the percentage of LC nuclei

that were immunopositive for COUP-TFII declined over this

developmental time period (Fig. 10), a trend similar to, although

Figure 7. Altered COUP-TFII expression in fetal rat Leydig cells after in utero exposure to vehicle (control), to dexamethasone (Dex;
100 mg/kg/day) to dibutyl phthalate (DBP; 500 mg/kg/day) or combined DBP + Dex and the relationship to intratesticular
testosterone levels at e21.5. (A) Triple immunofluorescence for SMA (blue), 3b-HSD (red) and COUP-TFII (green) on testis sections from
representative vehicle (control) and DBP6Dex-exposed animals on higher power images. Note that exposure to Dex alone resulted in increased
occurrence of COUP-TFII-immunopositive fetal Leydig cells (arrows) compared with controls and that combined exposure to DBP-500 + Dex or
exposure to DBP-500 alone resulted in most Leydig cells being immunopositive for COUP-TFII (asterisks). SC = seminiferous cords. Scale bar = 20 mm.
(B) Quantification of the percentage of COUP-TFII positive fetal Leydig cells in animals from the treatment groups shown in panel A. Values are Means
6 SEM for 3–6 animals per treatment group (minimum of 3 litters per group). ***p,0.001, in comparison with respective control; other comparisons
are indicated by capped lines. (C) Corresponding intratesticular testosterone levels for the treatment groups in panel A. Values are Means 6 SEM for
19–22 animals per group (minimum of 3 litters per group). **p,0.01, ***p,0.001, in comparison with respective control; other comparisons are
indicated by capped lines.
doi:10.1371/journal.pone.0037064.g007
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less pronounced, than that observed in control rat testes between

e15.5–e21.5 (Fig. 5). Very early 1st trimester samples, equivalent to

e15.5 in the rat, were unavailable for study.

Fetal LC from complete androgen receptor knockout
(ARKO) mice are predominantly immunonegative for
COUP-TFII expression
Since reduced ITT was found in every instance when there was

abnormal maintenance/induction of COUP-TFII expression in

fetal rodent LC, we considered whether the former could be

driving the latter. This reverse causation seems unlikely, since in

complete androgen receptor knockout (ARKO) mice the fetal LC

Figure 8. Effect of in utero exposure of rats to vehicle (control) or to diethylstilbestrol (DES 100 mg/kg on e13.5, e15.5, e17.5, e19.5
and e20.5) on COUP-TFII immunoexpression in fetal Leydig cells at e21.5. (A) Triple immunofluorescence for SMA (blue), 3b-HSD (red) and
COUP-TFII (green) on testis sections from representative vehicle (control) and DES-exposed animals. Note that in controls occasional fetal Leydig cells
are COUP-TFII-immunopositive (arrow) whereas exposure to DES resulted in a 3-fold increase in the % of COUP-TFII-immunopositive Leydig cells
(asterisks). SC = seminiferous cords. Scale bar = 20 mm. (B) Quantification of the percentage of COUP-TFII positive fetal Leydig cells in animals from the
treatment group shown in panel A. Values are Means 6 SEM for 3–13 animals per treatment group (minimum of 3 litters per group). ***p,0.001, in
comparison with respective control. (C) Corresponding intratesticular testosterone levels for the treatment groups in panel A. Values are Means 6
SEM for 13–25 animals per group (minimum of 3 litters per group). ***p,0.001, in comparison with respective control. (E) cytochrome P450, family
11, subfamily a, polypeptide 1 (Cyp11a1), (F) Steroidogenic acute regulatory protein (StAR), (G) cytochrome P450, family 17, subfamily a, polypeptide 1
(Cyp17a1), (H) Anti-Müllerian hormone (Amh) gene expression in testes from control and DES-exposed males at e21.5. Values are Means 6 SEM for
11–24 animals per group (minimum of 3 litters per group). ***p,0.001, in comparison with respective control. NS = not significant.
doi:10.1371/journal.pone.0037064.g008
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at e18.5 are predominantly immunonegative for COUP-TFII (Fig.

S5).

