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Abstract

Onion (Allium cepa L.) is an economically important vegetable crop around the world.

Genetic and genomic research into various onion accessions will provide insights into the

onion genome to enhance breeding strategies and improve crops. However, the onion’s

large genome size means that studies of molecular markers are limited in onion. This study

aimed to discover high quality single nucleotide polymorphisms (SNPs) from 192 onion

inbred lines relating to short-day cultivation in Korea. Paired-end (PE) double digested

restriction site-associated DNA sequencing (ddRAD-seq) was used to discover SNPs in

onion. A total of 538,973,706 reads (25.9 GB), with an average of 2,658,491 high-quality

reads, were generated using ddRAD-seq. With stringent filtering, 1904 SNPs were discov-

ered based on onion reference scaffolds. Further, population structure and genetic relation-

ship studies suggested that two well-differentiated sub-populations exist in onion lines.

SNP-associated flanking sequences were also compared with a public non-redundant data-

base for gene ontology and pathway analysis. To our knowledge, this is the first report to

identify high-quality SNPs in onion based on reference sequences using the ddRAD-seq

platform. The SNP markers identified will be useful for breeders and the research commu-

nity to deepen their understanding, enhance breeding programs, and support the manage-

ment of onion genomic resources.

Introduction

Onion (Allium cepa L., 2n = 16) is an important monocotyledonous crop that is widely culti-

vated and consumed worldwide. It belongs to the Amaryllidaceae family, which also includes

garlic, shallots, and scallions. These crops are grown in temperate and tropical regions, highly

valued for culinary purposes. They inhabits nutritional, medicinal and pharmacological bene-

fits, including being anticarcinogenic, anti-inflammatory, antimicrobial, and antifungal [1–3].
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China and India, where 65.5% of the world’s human population live, are the leading producers

of onions, producing large quantity every year (89 million tons in 2014, 91 million tons in

2015, and 92 million tons in 2016 [Food and Agriculture Organization, http://faostat.fao.org]).

Most onions grown in Korea are short-day and open-pollinated while the annual production

of onions is affected by several biotic and abiotic components of the ecosystem [4,5]. Most

onion producers have noted decreased yields caused by bacterial (e.g., Brown Rot, Pseudomo-
nas aeruginosa), viral (e.g., Aster yellows), and fungal diseases (e.g., Purple Blotch, Alternaria
porri; Stemphylium leaf blight (SLB), Stemphylium vesicarium; White Rot, Sclerotium cepivorum
Berk; Basal Rot, Fusarium oxysporum f.sp.; Downy Mildew, Peronospora destructor; Onion

Smut, Urocystis cepulae; Onion Smudge, Colletotrichum circinans; Black Mould, Aspergillus
niger; and Neck rot, Botrytis allii). Environmental stresses (abiotic factors) such as high tem-

perature, salinity, drought, and soil nitrogen deficiency also limit onion production and

quality.

Currently, available genomic information about diploid alliums is limited and the fact that

the main genome database AlliumMap is not publically/freely accessible. The complex genome

of onions, in particular with a complexity of 16.3 Gb per 1C nucleus have created technical dif-

ficulty in the development of molecular markers [6]. Although onions are highly valuable vege-

table crops with pharmacological benefits, data about their genetic and genomic makeup

remain limited. Extensive genetic and genomic research must be conducted to further under-

stand the onion genome to enhance crop improvement and adaptation, develop accessions

that are resilient to biotic and abiotic stresses, and increase onion quality and quantity. DNA-

based molecular markers have been extensively used to accelerate plant breeding programs

through marker-assisted selection for improving germplasm efficiency, and to understand

the molecular mechanisms underlying genetic traits. Numerous genetic markers, including

simple sequence repeats (SSRs) [7], expressed sequence tag SSRs (EST SSRs) [8], Inter-simple

sequence repeats (ISSRs) [9], amplified fragment length polymorphisms (AFLPs) [10], ran-

domly amplified polymorphic DNA (RAPD) [11] and single nucleotide polymorphisms

(SNPs) [12] have been developed and used to determine genetic diversity, construct genetic

linkage maps, and conduct phylogenetic analyses of onion germplasm [13]. SNPs are consid-

ered to be the most reliable genetic markers, with advantages of flexibility, cost-effectiveness,

rapid, and low error rate [14]. SNP markers can easily be converted to perform high-through-

put assays, and to support onion breeding programs with existing technologic resources. In

recent decades, genome-wide SNP discovery has been accelerated in several plant and animal

species [15] with the aid of next generation sequencing (NGS) technology [16].

