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Tuberculosis (TB) is the world’s biggest infectious disease killer. The increasing

prevalence of multidrug-resistant and extensively drug-resistant TB demonstrates that

current treatments are inadequate and there is an urgent need for novel therapies.

Research is now focused on the development of host-directed therapies (HDTs)

which can be used in combination with existing antimicrobials, with a special focus

on promoting host defense. Immunometabolic reprogramming is integral to TB host

defense, therefore, understanding and supporting the immunometabolic pathways that

are altered after infection will be important for the development of new HDTs. Moreover,

TB pathophysiology is interconnected with iron metabolism. Iron is essential for the

survival of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB disease. Mtb

struggles to replicate and persist in low iron environments. Iron chelation has therefore

been suggested as a HDT. In addition to its direct effects on iron availability, iron chelators

modulate immunometabolism through the stabilization of HIF1α. This review examines

immunometabolism in the context of Mtb and its links to iron metabolism. We suggest

that iron chelation, and subsequent stabilization of HIF1α, will have multifaceted effects

on immunometabolic function and holds potential to be utilized as a HDT to boost the

host immune response to Mtb infection.

Keywords: immunometabolism, host-directed therapy, host-directed prevention, iron chelation, tuberculosis, iron

metabolism, Mycobacterium tuberculosis, HIF1α

INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis
(Mtb) and it is estimated that just under one quarter of the global population may be latently
infected with Mtb (1, 2). TB is responsible for approximately 1.7 million deaths annually (2),
making it the biggest infectious cause of death. Mtb is an airborne pathogen, spread through
aerosols created by coughing. After inhalation and infection with Mtb, people attempt to mount
an adequate innate immune response to eradicate the bacteria without the help of adaptive
immunity (so called “early clearance”) (2, 3). Only 5–10% of infected immunocompetent people
progress to TB disease (4, 5). These figures suggest that the vast majority of immunocompetent
people exposed to TB produce a robust and adequate immune response to clear the infection
asymptomatically. This gives credence to the idea that a defective immune response causes TB
disease, and can therefore be therapeutically corrected with host-directed therapies (HDT). We
suggest that supporting macrophage metabolism, by manipulating iron availability, has potential as
a HDT strategy.
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The treatment regimen for TB is based on a combination of
up to 4 drugs which have to be taken over protracted periods of
time. Inadequate treatment and poor compliance however, have
resulted in increasing incidences of multiple and extensively drug
resistant TB (MDR and XDR TB respectively) (6). MDR and
XDR TB patients have very limited treatment alternatives, thus
there is an unmet clinical need for better therapeutic options
(6). Basic cellular human research has shed light on many
aspects of immunity to Mtb and has unveiled immune pathways
that may be manipulated therapeutically (7–9). Early in Mtb
infection, both pro and anti-inflammatory pathways are activated
at the same time (7, 10). The aims of some HDT approaches
are to manipulate this balance- in other words, to reduce
the immune braking system and give the immune accelerator
more gas. With this approach, a desired clinical outcome is to
reduce the time required to clear the infection. A shorter, better
treatment regimen would increase compliance and may reduce
incidences of MDR and XDR TB. “Immunometabolism,” (the
metabolic changes that underpin the ability of immune cells
to mount an immune response) has informed many aspects of
immunity toMtb. By understanding and manipulating metabolic
pathways, we are seeking to redirect or accelerate the host to
yield better clinical outcomes for patients. Iron plays a central
role in modulating metabolic pathways (11–13). In this review,
we present the evidence suggesting that iron chelation, and its
effects on immunometabolism, may be a plausible adjunctive
HDT option for TB.

AN OVERVIEW OF IMMUNOMETABOLISM

Recent studies on macrophages and metabolic function have
linked intermediate metabolism to immune phenotypes (14). It
is now considered that immune cell function and cellular energy
metabolism are closely coupled and that alterations in metabolic
pathways are integral to the immune response, since they strongly
influence cell fate and effector functions; these links have been
thoroughly reviewed in T cells, macrophages, NK cells, dendritic
cells (DCs), and neutrophils (15–20). The metabolic pathways
of these cells must be tightly regulated to provide energy and
biosynthetic precursors tomeet the cells’ functional requirements
upon activation (21). It has been shown that, upon activation,
various immune cells undergo metabolic reprogramming similar
to oncogenic cells. For example, in 1927, Otto Warburg observed
that neoplastic cells change their metabolism from oxidative
phosphorylation (OXPHOS) to aerobic glycolysis (22). This
switch to glycolysis also occurs in immune cells that are activated
by pro-inflammatory signals, which differ depending on the cell
type, and allows them to produce adenosine triphosphate (ATP)
more rapidly (albeit less efficiently) and provides the necessary
metabolic intermediates needed for cell growth, proliferation
and effector mechanisms (23). Glycolytic shifts that take place
in activated immune cells are not always classically Warburg
(increased glycolysis and reduced OXPHOS) as both glycolysis
and OXPHOS can be enhanced simultaneously (24). Increased
activity of both glycolysis and OXPHOS is often observed in
human immune cells upon activation (24). Furthermore, the