Discussion

The present study has identified a novel mechanism that could

potentially play a key role in up-regulating testosterone production

by rat fetal LC during and after the critical masculinization

programming window (MPW) [1,2]. The mechanism we propose

is a progressive age-related reduction in expression of COUP-TFII

in fetal LC, which effectively removes repression by a competitor

with SF-1 for binding to overlapping sites in the promoter region

of steroidogenic enzyme genes. The present results show that this

mechanism is perturbed by exposure to three separate factors in

the rat, some of which may be relevant to the human and other

species. This mechanism could also partly account for the

previously unexplained ‘paracrine’ regulation of fetal LC steroido-

genesis during the MPW in rats and humans [1]. Our proposal

would add another tier of evidence for the COUP-TF family being

active repressors of key elements in the male reproductive system,

ranging from luteinizing hormone expression (LHb; [29]) through
LH receptor expression (LHR; [30,31,32]) to fetal LC function (this

study). Our results also identify, for the first time, a primary

mechanism by which phthalates, such as DBP, inhibit steroido-

genesis by fetal LC in the rat (but not in the mouse). Our studies

show that the COUP-TFII mechanism is present in human fetal

LC, but whether it plays a role analogous to that which we propose

in the rat will depend on further studies.

Our results provide convincing time course and dose-response

evidence that exposure to DBP, DES and to a lesser extent

dexamethasone, prevent the normal time-dependent down-regu-

lation of nuclear COUP-TFII that occurs in fetal LC in the rat and

which is associated temporally with expansion of LC cytoplasmic

volume (which harbors the steroidogenic organelles) and increase

in ITT. The temporal changes fit with the demonstration that

DBP-induced down-regulation of SF-1-dependent LC-specific

genes first emerges at e17.5 [12], consistent with this being the

earliest age at which COUP-TFII expression in LC in control

animals is down-regulated, a change prevented by DBP-treatment.

We show that treatment-induced changes in LC nuclear COUP-

TFII expression are, in all instances, associated with inverse

changes in ITT and with altered expression of SF-1-dependent

LC-specific genes that have shared/overlapping SF-1 and COUP-

TFII response elements in their promoter regions (Table 1). In

contrast, expression of the LC steroidogenic gene (3b-HSD) that

does not have an overlapping SF-1 and COUP-TFII response

element in its promoter, was unaffected by DBP exposure, as was

expression of Amh in Sertoli cells; in the latter case, there are

separate SF-1 and COUP-TFII response elements in the promoter

of Amh (Table 1), but in any case COUP-TFII was never expressed

in Sertoli cells in our studies. Therefore, we show a robust

association between the LC-specific expression of COUP-TFII,

reduced ITT and the down-regulation of steroidogenic genes that

have overlapping SF-1 and COUP-TFII response elements.

Our identification of altered COUP-TFII expression in fetal

rat LC as a mechanism underlying suppression of ITT resulting

from experimental treatments (DBP and/or Dex or DES) is

based on showing a consistent inverse association between the

percentage of fetal LC expressing COUP-TFII in their nuclei

and ITT levels. This association does not in itself prove ‘cause

and effect’. The ideal way of proving this would be to over-

express COUP-TFII in fetal LC and show this reduces

testosterone production. Such studies have been done with

adult-derived bovine steroidogenic cells via transfection and

shown to result in reduced steroidogenesis and expression of StAR

and Cyp17a1 [18,19,20], as found in the present association

studies. Numerous studies have shown that the mechanism

underlying such effects involves competition between COUP-

TFII and SF-1 for binding to an overlapping response element in

the promoter region of genes encoding steroidogenic enzymes

[18,19,20,21,23,30,31,32,33,34,35,36,37,38], as proposed for the

present studies in fetal rat LC. Unfortunately, our studies using

viral transfection of ex vivo cultured rat fetal LC with COUP-TFII

resulted in cell death (unpublished data), and there are also

inherent problems with the culture of fetal LC, which rapidly

lose their steroidogenic function [24]. Therefore, this direct

approach was not an option for us. We therefore decided on two

alternative approaches to provide stronger evidence for causa-

tion, one involving re-induction of COUP-TFII in rat fetal LC

(by DBP treatment) after its age-related loss, and the second

involving parallel studies in the mouse in which DBP had been

shown by others to be incapable of suppressing steroidogenesis

and the expression of SF-1-dependent genes [26,27,39].