To date, the most recently developed genotyping methods are genotyping by sequencing

(GBS) [17] and restriction site-associated DNA sequencing (RAD-seq) These simple, tech-

niques reduce the complexity of large and multifarious genomes for easier genome-wide SNP

discovery, and have been used in several plant species including onion inbred lines [12], garlic

[18], maize [19], barley and wheat [19], and soybean [20]. They are also cost-effective ways of

performing high-throughput sequencing of large sample sets in a single experiment, and offer

the possibility of detecting SNPs on a large scale, with or without reference genome sequence.

Recently, Shirasawa established a ddRAD-Seq (double-digest restriction-site-associated DNA

sequencing) workflow to sequence the genotypes of complex genomes with higher accuracy

than GBS [21].

In this study, we used paired-end (PE) ddRAD-seq technology to develop a novel refer-

ence-based genome-wide SNP resource from onion inbred lines cultivated in Korea. Filtered

high-quality SNPs from 192 cultivars related to short-day inbred lines were subjected to popu-

lation structure and genetic relationship studies. In addition, we functionally annotated SNP

flanking sequences to determine similarity with known genes and biological functions.

Genome wide SNP discovery of Korean onion inbred lines
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Materials and methods

Plant materials and DNA extraction

The 192 short-day onion inbred lines used for this study were purchased from four Korean

companies: Nonghyup Seed (NH: 40), Bio Energy Crop Research Institute (Muan) (B: 39),

Changnyeong Onion Research Institute (CN: 36), and Nongwoo Seed (NW: 77) (Table 1 and

S1 Table). To extract genomic DNA (gDNA), fresh young leaves from plants of each inbred

line were collected, immediately frozen in liquid nitrogen, and stored at –80˚C until further

use. Total genomic DNA was isolated using the Qiagen DNeasy Plant Mini Kit (Qiagen, Hil-

den, Germany) according to the manufacturer’s standard protocol. The quality and quantity of

isolated DNA samples was measured with 1% agarose gel electrophoresis, and a Nanodrop

spectrophotometer (Thermo Scientific, Delaware City, DE, USA), respectively. Samples were

diluted to 50 ng/μL for ddRAD sequencing.

Double digest restriction site associated (ddRAD) DNA sequencing

Genomic DNA from each line was double-digested with PstI and EcoRI restriction enzymes.

ddRAD-Seq libraries were constructed using two combinations of restriction enzymes, and

the sequencing procedure published by Shirasawa et al. [21] was followed. Adaptor-ligated

DNA amplicons were pooled and separated using 1.5% agarose gel electrophoresis by BluePip-

pin (Sage Science, Beverly, MA, USA). DNA fragments with lengths of 300–900 bp were iso-

lated using the QIAGEN MiniElute Gel Extraction Kit (Qiagen). Finally, constructed ddRAD-

seq libraries were sequenced using the HiSeq platform (Illumina, USA), using the 93-bp PE

mode for each inbred line.

ddRAD- seq analysis and SNP detection

Sequencing data obtained from 192 inbreds were examined for their quality using the FastQC

tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low-quality sequences

were removed using PRINSEQ (http://prinseq.sourceforge.net) [22] and adaptor sequences

were removed using fastx_clipper from the FASTX-Toolkit (version 0.10.1; http://hannonlab.

cshl.edu/fastx_toolkit). A total of 8,822,891 cleaned and filtered sequence reads of five libraries

for B001, CNH001, CNJ001, NH001, and NW001 were assembled with “large or complex

genome” mode of Newbler v3.0 (Roche). The resultant 12,718 sequences spanning 1,599,536

bases were used as a reference for the following analysis. The reads from the PE sequences of

each accession were mapped to the reference sequence using Bowtie 2 (version 2.1.0) [23]. The

resulting sequence alignment/map format (SAM) files were converted to Binary Alignment/

Map (BAM) files, and SAMtools (version 0.1.19) was used to sort, index and remove duplicates

Table 1. The information of 192 Korean onion inbreds used in this study.