metabolic profile of certain immune cells has also been shown
to change during different stages of activation. The complex
metabolic phenotype defines the function of the immune
cell. For example, glycolytic metabolism is associated with
classically activated pro-inflammatory macrophages (termed
“M1”), effector T cells, cytokine activated NK cells and
toll-like receptor (TLR) activated DCs (21, 23–26). This
metabolic reprogramming toward increased glycolysis, resulting
in increased inflammation, is mediated by two main signaling
molecules; mTOR and HIF1α. On the other hand, OXPHOS
is generally associated with the phenotype of tissue-resident
and alternatively activated macrophages (termed “M2”), long-
lived memory T cells, regulatory T cells and mature DCs in
their antigen presenting phase (27). It is also worthwhile noting
that oxidative metabolism supports immune cell longevity.
For example, preserving OXPHOS in activated DCs results in
an increased lifespan, and switching cellular metabolism from
glycolysis to oxidative metabolism promotes a shift from short-
lived M1 macrophages to longer-lived M2 macrophages (28,
29). Human alveolar macrophages (AMs), which are thought
to be M2-like, demonstrate greater metabolic plasticity toward
glycolytic metabolism upon inhibition of OXPHOS; this is
despite a greater reliance of human AMs on OXPHOS at baseline
compared to untreated human monocyte-derived macrophages
(hMDMs) and IL4 treated hMDMs (30). However, this glycolytic
reserve is attenuated in AMs from smokers and in AMs infected
with both live attenuatedMtb H37Ra and irradiatedMtb H37Rv
strains (30).

Monocytes and Macrophages
Monocytes are phagocytic and are capable of antigen
presentation but are best known as the precursor cells to
macrophages and DC. Two key regulators of monocyte
metabolism are mTOR and HIF1α, both of which enhance
glycolysis (31). The activity and gene expression of these two
molecular mediators is enhanced by β-glucan, one of the
main components of the fungal cell wall, known to upregulate
glycolysis in human monocytes (31). Interestingly, M.bovis
BCG is also capable of inducing these changes to prime
monocytes to respond more rapidly and with heightened activity
when challenged by other pathogens, in a process known
as innate training (32). The phenomenon of innate training
relies fundamentally on changes in glycolytic and glutamine
metabolism of monocytes which are crucial for the induction
of histone modifications underlying BCG-induced trained
immunity (32).

Monocytes extravasate from the blood into the tissue
where they differentiate into macrophages or DCs (33, 34).
Macrophages can have pro-inflammatory or pro-resolution
phenotypes depending on the cytokine milieu they experience
and pathogen- or damage- associated molecular patterns
(PAMP/DAMP) signals they receive in situ (35). These are
broadly classified as classically activated orM1-typemacrophages
and alternatively activated or M2-type macrophages (36). M1-
and M2-type macrophages differ in terms of function and
in the metabolic pathways they utilize; in fact, differences in
metabolic function direct their differentiation and phenotype
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(36, 37). M1 macrophages confer protection against bacterial
infection via a pro-inflammatory response, involving several
cytokines, nitrogen species and pro-inflammatory reactive
oxygen species (ROS) (38). Murine macrophages, activated
with LPS, have been demonstrated to rely on glycolysis to
produce ATP, which is primarily mediated by HIF1α (39).
Glycolysis in LPS-IFNγ stimulated murine bone marrow-derived
macrophages (BMDMs) is also directed toward the pentose
phosphate pathway (PPP) and the malate-aspartate shuttle to
support NADPH synthesis, essential for ROS production (40).
M2 macrophages, involved in tissue homeostasis and wound
healing, mediate Th2 cell immunity to parasitic infections,
which are usually chronic and therefore energy demanding (41).
In keeping with the longevity of their role, M2 macrophages
independently stimulated with IL4, signal transducer and
activator of transcription 6 (STAT6) and PPARγ-coactivator-1β
(PGC-1β) engage an anti-inflammatory phenotype and rely on
fatty acid oxidation (FAO) to generate ATP (42).

In murine BMDMs, LPS stimulation results in increased
glycolysis (39) and a break in the tricarboxylic acid (TCA)
cycle at two points; one at citrate and another at succinate.
Succinate drives the production of IL1β, mediated by HIF1α
(39) whereas citrate accumulation leads to the production of
itaconate, a potent inhibitor of isocitrate lyase, which is necessary
for Mtb persistence (43). Itaconate has anti-inflammatory and
anti-oxidant properties, mediated by NRF2 signaling (44), as
well as being directly able to effect Mtb growth (45). It has
also long been known that lipid metabolism is significantly
altered during infection and inflammation (46–48). Increased
lipid uptake leads to foam cell formation, or foamy macrophages,
which is characteristic of certain diseases such as atherosclerosis
and TB (49, 50). Many experimental models also utilize LPS as a
stimulus, however, the use of LPS can have its limitations (51).

Macrophages, especially alveolar macrophages, are crucial in
Mtb infection as they are probably the first cell to encounter
Mtb and become infected. Macrophages are both critical to the
eradication of the infection but are also culpable of harboring
Mtb thus, propagating the infection. We hypothesize that these
divergent processes are hinged on the metabolic potential of
the macrophage. Macrophage metabolism during Mtb infection
will be further explored in the section below entitled “Metabolic
alterations within immune cells during Mtb infection.”