For the first approach, we exposed pregnant rats to DBP at

a time in gestation (from e19.5–e20.5) when COUP-TFII had

already switched off in the majority of fetal LC. This ‘late window’

DBP treatment resulted in re-induction of COUP-TFII expression

in most of the fetal LC and an associated reduction in ITT at

e21.5, consistent with our mechanistic proposal. In our mouse

studies we confirmed that DBP exposure had no effect on ITT,

nor was there induction/maintenance of COUP-TFII expression

in fetal LC. However, exposure of pregnant mice to DES, rather

than DBP, did result in profound suppression of ITT and

a corresponding increase in the percentage of fetal LC expressing

COUP-TFII, a change that paralleled that found for DES in the

rat. The degree of suppression of ITT induced by DES was

notably larger than that induced by DBP (in the rat), a difference

probably explained by a parallel reduction in LH drive to the LC

due to reduced LHR expression. This raises the possibility that LH

secretion, which is initiated at ,e18.5 in the rat and increases

progressively thereafter [1], might be involved in switching off the

expression of COUP-TFII in fetal LC and that DBP causes its

steroidogenic effects by suppressing LH. As we were unable to

measure fetal LH in blood, we could not test this possibility

directly, but existing data suggests it is an unlikely explanation for

our findings. First, it would fail to explain why the effects of DBP

on ITT and steroidogenic enzyme expression in rats are first

detectable at e17.5 (this study and [12]), an age prior to the

production of LH in the rat [1]. Second, in vitro studies using rat

fetal testis cultures show that phthalate metabolites inhibit

testosterone production regardless of the absence or presence of

LH in the culture media [40]. Nevertheless, even if DBP did

suppress LH, it would appear that this suppression then results

locally in a failure of COUP-TFII to switch off normally in fetal

LC, which would still represent the causal mechanism within the

LC. Moreover, if DBP exposure should inhibit fetal LH secretion,

it is likely to involve a similar mechanism to that which we propose

for the fetal LC, as COUP-TFII has been shown to competitively

antagonize SF-1-induced LHb expression in the adult pituitary

gland [29].

We considered reverse causation as an alternative explanation

for our findings, namely that because reduced ITT was found in

every instance in which there was abnormal maintenance/

induction of COUP-TFII expression in fetal LC, then the former

could be driving the latter. We consider this unlikely, because in

complete androgen receptor knockout (ARKO) mice the fetal LC

at e18.5 are predominantly immunonegative for COUP-TFII and,
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Figure 9. Effect of in utero exposure of mice to vehicle (control), dibutyl phthalate (DBP 500 mg/kg/day) or to diethylstilbestrol
(DES 100 mg/kg on e11.5, e13.5, e15.5 and e17.5) on COUP-TFII immunoexpression in fetal Leydig cells at e18.5. (A–B, E–F) Triple
immunofluorescence for SMA (blue), 3b-HSD (red) and COUP-TFII (green) on testis sections from representative vehicle (control; A, E), DBP-exposed
(B) and DES-exposed (F) animals. Scale bars = 50 mm. Asterisks indicate blood vessels. Arrows in F indicate COUP-TFII-positive Leydig cells. (C–D)
Quantification of the percentage of COUP-TFII positive fetal Leydig cells (C) and corresponding intratesticular testosterone levels (D) in control and
DBP-exposed animals. Values are Means 6 SEM for 7 animals per group (minimum of 3 litters per group). (G–H) Quantification of the percentage of
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second, in the rat most fetal LC do not express the androgen

receptor and are thus not directly androgen-responsive [41].

Our analyses of COUP-TFII expression in fetal LC used

confocal microscopy and identification of LC by cytoplasmic

staining for 3b-HSD. We were able to do this because, unlike the

other SF-1-regulated LC steroidogenic genes, expression of 3b-
HSD was unaffected in any of our treatment groups. Use of high