S.No Number of accessions Sample type Cultivation Company Country

1 40 Inbred lines Short day Nonghyup Seed companya Korea

2 39 Inbred lines Short day Bio Energy Crop Research Institute (Muan)b Korea

3 36 Inbred lines Short day Changnyeong Onion Research Institutec Korea

4 77 Inbred lines Short day Nongwoo Seed Companyd Korea

a Nonghyup Seed: http://nhseed.nonghyup.com/
b Bio Energy Crop Research Institute (Muan): http://www.nics.go.kr
c Changnyeong Onion Research Institute: http://cnonion.or.kr/
d Nongwoo Seed Company: http://www.nongwoobio.co.kr

https://doi.org/10.1371/journal.pone.0201229.t001
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[24]. Genomic variants (SNPs) were called out for each onion lines against the reference

genome using the mpileup module from SAMtools and the BCFtools view option. Variant call

format (VCF) files produced, including SNP details, were further filtered with a SNP quality

score of� 999, minimum depth of 5, minor allele frequency of 0.05, and minimum proportion

of missing data of 0.5 for each locus using VCFtools (version 0.1.11) [25]. Missing data were

imputed using Beagle4 [26], and the filtered high-confidence SNPs from ddRAD-Seq were

subjected to further analysis.

Population structure analysis

The heterozygosity and the percentage polymorphic loci was calculated in the onion inbreds

using GenAlex version6.03. The population structure of the Korean onion lines was estimated

using STRUCTURE (version 2.3.4) [27] with data from detected SNPs. This program uses a

model-based Bayesian clustering algorithm approach to correlate allele frequencies for inde-

pendent runs without the need for population information. Ten independent runs were per-

formed with different K values from 1–10 (K is the number of distinct, strong differentiations

between genetic groups and unknowns). For this, the Markov Chain Monte Carlo (MCMC)

length of the burn-in period was set at 30,000 iterations, and after a burn-in period, the num-

ber of iterations was adjusted to 50,000 steps. The admixture model was implemented to

obtain the optimal K value. We followed a delta-K procedure based on the method published

by Evanno et al. [28], using the online program STRUCTURE Harvester (web version 0.6.94;

http://taylor0.biology.ucla.edu/structureHarvester/) [29] to estimate the optimal K value from

independent runs. The population structure comprising SNPs detected from inbred lines were

visualized using STRUCTURE with the following options: (i) select optimal K value run, (ii)

show plot as ‘bar plots’, and (iii) sort by Q [30].

Genetic relationship analysis

GenAlEx software (version 6.5) was used to calculate pairwise relatedness (genetic distance)

between inbred lines, and principal component analysis (PCA) was performed using TASSEL

(version 5.2.42) [31]. The generated pairwise distance matrix file was used to construct a phy-

logenetic tree for population differentiation. The MEGAv7 [32] program was used to generate

a neighbor-joining tree, with bootstrap values based on genetic distance matrices with default

settings.

Functional analysis of SNP-associated scaffolds

SNP-associated scaffold sequences were retrieved from the reference genome and used as

BLASTX queries against the non-redundant protein database at the National Center for Bio-

technology Information (NCBI). BLAST parameters were as follows: e-value cut-off, 1.0E-5;

word size, 3; number of BLAST hits, 3; and other parameters, default. The most similar

sequence matches for each SNP-associated scaffold was selected based on multiple hits, and

these were used to find Gene Ontology (GO) terms, and enzyme and pathway details using

Blast2GO suite (http://www.blast2go.com/b2ghome). The three major GO terms, biological

process (BP), cellular component (CC), and molecular function (MF), were determined with

annotation cut-offs of� 55; GO weight, 5; and e-value hit filter, < 1.0E-6 [33]. Details of

enzymes and pathways were searched for using the ‘Enzyme Code and KEGG’ option in Blas-

t2GO, and data was retrieved from the KEGG (Kyoto Encyclopedia of Genes and Genomes)

database [34].

