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Fig. 1. Magnetic resonance imaging 
(MRI) revealed a collapse localized 
at vertebra L1, according to MM 
involvement.
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Identifying the link between multiple 
myeloma and neurofibromatosis type I

TO THE EDITOR: Neurofibromatosis type 1 was first de-
scribed by Frederich von Recklinghausen in 1882. 
Neurofibromatosis type 1 is an autosomal dominant disorder 
characterized by brown skin macules, iris hamartomas (Lisch 
nodules), and skeletal deformities [1]. Neurofibromatosis 
type 1 is a relatively common inherited disorder that affects 
about one in 2,500 to one in 3,000 people worldwide, irre-
spective of sex or ethnic origin [2]. The neurofibromatosis 
gene, located on chromosome 17q11.2, encodes a 220 kDa 
cytoplasmic protein called neurofibromin. This protein 
functions, in part, as a negative regulator of the Ras pro-
to-oncogene, which is a key signaling molecule in the con-
trol of cell growth. Individuals with neurofibromatosis type 
1 are prone to developing benign and malignant tumors 
of the central nervous system and peripheral nervous system. 
Furthermore, other cancers such as glioma of the optic path-
way, glioblastoma, malignant peripheral nerve sheath tu-

mor, gastrointestinal stromal tumor, breast cancer, and acute 
myeloid leukemia are associated with neurofibromatosis 
type 1 [3]. The association between multiple myeloma (MM) 
and neurofibromatosis type 1 is rare.

We describe a case of IgG-k MM with neurofibromatosis 
type 1. A comprehensive review of the literature looking 
for clinical-biologic correlations helping in identifying some 
aspect of the pathogenesis of the disease improve the 
manuscript.

A 69-year-old female with anemia, monoclonal compo-
nent, and back pain was found to have MM. The neuro-
fibromatosis type 1 had been diagnosed 40 years before. 
Molecular testing for neurofibromatosis gene mutations was 
performed and the results showed that patient one was 
heterozygous for the c.6855C＞A (Tyr2285Ter) mutation.

The mutation was not found in MMM  cells. Serum im-
munofixation electrophoresis and Bence-Jones immunofix-
ation on urine evidenced the presence of an IgG monoclonal 
component and kappa light chains, respectively. Protein 
electrophoresis showed a monoclonal spike with an IgG-k 
monoclonal component of 0.18 mg/dL. The determination 
of serum free light chains detected a kappa/lambda ratio 
of 168. The calcium and hemoglobin levels were normal. 
Fluorescence in situ hybridization (FISH) analysis of purified 
CD138+ plasma cells identified the presence of del(13q) 
but did not show del(17p). In addition, a bone marrow 
biopsy confirmed the presence of 70% plasma cell infiltra-
tion kappa restricted. A low dose computed tomography 
scan showed multiple collapses localized at dorsal and lum-
bar vertebrae. The magnetic resonance imaging revealed 
a collapse localized in the lumbar region based on the in-
volvement of MM (Fig. 1).

Therefore, the patient was diagnosed with symptomatic 
IgG-k MM stage III according to the International Staging 
System (ISS) and was judged eligible for autologous stem 
cell transplantation. The first line of therapy consisted of 
six 28-day cycles of bortezomib, thalidomide, and dex-
amethasone (VTD regimen) [4], from June 2019 to November 
2019. A stringent complete response was achieved. Subsequently, 
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Table 1. Summary of case reports on NF1 and MM.

Case 
No. Age/sex Diagnosis NF type Interval from NF1 

and MM diagnosis Cytogenetic Therapy Outcome Ref.

1 59/M MM IgG-Kappa 1 ND Del 13q, tris 9 and 15 VTD+auto-sct VGPR Accardi et al. [6]
2 76/M SMM IgG-Kappa 1 ND ND Follow-up Accardi et al. [6]
3 69/F MM IgG-Kappa 1 40 yr Del 13q VTD sCR Our case
4 63/M MM light chain 

disease, Lambda 
1 ND (1q+), 8q+, 13q+,

i (17q), i (18q), and +M.
ND ND Zengin et al. [5]

Abbreviations: auto-sct, autologous stem cell transplantation; MM, multiple myeloma; ND, not detectable; Ref, references; sCR, stringent 
complete response; VGPR, very good partial response; VTD, bortezomib, thalidomide and dexamethasone. 

the patient underwent mobilization by cyclophosphamide 
plus granulocyte colony-stimulating factor followed by col-
lection of peripheral blood progenitor cells; the patient is 
currently still waiting for the transplant procedure.