Neutrophils
Neutrophils play vital roles during infection, since they
contribute directly to the elimination of pathogens via
phagocytosis, the release of antimicrobial molecules such as
hydrogen peroxide and netosis, a process whereby activated
neutrophils form net-like structures to trap the pathogens (52).
These key features of neutrophil activity rely on neutrophil
phagocytosis and the switch toward aerobic glycolysis (52, 53).
Interestingly, neither glucose nor glutamine are fully oxidized
to produce ATP in these cells, indicating that glycolysis may
be supporting alternative metabolic pathways through the
production of intermediates to generate antimicrobial molecules
(53). Indeed, glucose is metabolized to fuel the PPP to generate
NADPH in healthy human neutrophils stimulated with PMA

and amyloid fibrils (54). Moreover, degradation of glutamine
to malate via the TCA cycle and the malate-aspartate shuttle,
contributes to the generation of NADPH. NADPH production is
essential for the microbicidal cytosolic NADPH oxidase (NOX)
system, required for netosis and for production of antimicrobial
molecules (55, 56). HIF1α also mediates glycolytic metabolism in
murine neutrophils as conditional knockout of HIF1α drastically
reduced ATP levels resulting in impaired bacterial killing (57).
Neutrophils are implicated in early TB host defense but also
contribute to tissue pathology, especially later on in disease. The
metabolic profile of neutrophils during Mtb infection is not yet
known, however; targeting metabolic pathways in these cells may
help to fine-tune the immune response to promote clearance or
inhibit tissue damage.

Natural Killer Cells
Natural killer (NK) cells, activated by IL2, IL12, IL15 or
combinations thereof, have increased glucose metabolism
through aerobic glycolysis, which is necessary to meet the
requirements for rapid growth and proliferation (58–60).
Specifically, healthy human NK cells are classified into two
distinct subsets based on their levels of CD56 receptor; CD56DIM

cells are considered more cytotoxic whereas CD56HI cells are
potent producers of IFNγ (24). Flow cytometric analysis showed
that CD56HI cells express higher levels of the glucose transporter
GLUT1 and exhibit higher glycolytic metabolism than CD56DIM

cells. Although OXPHOS supports both CD56 cell subtypes,
limiting glycolysis in CD56HI cells significantly impairs the
production of IFNγ, a pro-inflammatory cytokine also central
to host defense during Mtb infection (24). Both subpopulations
of NK cells respond to Mtb and can directly kill Mtb infected
phagocytes through the production of perforin, granzyme and
the ligation of death receptors (24, 61). Indirectly, healthy human
NK cells promote host defense in Mtb H37Ra-infected T cells
by producing IFNγ and inducing CD8+ T cell responses (62).
Interestingly, memory-like antigen-specific CD45RO+ NK cells,
isolated from the pleural fluid from patients with tuberculosis,
exhibit features of innate memory to Mtb antigens and may
participate in the recall immune response to Mtb infection by
producing IL22 (63, 64). This is similar to BCG-induced innate
training observed in human and murine monocytes in vitro,
which are dependent on glycolytic and glutamine metabolism
(32). The metabolic changes in NK cells during Mtb infection
are not yet characterized but are likely to be integral to its host
defense mechanisms.

Dendritic Cells
In DCs, similar to other immune cells, cell function is
coupled to immunometabolism with the aim of meeting the
bioenergetic and biosynthetic requirements for successful TLR
induced activation and function (25, 65). TLR-activated DCs
stimulated with LPS, heat killed Propionibacterium acnes or
CpG, rely on aerobic glycolysis to generate ATP (65, 66).
This switch to glycolysis is primarily regulated by HIF1α
and the PI3K/Akt pathway (65, 67). Additionally, in real-time
extracellular metabolic flux assays, the change to glycolytic
metabolism has been shown to enhance nitric oxide (NO)

Frontiers in Immunology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 2296

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Phelan et al. Modulating Iron to Support Immunometabolism

synthesis via the enzyme nitric oxide synthase 2 (NOS2),
which inhibits OXPHOS in some populations of LPS stimulated
human DCs (66). Therefore, glucose plays two roles in DC
activation post TLR stimulation; in the early stages of activation,
glucose provides the metabolic intermediates needed for DC
maturation. However, in subsequent stages, NO production
inhibits OXPHOS, making glycolysis necessary to synthesize
ATP and support cell survival (66). Linking DC metabolism
and function to adaptive immunity, glycolysis has also been
shown to repress the pro-inflammatory output of BMDM-
derived LPS-stimulated murine DCs and limit DC-induced T
cell responses (27). Therefore, the lifecycle of the DC is marked
by differences in metabolism intrinsic to the function of the
DC at that stage. DCs play a crucial role in propagating T
cell responses during Mtb infection, however, their metabolic
phenotype is understudied. For example, one study characterized
the cooperation between Mtb-infected human CD1c+ DCs and
plasmacytoid DCs which favors the stimulation of CD4+ T
cells, and another study has identified the rapid induction of
glycolysis as an integral component of TLR signaling that is
essential for the anabolic demands of the activation and function
of murine DCs (25, 68). We hypothesize that metabolism may
underpin DC function during Mtb infection, based on such
observations.