Genome wide SNP discovery of Korean onion inbred lines
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Results and discussion

ddRAD- seq data analysis and SNP discovery

Genomic DNA isolated from 192 onion inbred lines was used to prepare ddRAD (PstI and

EcoRI) representation libraries. These constructed libraries were then successfully sequenced

using the Illumina HiSeq platform. PE sequencing of individuals yielded 538,973,706 reads,

with an average of 2,807,154 (~2.8 million) reads per accession, covering 25.9 GB of sequenced

data. An average of 2,658,491 high quality reads were obtained and used for reference genome

alignment. The reference genome comprised 12,718 scaffolds, with an average scaffold length

of 126 bp (range: 96–556 bp). An average of 33.3% reads were aligned to the onion reference

genome, with the reference genome alignment ratio ranging between 17.2% and 51.5%.

ddRAD-sequenced accessions contained 37.7% GC content on average (range 36–43%). A

statistical summary of data collected about raw reads, cleaned reads, reference genome-

mapped reads, and alignment ratios for individual accessions are summarized in S2 Table. In

addition, 192 PE raw reads were deposited in NCBI sequence read archive (SRA) with acces-

sion SRP150117.

Mapped reads were further investigated to identify SNPs. A total of 1904 SNPs were iden-

tified from ddRAD-sequences of all 192 onion inbred line accessions, and these SNPs com-

prised 558 scaffolds (S3 Table). High-quality SNPs were filtered based on a SNP quality score

of�999, minimum depth of 5, minor allele frequency of 0.05, and minimum proportion of

missing data of 0.5 using the VCFtools program. Distributions of each type of SNP were as

follows: C/A, 87 (4%); G/A, 325 (17%); G/C, 32 (2%); T/A, 131 (7%); T/C, 290 (15%) and T/

G, 36 (2%) (Fig 1A). Of the 1904 identified SNPs, 711 (38%) were classified as transitions (A/

G or C/T), and 292 (15%) were classified as transversions (G/T, A/C, A/T, or C/G) (Fig 1B).

In general, transitions occurred more frequently than transversions because of the inter-

change between purine and pyrimidine nucleotide bases. In addition, to estimate real

sequencing data, a transition/transversion ratio of >0.5 was used. This ratio was used to cal-

culate divergence and to restructure the phylogenetic tree [35,36]. The C/T allele occurred

most frequently (376; 20%) among SNP alleles, which is a consistent observation in Allium
cepa [37], and similar to findings in other species including Cucumis melo [38], Brassica
napus [39], and oil palm [40]. The transition/transversion ratio in this study was 2.53, which

is lower than has been previously reported in wheat (1.75) [41], similar to that observed in

rice (2.3) [42], and higher than observed in peanut (3.2) [43]. A genetic map of Korean inbred

lines was constructed using the GBS method without a reference genome [12]. However,

with sufficient SNP flanking regions, reference sequence (contig/scaffolds)-based RAD-

sequencing data analysis was successfully used to design a SNP array and construct high den-

sity genetic/linkage maps [44–46]. Therefore, the resulted SNPs with associated flanking

sequences might be useful for high-throughput validation assays in onion breeding programs

for crop improvement.

Population structure and genetic relationship analysis

The heterozygosity and the percentage of polymorphic loci calculated using GenAlex (version

6.5) among the four populations genotyped using 1,904 SNPs showed that the observed het-

erozygosity (Ho) is less than the expected heterozygosity (He). The mean Ho andHe of the

onion inbred lines among the four populations were calculated as 0.00 and 0.36, respectively

(S4 Table). The relative low observed heterozygosity than expected frequency shows the influ-

ence of inbreeding force in these onion lines selected for study. In maize inbred lines, a similar

effect was reported withHo<He [47]. In addition, the highest percentage of polymorphic loci

Genome wide SNP discovery of Korean onion inbred lines
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was found in the onion populations of Nongwoo Seed accessions. The mean percentage of

polymorphic loci observed among the four populations were found to be 97.93 revealing high

diversity in their SNP genotypes due to inbreeding.

To investigate the genetic relationships between 1904 SNPs from Korean onion inbred

lines, a phylogenetic tree was constructed based on a pairwise distance matrix using neighbor-

joining methods (Fig 2A). The 192 lines were classified into three main clades based on clus-

tered SNPs: clade 1 contained 44 accessions, clade 2 contained 48, and clade 3 contained 100.

Each main clade was further classified into subclades: clade 1 contained two subclades with 29

and 15 accessions, and clade 2 contained a further two subclades with 37 and 11 accessions.

The largest clade, clade 3, contained two major subclades with 60 and 40 accessions, and other

accessions were grouped together.