resolution tiled images of complete fetal testis cross-sections

allowed us to identify fetal LC unequivocally and to specifically

assess the presence or absence of COUP-TFII expression in

individual LC. Since COUP-TFII is abundantly expressed in

other cell types in the fetal testis, especially in non-Leydig

interstitial cells, whole testis measurements such as the analysis

of total testicular COUP-TFII mRNA expression would not be

meaningful, and, indeed, we found no effect of DBP-exposure on

overall COUP-TFII mRNA expression in the fetal rat testis. We

saw no evidence for altered COUP-TFII expression in the non-

Leydig interstitial cells in the fetal testis, and these cells did not

affect our analyses because these were focused only on identifiable

fetal LC (ie cells expressing 3b-HSD in their cytoplasm). We chose

an antibody dilution for detection of COUP-TFII immunoexpres-

sion that discriminated between immunonegative LC in controls

and immunopositive LC in DBP-exposed animals. In reality, we

think it likely that this distinction represents profound down-

regulation, rather than complete absence, of COUP-TFII

immunoexpression in the nuclei of late gestation fetal LC in

controls, based on titration studies with the COUP-TFII antibody

(Fig. S6).

Based on the age-related change in COUP-TFII immunoex-

pression in fetal human LC in the present studies, the mechanism

which we propose for COUP-TFII in the rat may apply to the

human, but more detailed studies are needed to support this

COUP-TFII positive fetal Leydig cells (G) and corresponding intratesticular testosterone levels (H) in control and DES-exposed animals. Values are
Means 6 SEM for 6–9 animals per group (minimum of 3 litters per group). ***p,0.001, in comparison with respective control. NS =not significant.
doi:10.1371/journal.pone.0037064.g009

Figure 10. COUP-TFII expression in fetal Leydig cells in human fetal testis samples from late 1st trimester (A), early 2nd trimester (B)
and late 2nd trimester (C). Triple immunofluorescence for SMA (blue), 3b-HSD (red) and COUP-TFII (green) on human fetal testis sections.
SC = seminiferous cords. Scale bars = 50 mm. (D) Quantification of the percentage of COUP-TFII positive fetal Leydig cells in samples shown in panels
A–C. Values are Means6 SEM for 3–11 samples per treatment group. *p,0.05, **p,0.01, in comparison with respective control; other comparison is
indicated by capped line.
doi:10.1371/journal.pone.0037064.g010
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possibility. This does not imply that each of the treatment effects

shown to affect this mechanism in the rat will apply to the human,

as our preliminary data is that in the human, as in mice, DBP

neither affects steroidogenesis [42] nor COUP-TFII expression

(our unpublished data), at least in a xenograft model system.

Nevertheless, as we show that three separate factors can maintain/

increase nuclear expression of COUP-TFII in fetal rat LC with

associated decreases in fetal ITT, it suggests that the COUP-TFII

mechanism is potentially vulnerable to a wider range of factors.

In conclusion, our results all point strongly towards COUP-

TFII expression being a key (negative) regulator of steroidogenesis

within fetal LC during and after the critical period for

masculinization in the rat, and potentially in the human. Thus,

lifting of steroidogenic repression by COUP-TFII, rather than

direct stimulation of steroidogenesis by paracrine factors, could be

the primary LH-independent mechanism responsible for in-

creasing testosterone production to induce masculinization.

Perturbation of this novel pathway is clearly linked via our DBP

studies in the rat to downstream TDS disorders. We show that this

pathway can be impacted by factors other than DBP, for example

via the stress hormone axis (glucocorticoids) and by estrogens. We

consider it likely that other factors (eg other environmental

chemicals) also target this pathway. The present findings suggest

new pathways by which lifestyle factors in combination with

environmental chemicals could exert adverse effects and lead to

TDS disorders.

Methods

Animals and treatments
Wistar rats and C57BL/6J mice were maintained according to

UK Home Office guidelines (which also involves an ethical

approval step) and were fed a soy-free breeding diet (RM3(E) soya

free; SDS, Dundee, Scotland). Housing conditions were carefully

controlled (lights on at 0700, off at 1900 h, temperature 19–21 C,

GOLD shavings and LITASPEN standard bedding (SPPS,

Argenteuil, France)). Time-mated female rats were subjected to

the daily treatments described below. Depending on the age of

termination, treatments were administered from embryonic day (e)

13.5–e14.5 (termination e15.5), e13.5–e16.5 (termination e17.5),

e13.5–e18.5 (termination e19.5), e13.5–e20.5 (termination e21.5)

or e13.5–e21.5 (termination in adulthood) between 0900 and

1030 h. In a different set of experiments treatments were

administered from e19.5–e20.5 (termination e21.5; late treatment

window). The doses of dibutyl phthalate (DBP), dexamethasone

(Dex) and diethylstilbestrol (DES) were based on previous studies

[3,9,25,43]. The DBP was 99% pure according to the supplier.