T Cells
Resting T cells rely primarily on OXPHOS, however,
once activated by the T cell receptor and costimulatory
molecule ligation, T cell subsets undergo a distinct metabolic
reprogramming (69). In the early stages of inflammation,
cytokines direct the differentiation of naïve CD4+ T cells into
effector (Teff: Th1, Th2 or Th17) or inducible regulatory T cell
(Treg) subsets (70–76). Effector T cell subsets show an increase
in glycolytic metabolism following activation, namely Th17 cells,
Th1 and Th2 cells (21, 23, 77). Consistent with the different
functions of these subsets, Teff and Treg cells utilize distinct
metabolic programmes. Murine Teff cells depend on aerobic
glycolysis to enable the rapid growth and proliferation essential
for clonal expansion, migration and effector functions (21).
Alternatively, Treg cells have less of the glucose transporter
GLUT1 on the surface and rely on lipid oxidation and OXPHOS
to generate ATP (21). Extracelular flux and flow cytometry
analyses demonstrate that murine CD8+ memory T cells
primarily rely on lipid oxidation, the TCA cycle and OXPHOS,
utilizing extracellular glucose to synthesize lipids rather than
using extracellular fatty acids directly (78, 79) whereas activated
effector CD8+ T cells shift their metabolism toward glycolysis.
Myc, HIF1α, estrogen related receptor-α and mTOR are some
of the molecular mediators critical to driving these alterations
in T-cells. Myc upregulates various genes involved in glucose
and glutamine metabolism in the initial stages of T cell
activation in primary murine cells (69). Similarly, the mTOR
pathway promotes glucose metabolism in human Teff cells
while inhibiting Treg generation (80). Moreover, in an mTOR
dependent manner, HIF1α is a critical regulator of the Th17 and
Treg axis through the modulation of glycolytic metabolism in
murine cells (77). In recent years, it has emerged that, in certain

settings of inflammation, significant plasticity occurs between
Th1, Th17 and Treg cell lineages (81, 82). Given their differential
metabolic states, it is plausible that metabolic reprogramming
underpins and directs the plasticity of these cells. The metabolic
status of CD3+ T cells was recently examined in an in vivomouse
model of Mtb infection where the authors showed that the T
cell compartment in granulomatous regions of the lungs have
increased transcripts encoding glucose transporters, glycolytic
enzymes and enzymes of the pentose phosphate pathway (83).
These alterations, and further increases in the expression of
hexokinase-3 and lactate dehydrogenase A in co-localization
analyses, may be indicative of increased glycolytic metabolism
(83). Even though further studies are warranted to explore this
link, T cell exhaustion inMtb infection is postulated to be linked
to metabolism, especially in the oxygen-deprived environment
of the granuloma. Modulating T cell metabolism may therefore
be beneficial in promoting a specific T cell response with the
capacity to support Mtb clearance, particularly during the early
stages of infection.

METABOLIC ALTERATIONS WITHIN
IMMUNE CELLS DURING MTB INFECTION

Glycolysis and Oxidative Phosphorylation
Upon Mtb infection, the immune system aims to contain
and eradicate the pathogen. However, infected cells such as
macrophages, are sometimes unable to eliminate Mtb, thus
favoring the formation of granulomas to contain the infection
(84). As immune cells in these granulomatous structures need
to be functionally committed to controlling the infection, it
is crucial that their metabolic activity meets the bioenergetic
and biosynthetic requirements needed to efficiently clear or
contain the pathogenic burden. Infection of hMDMs, AMs and
murine BMDMs with the irradiated Mtb H37Rv strain of Mtb is
associated with increased extracellular lactate levels, indicative of
an increase in glycolysis (7). Increased extracellular lactate levels
were also enhanced in all macrophage cell types when infected
with the live attenuated Mtb H37Ra strain and the live Mtb
H37Rv strain (7). In addition, transcriptomic analysis of murine
lungs infected with Mtb has revealed that during infection,
genes involved in glucose metabolism are upregulated whilst
genes that encode enzymes from the TCA cycle and OXPHOS
are downregulated, indicating the occurrence of a Warburg
effect (83). This switch is further evidenced in a NMR-based
metabolomic profiling study showing increased concentrations
of lactate in granulomas from Mtb-H37Rv-infected C57BL/6
mice (85). Moreover, the shift toward aerobic glycolysis during
Mtb infection is linked to the ability of human macrophages
to produce mature IL1β, subsequently demonstrated to be
essential for bacteriocidal activity against Mtb when glycolysis
was blocked with the glycolytic inhibitor 2-deoxyglucose
(2-DG) (7).