Using the STRUCTURE 2.3.4 program, a model-based clustering approach was used to

analyze the population structure of 192 Korean onion inbred lines. The optimal delta-K value

was determined using STRUCTURE Harvester, which revealed the highest delta-K value to be

K = 2 (Fig 2B), suggesting that two well-differentiated sub-populations exist within these acces-

sions. Population structure for each accession was plotted using Sort Q. The STRUCTURE

program used a cut-off value of 0.55 for clustering based on genotype information. As

expected, Korean onion inbred lines were distributed into two different clusters or popula-

tions, represented by standard color codes used in this program: Q1 (cluster 1) red, and Q2

(cluster 2) green. In addition, mixture of Korean accessions contained both Q1 and Q2 color

Fig 1. Plots showing SNP distribution (A), and transition/transversion ratios (B) for SNPs identified from ddRAD-sequencing.

https://doi.org/10.1371/journal.pone.0201229.g001
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codes. Q1 accounted for 49 (25.52%) inbred accessions, and Q2 accounted for 135 (70.31%)

inbred accessions. The remaining 8 (4.16%) accessions contained a mixture of Q1 and Q2.

These results also correlated with the phylogenetic tree, where red (Q1), green (Q2), and

blue (mixture of Q1/Q2) colors can be seen (Fig 2C). Phylogenetic tree analysis revealed that

that 192 accessions are clearly divided into three clades, consistent with the results from

STRUCTURE. Principal component analysis (PCA) based on a two-dimensional distribution

in TASSEL (Fig 2D) was also consistent with the population structure and neighbor-joined

cluster analyses.

In practice, breeders preferred to select plant materials based on their germplasm collec-

tions, relatedness limitations and long term consistent assistance to support breeding pro-

grams. Relatedness analysis is important for this purpose, and helps breeders to understanding

the backgrounds of their plant materials. This model can also be used to obtain results for

genomic selection and association-related studies in various plant species such as large garlic

(Allium sativum) [18], cowpea [48], and others [49].

Functional analysis of SNP-associated scaffolds

A total of 558 SNP-associated scaffolds were blasted against the NCBI non-redundant protein

sequence database using BLASTX via Blast2GO. BLAST similarity results obtained 92 hits

from 558 scaffolds corresponding to known protein sequences (E-value <1.0E-5) (S5 Table).

Fig 2. Model-based population structure analysis of 192 Korean onion accessions. (A) Neighbor-joining phylogenetic tree using MEGA 7 (color

codes based on population structure); (B) delta-K values from STRUCTURE Harvester using the Evanno method; (C) two population structure

classifications from 192 onion accessions using the STRUCTURE program; (D) principal component analysis of the first two components. The color

codes (Q1 [cluster 1], red; Q2 [cluster 2], green) of each onion accession were consistent in A and C based on population structure analysis.

https://doi.org/10.1371/journal.pone.0201229.g002
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The remaining 466 scaffolds did not match with any known protein sequences from a public

database, suggesting that our SNP-associated scaffold sequences were unique to Korean onion

inbred lines (Fig 3) [37]. The 92 BLAST hits mainly matched with Asparagus officinalis, Allium

species (Allium cepa, Allium fistulosum, and Allium microdictyon), and Daucus carota subsp.

sativus. In addition, functional annotations resulted in 78 GO tserms with 41 blast hits. These

78 GO terms were further classified into three functional categories such as cellular compo-

nent (CC; 22 GO terms), molecular function (MF; 33 GO terms), and biological process (BP;

23 GO terms). Some scaffolds matched with more than one GO term, whereas a few matched

only one GO term (S6 Table). Cellular component annotations were further subclassified into

seven major level predominant GO subcategories; cell (GO: 0005623) and cell part (GO:

0044464) categories were associated with 21 scaffolds; organelle (GO: 0043226), 18 scaffolds;

organelle part (GO: 0044422) 6 scaffolds; membrane (GO: 0016020), 6 scaffolds; membrane

part (GO: 0044425) 3 scaffolds; and macromolecular complex (GO: 0032991) 6 scaffolds (Fig

4A). Most scaffolds in the molecular function categories were associated with binding (GO:

0005488; 26 scaffolds), catalytic activity (GO: 0003824; 11 scaffolds), and structural molecule

activity (GO: 0005198; 3 scaffolds).