Rat treatment groups were as follows:

1) DBP (Sigma-Aldrich Co. Ltd., Dorset, UK) at a dose of

either 20, 100 or 500 mg/kg administered by oral gavage in

1 ml/kg corn oil, plus daily subcutaneous injection of 1 ml/

kg saline (vehicle control for Dex).

2) Dex (Sigma-Aldrich) at a dose of 100 mg/kg/day by

subcutaneous injection in 1 ml/kg saline plus 1 ml/kg corn

oil by oral gavage (vehicle control for DBP).

3) A combination of DBP (500 mg/kg by oral gavage) plus Dex

(100 mg/kg/day subcutaneously).

4) DES (Sigma-Aldrich) at a dose of 100 mg/kg in 1 ml/kg

corn oil by subcutaneous injection on e13.5, e15.5, e17.5,

e19.5 and e20.5.

5) Control (1 ml/kg corn oil by gavage and 1 ml/kg saline by

subcutaneous injection).

Additionally, pregnant female mice were treated with DBP

(500 mg/kg by oral gavage from e11.5 to e17.5) or DES (100 mg/
kg by subcutaneous injection on e13.5, e15.5 and e17.5) and were

terminated on e18.5. Androgen receptor knockout (ARKO) mice

were generated as described previously [44], and were terminated

at e18.5.

Tissue recovery, processing and adult rat phenotyping
To acquire fetal samples, rat dams were killed by inhalation of

CO2 followed by cervical dislocation at e15.5, e17.5, e19.5, e21.5

or adulthood and mouse dams at e18.5. Fetuses were removed,

decapitated and placed in ice cold phosphate buffered solution

(PBS; Sigma-Aldrich). Testes were microdissected, and fixed in

Bouin’s fixative for 1 hour at room temperature or snap frozen

and stored at270uC for gene expression analysis or determination

of intratesticular testosterone (ITT) by homogenizing the testis and

measuring its total testosterone content using a radioimmunoassay

as described previously [9]. The limit of detection of the

testosterone assay was 40 pg and the intra- and inter-assay CVs

were ,9% and ,14%, respectively. Bouin’s-fixed tissues were

processed and embedded in paraffin wax, and 5-mm sections were

used for subsequent experiments. Adult rats exposed to 500 mg/

kg DBP or vehicle control were subjected to a thorough inspection

to determine the normality of the penis and testicular descent as

described previously [3]. In addition the testes of these adult rats

were dissected and weighed.

Human fetal testis samples
First- and second-trimester testes were obtained after medical

termination of pregnancy for social reasons as described previously

[45]. Written maternal consent was obtained, and the study was

approved by the Lothian Research Ethics Committee. Gestation

was determined by ultrasound scan and subsequent direct

measurement of foot length. The sex of first-trimester testes was

confirmed by PCR for the male-specific gene SRY. Testes were

removed and fixed in Bouin’s fixative for 2 hours before

processing into paraffin using standard methods. A total of 24

fetal specimens were used in this study: 3 late 1st trimester samples

(,12 weeks), 10 early 2nd trimester samples (12–17 weeks) and 11

late 2nd trimester samples (18–20 weeks).

Determination of Leydig (3b-hydroxysteroid
dehydrogenase-immunopositive) cell number, nuclear
volume and cytoplasmic volume per testis
Testicular sections from 4–8 animals per age/treatment group

were immunostained for 3b-hydroxysteroid dehydrogenase (3b-
HSD) as described previously [46] and counterstained with