As far as we know, this is the fourth case of a possible 
association between MM and neurofibromatosis type 1 re-
ported in the literature [5, 6]. However, the reason for 
this association is unknown. In our case, we have not ob-
served a bad prognosis in this association. In Table 1, we 
summarize the clinical characteristics of the four cases re-
ported in the literature. All the patients were affected by 
MM and were diagnosed with neurofibromatosis type 1.

The neurofibromatosis gene produces a GTPase-activating 
protein, which functions as a tumor suppressor. Either a 
duplication of 17q, containing the neurofibromatosis type 
1 locus, or a loss of 17p containing p53 may provide the 
evaluation of tumor. Further, a normal or mutated neuro-
fibromatosis type 1 gene may affect the other genes at the 
same locus or those in nearby loci and may contribute to 
tumorigenesis [7]. The increased frequency of neoplasms 
in neurofibromatosis type 1 patients is partly explained by 
the genetic basis of the disorder that results from mutations 
of the neurofibromatosis type 1 locus at chromosome 17. 
The neurofibromatosis gene is a tumor suppressor gene that 
encodes for neurofibromin, a GTPase-activating protein, 
which downregulates Ras [8, 9]. The neurofibromatosis gene 
mutations are likely to produce a non-functional neuro-
fibromin protein, which results in the deregulation of Ras 
pathways. Recent studies have demonstrated that mutations 
in N-and K-ras oncogenes may play a major role in the 
pathogenesis of MM, which are probably more significant 
in the disease than previously thought [10]. Both neuro-
fibromatosis and Ras genes participate in the signal trans-
duction through Ras proteins [8]. The product of the Ras 
genes is a guanosine phosphorylated binding protein 
(Ras-GDP) which can be converted to the active GTP-bound 
form, leading to the activation of various signaling pathways 
that may affect growth, differentiation, and apoptosis. 
Mutations in Ras oncogenes promote the active GTP-bind-
ing protein, thus continuously activating downstream effec-
tors and giving a growth advantage to malignant cells [11]. 
Mangues et al. [12] have found a significant increase in 

the incidence of lymphomas in animals that was attributed 
to the synergistic effect of N-ras overexpression and neuro-
fibromatosis gene inactivation. Based on the above literature, 
the association of neurofibromatosis type I with plasma cell 
dyscrasia could be interpreted by common pathogenetic 
mechanisms through Ras pathways.

In addition, the International Myeloma Working Group 
consensus updated the definition for high-risk MM based 
on cytogenetics. Several cytogenetic abnormalities such as 
t(4;14), del(17/17p), t(14;16), t(14;20), non hyperdiploidy, 
and gain (1q) that confer poor prognosis were identified 
[13]. Currently, FISH is the standard technique for analysis 
of cytogenetic abnormalities. FISH is useful to detect ge-
nomic aberrations in situ and to enumerate the percentage 
of cells harboring such abnormalities, but it does not detect 
single-nucleotide variants. For example, TP53 on chromo-
some 17p is detected in 7% of myelomas, yet it is mutated 
at a much higher frequency in myelomas based on exome 
sequencing [14]. The neurofibromatosis gene is located in 
region 17q11.2, and the MM patients with this type of 
p53 (17p13) cytogenetic abnormality have a shorter pro-
gression free survival and overall survival [15]. Zengin et 
al. [5] highlighted the pathogenetic role of cytogenetic muta-
tions in their patient, but the patient showed a complex 
karyotype without an overt association with a p53 mutation. 
The authors concluded that the patient had the same muta-
tion located in the 17th chromosome that can cause neuro-
fibromatosis type I and MM. On the contrary, Accardi et 
al. [6] reported a case of a 59-year-old MM patient for 
whom FISH analysis of purified CD138+ plasma cells identi-
fied the presence of del(13q) and trisomy of chromosome 
9 and 15 but did not show del(17p) and chromosome 14 
rearrangements. In the other case reported by Accardi et 
al. [6], the authors describe an association of smoldering 
multiple myeloma and neurofibromatosis type 1.

In conclusion, we suggest that the association between 
MM and neurofibromatosis type 1 may be a mere 
coincidence. However, during the work-up of MM in pa-
tients with neurofibromatosis, it is important to consider 
the possibility of del(17) that indicated a poor prognosis. 
Further studies are needed to deeply explore the possible 
link between MM and neurofibromatosis type 1.
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