Depending on their ontogeny, tissue resident macrophages
and infiltrating macrophages have distinct roles, phenotypes
and display differential metabolic profiles. In a mouse model
of Mtb Erdman infection, Mtb has been shown to trigger
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the accumulation of interstitial macrophages (IMs) (Ly6Chigh,
CX3CR1

+, and CD11bhigh) derived from blood monocytes that
are phenotypically distinct from tissue resident AMs (Siglec F+

and CD11chigh) (86). In this murine model, IMs were found
to be more glycolytically active than AMs, with the latter cells
relying more on FAO and fatty acid uptake (86). Interestingly,
depletion of AMs reduced bacterial burden whereas deletion
of IMs increased bacterial burden suggesting that AMs are
permissive to Mtb (86). Furthermore, inhibition of glycolysis
by 2-DG decreased the number of IMs and concomitantly
increased bacterial burden thereby coupling metabolism with
cellular function.

Human AMs exhibit significantly higher extracellular lactate
levels, indicative of increased glycolysis, upon infection with
the Mtb H37Ra and Mtb H37Rv strains (7). We have recently
found that human AMs are also just as energetically responsive
as hMDMs, which describes the ability of a cell to respond
metabolically when stressed (30). For example, upon oligomycin-
induced inhibition of OXPHOS in human AMs and hMDMs,
AMs compensate by increasing glycolytic metabolism just as
effectively as hMDMs (30). Others have also shown that human
AMs contain Mtb better than monocytes (87). Furthermore,
blocking glycolysis using the alternative carbon source, galactose,
resulted in increased bacterial load in the human AMs,
suggesting that this metabolic shift is required in AMs to
allow them to exert bacillary killing (7). 2-DG reduced IL1β
production in murine BMDMs, hMDM and human AMs,
further supporting the idea that the switch to glycolysis is
essential for optimal IL1β production, crucial to the control
of bacillary replication (7). Production of IL1β is regulated
by HIF1α, which is stabilized upon inhibition of the prolyl
hydroxylase domain (PHD) proteins (88). As HIF1α lies at the
crux of the glycolytic switch, HDTs that target PHD proteins
and stabilize HIF1α may effectively boost glycolytic metabolism
thereby supporting defense mechanisms within infected host
immune cells.

Amino Acid Metabolism
In addition to this glycolytic switch in energy metabolism, amino
acid availability in the granuloma plays a key role inMtb infection
in human and murine studies (89–92). Amino acids are not only
essential for cytokine and chemokine synthesis, but they play a
role in the production of anti-microbial agents. More specifically,
three amino acids, L-arginine, L-tryptophan and L-glutamine are
key regulators of immunometabolism in TB (93–97). During
TB infection, L-arginine is implicated in several immune cell
effector functions, including the production of NO, and may
therefore be important in the outcome of the infection (95). It has
also been demonstrated that M2 macrophages express arginase-
1 (Arg1), an enzyme that hydrolyses L-arginine to ornithine and
urea (90). When macrophages express both Arg1 and inducible
nitric oxide synthase (iNOS), NO synthesis is limited as both
enzymes consume L-arginine. Abrogation of macrophage Arg1
exacerbatesMtbH37Rv growth and pathology inmurine TB lung
granulomas (89). Moreover, Arg1 plays an important role in L-
arginine withdrawal from T cells within the same granuloma,
leading to T cell inhibition (89). Hence these two functions of

Arg1 may contribute in limiting the host cell’s response to TB
infection and protect the host from immune-mediated damage.

In response to Mtb infection, macrophages strongly
upregulate the expression of indoleamine 2,3-dioxygenase
enzymes (IDO1, IDO2, and TDO), that convert L-tryptophan
into L-kynurenine. L-tryptophan catabolism has been
demonstrated in transcriptomic and flow cytometry analyses
to inhibit murine Teff cell function and induce CD25+Foxp3+

Treg subsets, reducing immune activity, limiting tissue damage
and favoring pathogen survival (98). Furthermore, IDO-
expressing DCs are essential for maintaining granulomas,
which contain Listeria monocytogenes and enable mycobacterial
survival (99). More recently, cerebral tryptophan metabolism
has also been shown to be important for the outcome
of tuberculous meningitis, where low cerebrospinal fluid
tryptophan concentrations strongly predicted patient survival
(100). Hence, modulating L-tryptophan metabolism could be
used as a potential HDT strategy.

Glutamine is synthesized in a reaction catalyzed by the
enzyme glutamine synthetase from L-glutamate, ammonia and
ATP (96). Given the importance of this enzyme in nitrogen
metabolism, it is believed to influence Mtb pathogenesis by
altering ammonia levels within infected cells and thus may
contribute to Mtb-mediated inhibition of phagosome-lysosome
fusion and acidification (101). Conversely, L-glutamate exhibits
potential to be utilized in the production of additional succinate,
a TCA cycle intermediate now known to play an important role
in the production of IL1β in LPS-stimulated murine BMDMs,
mediated by the reverse electron transport process, in a ROS-
HIF1α dependent manner (39, 102).