hematoxylin. The volume of Leydig (3b-HSD-positive) cells per

testis was determined using stereological methods similar to those

described previously [47]. Briefly, three (non-serial) sections per

animal were analyzed using a Zeiss Axio-Imager microscope (Carl

Zeiss Ltd., Welwyn Garden City, UK) fitted with a Hitachi HV-

C20 camera (Hitachi Denshi Europe, Leeds, UK) and a Prior

automatic stage (Prior Scientific Instruments Ltd., Cambridge,

UK). Image-Pro 6.2 with Stereologer plug-in software (Mag-

Worldwide, Wokingham, UK) was used to select random fields

and to place a counting grid over the tissue. The total number of

fields counted per animal (,65–95 fields) was dependent on

obtaining a percentage SE value of ,5%. Points falling over 3b-
HSD-positive cytoplasm, or over the nuclei of cells with 3b-HSD-

positive cytoplasm, were scored separately, and both were

independently expressed as relative volumes per testis. These data

were converted to absolute volume per testis by multiplying by
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testis weight (equivalent to volume). Data for LC nuclei were then

converted to cell number per testis after determination of mean

LC nuclear diameter and volume (,100 nuclei per animal) using

the Stereologer software nucleator function. Average LC cyto-

plasmic volume was calculated by dividing total LC cytoplasmic

volume per testis by the number of LC.

Immunofluorescence for Smooth Muscle Actin, 3b-HSD
and COUP-TFII
In order to delineate the seminiferous cord compartment from

the interstitial compartment and to distinguish COUP-TFII

positive fetal LC from other COUP-TFII positive interstitial and

peritubular myoid cells, specific antibodies were used for the co-

immunolocalization of a-smooth muscle actin (a-SMA; clone 1A4,

Sigma-Aldrich), 3b-HSD (for rat and mouse: clone P-18, Santa

Cruz Biotechnology, Inc., CA, USA; for human: the antibody was

a kind gift of professor Ian Mason) and COUP-TFII (clone

H7147, R&D Systems, MN, USA). All washes between incubation

steps were in TBS (365 min) and all incubations were carried out

in a humidity box (Fisher Scientific, UK). Sections were dewaxed

and rehydrated, followed by a peroxidase block in 3% (v/v) H2O2

in methanol for 30 min. Next, the sections were blocked in normal

rabbit serum (NRS; Biosera, Ringmer, UK) diluted 1:5 in TBS

containing 5% (w/v) BSA (NRS/TBS/BSA), followed by in-

cubation with anti-SMA antibody diluted 1:10,000 in NRS/TBS/

BSA for 1 hour at room temperature (RT). Sections were then

incubated with peroxidase-conjugated rabbit anti-mouse second-

ary antibody (RAMP; DAKO Corp., Cambridge, UK), diluted

1:200 in NRS/TBS/BSA for 30 minutes at RT, followed by

incubation with Tyr-Cy5 (Perkin Elmer-TSA-Plus Cyanine5

System; Perkin Elmer Life Sciences, Boston, MA, USA) according

to the manufacturer’s instructions. Sections were then subjected to

antigen retrieval by boiling in a pressure cooker in 0.01 mol/l

citrate buffer (pH 6.0) for 5 min and left to cool for 20 minutes,

followed by another block in NRS/TBS/BSA and overnight

incubation at 4uC with anti-3b-HSD antibody diluted 1:8,000 in

NRS/TBS/BSA. Slides were then incubated with peroxidise-

conjugated rabbit anti-goat secondary antibody (Sigma-Aldrich)

diluted 1:200 in NRS/TBS/BSA for 30 minutes at RT, followed

by incubation with Tyr-Cy3 (Perkin Elmer-TSA-Plus Cyanine3

System; Perkin Elmer Life Sciences) according to the manufac-

turer’s instructions. Sections were again blocked against peroxi-

dase in 3% (v/v) H2O2 in TBS plus 0.01% (v/v) Tween-20

(Sigma-Aldrich) for 20 min followed by blocking in NRS/TBS/

BSA and overnight incubation at 4uC with anti-COUP-TFII

antibody diluted 1:1,000 in NRS/TBS/BSA. Finally, on the third

day, sections were incubated with RAMP diluted 1:200 in NRS/

TBS/BSA for 30 minutes at RT, and followed by incubation with

Tyr-fl (Perkin Elmer-TSA-Plus Fluorescein System; Perkin Elmer

Life Sciences) according to the manufacturer’s instructions.

Fluorescent images were captured using a Zeiss LSM 710 Axio

Observer Z1 confocal laser microscope (Carl Zeiss Ltd.). All

images were compiled using Photoshop 9.0 (Adobe Systems Inc.).