Biological process GO terms were also categorized into seven subcategories: cellular process

(GO: 0009987), 21 scaffolds; metabolic process (GO: 0008152), 20 scaffolds; response to stimu-

lus (GO:0050896) 2 scaffolds; cellular component organization or biogenesis (GO:0071840) 3

scaffolds; biological regulation (GO:0065007) 2 scaffolds; regulation of biological process

(GO:0050789) 2 scaffolds; and signaling (GO:0023052), 1 scaffold. Detailed classification of

level 3 GO terms are plotted in Fig 4B.

The number of annotated scaffolds discovered in this study is less than those in known

genome sequences; this finding is similar to previous studies that have conducted de-novo

transcriptome analysis. In addition, these kind of results obtained due to the sequence lengths,

and depth SNP or scaffold coverage mean these results might be unique to Korean onion

inbred lines [37]. Analysis of pathway details from annotation results shows that 7 scaffolds are

involved in 12 different pathways (Table 2). Of note, scaffold06984 consists of 1 SNP (46: T/C;

position, SNP allele) that is involved in three pathways: cysteine and methionine metabolism

Fig 3. Sequence length distribution from the reference genome (left), and number of sequences annotated with BLAST hits (right).

https://doi.org/10.1371/journal.pone.0201229.g003
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(map00270), biosynthesis of antibiotics (map01130), and sulfur metabolism (map00920). Fur-

ther, scaffold00480 (4: A/T), scaffold01554 (37: C/G; 38: G/T; 43: C/T; 53: A/G, and 64: C/T),

and scaffold01794 (111: T/A) are involved in nucleotide synthesis metabolism (purine metabo-

lism, pyrimidine metabolism and thiamine metabolism), and nucleotide sugar metabolism

(amino sugar and nucleotide sugar metabolism, galactose metabolism). Finally, 3 scaffolds,

scaffold00116 (58: A/G), scaffold00052 (92: A/G), and scaffold00012 (106: G/C, 169: T/C, and

Fig 4. Level 2 (A) and level 3 (B) Gene Ontology classifications of the SNP-associated scaffolds identified from ddRAD-sequencing.

https://doi.org/10.1371/journal.pone.0201229.g004

Table 2. Pathway details of annotated SNP-associated scaffolds.

Pathway ID KEGG pathway Number of sequences Enzyme

map00270 Cysteine and methionine metabolism 1 O-acetyltransferase [ec:2.3.1.30]

map00052 Galactose metabolism 1 Phosphatase [EC:3.6.1.15],

RNA polymerase [EC:2.7.7.6]

map00920 Sulfur metabolism 1 Dehydrogenase [EC:1.6.99.3];

reductase (H+-translocating) [EC:1.6.5.3]

map00520 Amino sugar and

nucleotide sugar metabolism

1 4-Epimerase [EC:5.1.3.2]

map00240 Pyrimidine metabolism 1 O-Acetyltransferase [EC:2.3.1.30]

map01130 Biosynthesis of antibiotics 1 4-Epimerase [EC:5.1.3.2]

map00730 Thiamine metabolism 1 RNA polymerase [EC:2.7.7.6]

map00230 Purine metabolism 2 O-Acetyltransferase [EC:2.3.1.30]

map00190 Oxidative phosphorylation 6 Phosphatase [EC:3.6.1.15]

https://doi.org/10.1371/journal.pone.0201229.t002
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322: C/T) were identified in the oxidative phosphorylation (map00190) pathway. The above-

mentioned homology search, along with species distribution, annotation and pathway details

from RAD-sequencing, will provide valuable resources for understanding more about short-

day Korean onion inbred lines.

Conclusions

We identified highly valuable SNP resources from Korean onion lines using ddRAD-seq analy-

sis. To our knowledge, this is the first report of reference scaffolds being used for the discovery

of SNPs related to short-day cultivation in Korean onion lines. The high-quality SNPS identi-

fied from this study, with details of their genetic makeup and functional annotations, will be

useful for deepening our understanding and updating our knowledge of onion genomic

resources. Furthermore, markers developed from the SNPs we have found might be used for

onion breeding programs, cultivar identification, marker-assisted selection programs, and

high-density map development and validation with high throughput sequencing methods in

future.
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