Fatty Acid Metabolism
Fatty acidmetabolism is another key aspect of TB that effects both
Mtb and the infected host. Lung resident AMs are influenced
by ongoing exposure to and uptake of surfactant, a lipid-protein
complex that lowers surface tension and aids inhalation. When
hMDMs are treated with surfactant in vitro, the growth of
Mtb H37Rv is increased due to increased intracellular levels
of the lipid, which the bacteria can use as a carbon source
(103). Lipids serve as a key nutrient and energy source, but
they also participate in regulating other immune responses. For
instance, triacylglycerols (TAGs) can reduce Mtb H37Rv growth
and antibiotic sensitivity, and the equilibrium between fatty acid
synthesis and degradation may alter redox homeostasis in the
cytosol (104, 105). Several studies have also demonstrated that
Mtb utilizes cholesterol and fatty acids as essential nutrients
during infection and Mtb preferentially metabolizes host lipids,
although it can utilize a variety of nutrients to obtain energy
(106, 107). Flow cytometry and co-localization analyses show
that intra-phagosomal lipolysis is also markedly reduced in
conjunction with the retention of host lipids further providing
a potential source of nutrients for hMDMs and murine BMDMs
infected with theMtb CDC1551 strain (108).

The ability of Mtb to perturb fatty acid metabolism during
infection results in the formation of foamy macrophages (106,
107). This is thought to be mediated by TLR2 signaling and
increased PPARγ in human macrophages infected with Mtb
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H37Rv, killed Mtb H37Rv, M. smegmatis and M.bovis resulting
in lipid droplet accumulation (109). Low density lipoproteins
containing cholesterol, TAGs and phospholipids, are sequestered
within macrophages. Whilst TAGs and phospholipids are
metabolized, the cholesterol is then either exported through ATP-
binding cassette transporters, or esterified and accumulates as
droplets, which leads to the formation of foamy macrophages
(110). Traditionally, the function of foamy macrophages was
thought to be restricted to lipid storage, however, it has now been
shown that they may be essential for mycobacterial persistence
and reactivation (111–113). For example, the bacterial glyoxylate
shunt enzymes isocitrate lyase 1 and 2 are required for bacterial
growth and virulence of Mtb Erdman-infected hMDMs and
murine BMDMs in-vitro, and in an in-vivo murine model (111).
Mtb H37Rv-infected murine BMDMs also require the utilization
of cholesterol for survival during prolonged infection (112).
Moreover, the accumulation of lipids has a significant impact on
the metabolic pathways within Mtb, as the mycobacteria must
produce more lipolytic enzymes to degrade these host lipids,
especially cholesterol (107). Cholesterol degradation generates
propionyl-CoA, which is a potential source of toxic metabolites
that could compromise Mtb survival. Hence Mtb metabolizes
this precursor toward different metabolites, by balancing acetyl-
CoA and propionyl-CoA concentrations, some of which can
be used to build the lipid elements of the cell wall, which not
only support the structure, but are also important virulence
factors (114). Thus the ability of Mtb to utilize host-derived
lipids effectively is key to its success as a pathogen. Beyond
providing a nutrient source and building blocks for bacterial
growth, this accumulation of lipids in human cells can also block
host autophagy and lysosome acidification, two other essential
mechanisms for the control of Mtb (115). Others suggest that
the accumulation of lipid droplets is the result of macrophage
activation (notMtb-induced perturbations) as it is dependent on
IFNγ and HIF1α mediated glycolytic reprogramming in murine
BMDMs (116). Interestingly,Mtb Erdman is able to acquire host
lipids in the absence of lipid droplets, but not in the presence
of IFNγ-induced host derived lipid droplets, thereby uncoupling
macrophage lipid formation from bacterial acquisition of host
lipids (116). These IFNγ-induced lipids, which require HIF1α
for their synthesis, support the production of host protective
eicosanoids including LXB4 and PGE2 (116). In addition, it has
been demonstrated that lipid droplet formation is necessary for
the production of host protective eicosanoids. Taken together,
these changes in FA metabolism during Mtb infection suggest
that targeting FA metabolism could result in the development of
new and improved HDTs.

HIF1α IS A KEY REGULATOR OF
IMMUNOMETABOLISM DURING MTB

INFECTION

HIF1α is central to reprogramming metabolism toward utilizing
aerobic glycolysis; a process that functions as a key gate
keeper in immune cell activation. As HIF1α is central to
various preneoplastic and neoplastic diseases, it is not surprising

therefore that HIF1α has been identified as a crucial molecular
mediator during Mtb infection in humans and mice (8, 116–
118). HIF1α is required for the production of NO, IL1β and
prostaglandin E2 (PGE2) as demonstrated by murine HIF1α
knockout macrophages which exhibit impaired production of
these key cytokines in response to Mtb infection (8). HIF1α
is also self-sustaining as stabilized HIF1α expression promotes
glycolysis during Mtb infection, and this enhanced aerobic
glycolysis promotes further stabilization of HIF1α (8). NO
modulates macrophage responses to Mtb infection in murine
BMDMs, through transcriptional and protein activation of
HIF1α (119). HIF1α and iNOS are linked by a positive feedback
loop that elicits further macrophage activation and regulate
aerobic glycolysis (119). Specifically, Nos2−/− and HIF1α−/−

knockout results in significant transcriptional defects in various
glycolytic genes including GLUT1, LDHA, and PFKFB3 by
RNAseq analysis (119). This results in significant reductions
in extracellular glucose consumption in these BMDMs (119).
Moreover, when murine BMDMs are activated with LPS, this
results in an increase in the TCA metabolite succinate (39).
Succinate is implicated in various different cellular mechanisms,
such as inducing TLR synergy, participating in important
post-translational modifications and in propagating further
enhancement of glycolysis (39). Accumulation of succinate
promotes the stabilization of HIF1α resulting in increased IL1β
production from murine BMDMs (39).