Quantification of COUP-TFII positive fetal LC
Preliminary studies showed that, at e21.5, when DBP (500 mg/

kg/day) exposure reduces ITT, this was associated with a high

percentage of fetal LC expressing COUP-TFII in their nuclei,

whereas in controls most LC nuclei were negative for COUP-TFII

(Fig. 4,5). To validate this observation, COUP-TFII immunoex-

pression in LC nuclei in control and DBP-exposed animals was

evaluated using serial dilutions of COUP-TFII antibody. This

showed unequivocally that the level of COUP-TFII immunoex-

pression was considerably higher in DBP-exposed animals than in

controls (Fig. S6). Based on these studies, an antibody dilution of

1:1000 was chosen for the remaining studies, as this discriminated

LC nuclear COUP-TFII immunoexpression clearly between

control and DBP-exposed animals at a dose of DBP that was

associated with induction of TDS disorders (Fig. 1). High

resolution tiled confocal scanning laser microscopy images of

complete testis cross sections co-stained for SMA, 3b-HSD and

COUP-TFII were generated and used for determining the

proportion of fetal LC which stained positively for COUP-TFII.

At least 5 different testes per age and treatment group were used

for counting. Briefly, exported images were opened using Image-

Pro 6.2 software (MagWorldwide) and all LC in the image were

counted (range in numbers = 25–1693; median 472 per testis

cross-section) and scored negative or positive for nuclear COUP-

TFII staining.

Gene expression analysis at e21.5
For quantitative analysis of gene expression by RT-PCR, total

RNA was extracted from e21.5 testis samples from the different

treatment groups (controls, Dex-100 mg/kg, DBP-500 mg/kg,

Dex-100 mg/kg + DBP-500 mg/kg, DES-100 mg/kg) using the

RNeasy Micro Kit with on-column DNase digestion (Qiagen,

UK). Random hexamer primed cDNA was prepared using the

Applied Biosystems TaqmanTM RT kit (Applied Biosystems, CA).

Quantitative real time PCR (qRT-PCR) was performed on the

ABI Prism Sequence Detection System (Applied Biosystems).

Expression of rat StAR, Cyp11a1, Cyp17a1, 3b-HSD, Amh, LHR and

COUP-TFII mRNA was determined using the Roche Universal

Probe Library (StAR forward primer: 59-TCACGTGGCTGCT-

CAGTATT-39, reverse primer: 59-GGGTCTGTGATAA-

GACTTGGTTG-39, probe number 83 Cat no. 04689062001;

Cyp11a1 forward primer: 59-TATTCCGCTTTGCCTTTGAG-

39, reverse primer 59-CACGATCTCCTCCAACATCC-39, probe

number 9 Cat no. 04685075001; Cyp17a1 forward primer: 59-

CATCCCCCACAAGGCTAAC-39, reverse primer: 59-

TGTGTCCTTGGGGACAGTAAA-39, probe number 67 Cat

no. 04688660001; Amh forward primer: 59-CTGGA-

CACCGTGCCTTTC-39, reverse primer: 59-CACTGTGTGG-

CAGGTCCTC-39, probe number 26 Cat no. 04687574001; 3b-
HSD forward primer: 59-GACCAGAAACCAAGGAGGAA-39,

reverse primer: 59-CTGGCACGCTCTCCTCAG-39, probe

number 105 Cat no. 04692241001; LHR forward primer: 59-

CTGGAGAAGATGCACAGTGG-39, reverse primer 59-

CTGCAATTTGGTGGAAGAAATA-39, probe number 107

Cat no. 04692268001; COUP-TFII forward primer: 59-CGGAG-

GAACCTGAGCTACAC-39, reverse primer 59-CCACTTT-

GAGGCACTTTTTGA-39, probe number 123 Cat

no. 04693574001; Roche Applied Sciences, Burgess Hill, UK).

The expression level of each gene was corrected using a ribosomal

18S internal control (Applied Biosystems Cat no. 4308329). All

samples were performed in triplicate and a relative comparison

was made to adult testis control cDNA. For each treatment group,

at least fifteen e21.5 rat fetuses from 5 litters were analyzed.