HIF1α is also capable of binding to the promoter region
of pfkfb3 (120). The gene pfkfb3 encodes an isoform
of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
(PFKFB3). This enzyme regulates the production of fructose-
2,6-biphosphate, a glycolysis intermediate which activates
6-phosphofructo-1-kinase, and this increases glucose uptake
(121). Several studies have shown that pfkfb3 levels increase
after infection with Mtb in mouse, rabbit and human lungs
(83, 122, 123). This upregulation is thought to be strongly
dependent on HIF1α (83).

HIF1α is also crucial for the IFNγ-dependent control of Mtb
in an in vitro and in vivo study of mice, as it mediates the
metabolic switch to glycolysis in Mtb Erdman-infected BMDMs
(8). IFNγ promotes M1-type macrophage polarization, cytokine
production and synthesis of microbicidal mediators such as NO
during infection with Mtb Erdman (124). Furthermore, HIF1α
acts a positive feedback mediator during this process and acts
to sustain the role of IFNγ in macrophage activation, helping
to control and restrain the infection. This sustained metabolic
transition to aerobic glycolysis is thought to be vital for IFNγ to
successfully control the immune response toMtb (8).

Mechanistically, the stabilization and subsequent activity of
HIF1α is tightly regulated by a family of PHD proteins which
continually target HIF1α for proteasomal degradation during
homeostasis (125). If HIF1α is degraded, this turns off the
regulation of all metabolic pathways where HIF1α is involved,
such as the metabolic switch toward aerobic glycolysis. PHD
enzymes require oxygen and α-ketoglutarate (αKG) as co-
substrates, in addition to iron and ascorbate (126), hence the
regulation of HIF1α by PHD enzymes is tightly associated
with iron availability. Therefore, we suggest that the therapeutic
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chelation of iron may serve to disable PHD activity and
promote the stabilization of HIF1α which may in turn promote
bacterial clearance during Mtb infection through enhanced
immunometabolism and increased effector functions.

IMMUNOMETABOLISM AND IRON ARE
INTRINSICALLY LINKED.

Controlling Physiological Levels of Iron
The activity of HIF1α can be significantly influenced by
iron availability (127). Iron is crucially important for many
physiological processes. The most common forms of iron in
the human body are ferrous (Fe2+) and ferric (Fe3+) iron;
under physiological O2 concentrations, the most stable form
is Fe3+ (128). Body stores of iron are usually assessed by
transferrin saturation levels (normal range 20–30%), serum
ferritin levels (normal range above 150 ng/mL), serum iron
levels (normal range 60–110 ng/mL) and total iron binding
capacity (normal range 240–300 ng/mL) but these levels can
also vary between sexes (129, 130). Recent data examining
iron distribution in freshly resected lungs of TB patients and
healthy controls showed that the lungs of Mtb-infected patients
contain more iron (54.7 ± 6.9µg/g tissue) than healthy controls
(19.4 ± 2.9µg/g tissue) (131). Dietary iron is absorbed from
the duodenum and upper jejunum (132). Here, the divalent
metal transporter-1 (DMT1) transports Fe2+ and H+ into the
cell. In the cell, Fe2+ is stored within ferritin heavy and light
chains, the primary iron storage protein, or it is transported
into the blood when required. The iron exporter, ferroportin-1
enables the movement of iron out of cells (132). In the blood,
oxidized Fe3+ binds to transferrin and can be transported in
this state until it reaches its target cell and binds to transferrin
receptor-1 on the cell’s surface (133). The transferrin-bound
iron-transferrin receptor-1 (TBI-TfR1) complex is taken into
the cell through the process of endocytosis, ultimately resulting
in the release of Fe3+ and recycling of transferrin and its
receptor (133). Next, iron enters the mitochondria where it
is a fundamental component in the synthesis of heme and
iron-sulfur cluster-containing proteins which have a central
function in the operation of the electron transport chain (134,
135). Thus iron metabolism plays a central role in regulating
mitochondrial metabolism pathways. On a cellular level, iron
levels are regulated by the iron regulatory protein (IRP)/ iron
response element (IRE) system which controls the expression of
several proteins essential for iron homeostasis, including DMT1
(136). The expression of hepcidin, a key regulator of the entry
of intracellular iron stores into the circulation, is dependent
on systemic iron levels (137). Hepcidin binds to ferroportin-
1, inhibits it by promoting its internalization and degradation,
thus negating iron export out of the cell subsequently lowering
the amount of iron entering the circulation (136, 137). Iron is
also responsible for oxygen transport and therefore regulates
the bioavailability of oxygen in the cell (12). The presence of
oxygen promotes the TCA cycle and OXPHOS (12). Conversely,
when iron levels are low, there is less oxygen transport, and
cells have a reduced oxygen supply. This can result in a

decrease in mitochondrial metabolism, and an upregulation in
anaerobic glycolysis to compensate for the reduction in ATP
generated (12). Thus iron can be intrinsically linked to cellular
metabolism and cell function in various ways, as Figure 1

illustrates.