Immunohistochemistry for Cyp11a1, 3b-HSD and Amh
Specific protein expression of Cyp11a1, 3b-HSD and Amh

were detected by immunohistochemistry on e21.5 testis sections

isolated from control and DBP-exposed animals, using standard

methods that have been detailed previously [12,48]. The primary

antibodies and their dilutions used in the present studies were as

follows: rabbit anti-Cyp11a1 (1:200; Chemicon International Inc.,

Temecula, CA, USA), goat anti-3b-HSD (1:800; Santa Cruz

Biotechnology, Santa Cruz, CA, USA), goat anti-Amh (1:30;

Santa Cruz Biotechnology, Santa Cruz, CA, USA).
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Statistical analysis
Data were analysed using GraphPad Prism version 5 (Graph

Pad Software Inc., San Diego, CA) and one-way Analysis of

Variance followed by the Bonferroni post-test, or student t-test

when control and treated groups at a particular age were

compared. The Fisher’s exact test was used for comparing the

incidence of cryptorchidism and hypospadias in vehicle- and DBP-

exposed treatment groups. Data for fetal ITT and mRNA levels

were log transformed prior to analysis to normalize variances.

Supporting Information

Figure S1 Effect of in utero exposure of rats to vehicle
(control), or dibutyl phthalate (DBP 500 mg/kg/day) on
the mRNA expression of COUP-TFII in the fetal testis at
e21.5. Values are Means 6 SEM for 11–14 animals per group

(minimum of 3 litters per group).

(TIF)

Figure S2 COUP-TFII immunoexpression in e21.5 con-
trol testis (A) and corresponding image in (B) showing
DAPI nuclear counterstain. Arrows indicate examples of

nuclear COUP-TFII/DAPI staining which has a ‘‘cytoplasmic’’

appearance, but in fact is all within the nucleus as indicated by

DAPI staining. Scale bar = 20 mm.

(TIF)

Figure S3 Effect of in utero exposure of rats to vehicle
(control), Dexamethasone (Dex 100 mg/kg/day), dibutyl
phthalate (DBP 500 mg/kg/day) or a combination of
DBP-500 + Dex on steroidogenic enzyme and anti-
Müllerian hormone gene expression in testes at e21.5.
(A) Cyp11a1, (B) StAR, (C) Cyp17a1, (D) 3b-HSD, and (E) Amh. Note

the lack of effect of treatments on expression of 3b-HSD and Amh.

Values are Means6 SEM for 19–22 animals per group (minimum

of 5 litters per group). *p,0.05, **p,0.01, ***p,0.001, in

comparison with respective control.

(TIF)

Figure S4 Effect of in utero exposure of rats to (A)
vehicle (control), dexamethasone (Dex 100 mg/kg/day),
dibutyl phthalate (DBP 500 mg/kg/day) or a combina-

tion of DBP-500 + Dex or (B) diethylstilbestrol (DES
100 mg/kg) on luteinizing hormone receptor (LHR) gene
expression in testes at e21.5. Values are Means 6 SEM for

11–24 animals per group (minimum of 3 litters per group).

***p,0.001, in comparison with respective control.

(TIF)

Figure S5 COUP-TFII immunoexpression in fetal LC in
control and complete androgen receptor knockout
(ARKO) mice at e18.5. Representative images of control and

ARKO mice (n = 4) demonstrating that COUP-TFII is only rarely

expressed (arrows) in ARKO fetal LC as in wild-type controls.

Scale bar = 20 mm.

(TIF)

Figure S6 Serial dilution of COUP-TFII antibody. Triple
immunofluorescence for SMA (blue), 3b-HSD (red) and COUP-

TFII (green) on fetal testis sections from vehicle (control) and DBP-

exposed (500 mg/kg/day) e21.5 animals. Note that in control

sections most Leydig cells are COUP-TFII-immunopositive at low

antibody dilutions (1:250–1:500) whereas only a minority is at

lower antibody dilutions. In contrast, in sections from DBP-

exposed animals, most Leydig cells are COUP-TFII-immunopo-

sitive at all antibody dilutions. SC= seminiferous cords. A wider

range of antibody dilutions were run than is shown. Scale

bar = 20 mm.

(TIF)
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