Exploiting Iron Chelators for Therapeutic
Gain
The therapeutic utilization of iron chelators has been widely
reviewed (138–140). Iron-related pathologies occur when there
is an excessive or insufficient level of iron (140). For example,
iron overload typically arises from hereditary haemochromatosis.
Iron chelation therapy is administered to prevent this, or
reverse complications that may have already developed (138,
139). FDA-approved iron chelators, such as desferrioxamine
(DFX), bind to free reactive iron in circulation (139). This
complex is excreted from the body, thus reducing iron levels
(139). Iron chelation therapy currently has many alternative
applications. For example, deferiprone has been used in murine
models of chronic obstructive pulmonary disease to transfer iron
out of the mitochondria, and has been shown to ameliorate
cigarette smoke-induced bronchitis and emphysema (141). Iron
chelation also holds promise for the treatment of Plasmodium
falciparum, which causes malaria, as use of deferiprone has
been shown to reduce recovery time and increase clearance
of the infection (142). DFX has also been shown to reduce
the replication of HIV (143). Moreover, the iron chelators
deferiprone, Apo6619, and VK28 have all been shown to
possess antibacterial qualities against Staphylococcus aureus and
Escherichia coli (144). Unsurprisingly, in addition to their
chelating ability, specific iron chelators probably encompass
additional properties that functionally set them apart from other
iron chelators, elements of which are yet to be determined.
For example, deferiprone is known to prevent the growth of
coagulase-negative staphylococci but DFX promotes its growth
(145). Therefore, the novel approach to treating bacterial
infections with iron chelators could prove beneficial in TB, and
may even hold promise against multi-drug resistant strains of
the bacteria.

Ironing out Mycobacterium tuberculosis
Mtb requires iron for survival and competes with the host
for the same iron pool. To compete for iron, Mtb releases
siderophores, namely exochelins, which have a high-affinity for
iron and can remove it from the host’s iron-binding molecules
(146). Exochelins subsequently transfer iron to mycobactins
in the cell wall of Mtb (146). Once iron is accessed, it
is strictly controlled for the same reasons as seen in host
cells; to maintain homeostatic levels, while preventing toxic
accumulations. Mtb has readily evolved to utilize iron and
controls iron uptake at a transcriptional level (147). The
mycobacterial iron-dependent regulator (IdeR) is crucial to the
maintenance of iron homeostasis in Mtb as experimentally-
induced lack of IdeR results in an accumulation of iron, leading
to oxidative damage and subsequent death of themycobacterium,
thus highlighting the importance of exochelins and IdeR as
Mtb-survival mechanisms (147).
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FIGURE 1 | Iron chelation encompasses the ability to support the host response by modulating cellular function and metabolism in various Mtb-infected immune

cells. The use of iron chelators could potentially regulate a host of intracellular networks and support infected host cells by influencing several cellular processes. 1.

Iron chelation results in a dysfunctional electron transport chain (ETC) as the ETC relies heavily on iron for optimal cellular function. A dysfunctional ETC could result in

decreased production of ROS and a reduced capacity to undergo oxidative phosphorylation potentially promoting glycolysis. 2. Iron chelators have also been

previously shown to have direct and indirect bacteriostatic and bactericidal effects on Mtb. 3. Iron chelation directly inhibits prolyl hydroxylase domain (PHD) proteins,

proteins that normally function to silence HIF1α, by chelating one of its primary cofactors, iron. 4. Inhibition of the PHD proteins, through iron chelation, leads to the

stabilization of HIF1α which can have various effects on cell function. 5. HIF1α plays an important role in promoting cellular survival in an oxygen-deprived

microenvironment such as hypoxia. 6. HIF1α can also induce the production of IL1β, an important pro-inflammatory cytokine that helps control Mtb replication, by

directly binding to the promotor of pro-IL1β. 6. IFNγ can boost production of nitric oxide (NO), IL1β and prostaglandin (e.g., PGE2) production, via HIF1α. Iron

chelation can also inhibit IDO1, a key enzyme in tryptophan metabolism, and promote additional IFNy production. Moreover, iron has been shown to increase the

autophagic process. 7. The effect of HIF1α and iron chelators on pentose phosphate pathway (PPP) metabolism remains unclear, however, such alterations in this

pathway could be beneficial. Increased NO and superoxide production can help kill unwanted infectious agents, and as the PPP is linked to NADPH and ROS

production, decreased activity of this pathway could potentially reduce host injury and increase flux through glycolysis. 8. Iron chelators also encompass the ability to

significantly boost glycolysis; such boosts in glycolysis are linked to the production of a host of pro-inflammatory mediators and the expression of various

costimulatory molecules which could also link innate and adaptive immunity during Mtb infection. 9. By supporting glycolysis, iron chelators could also simultaneously

enhance the activity of both the TCA cycle and glutamine metabolism which are intrinsically linked to the production of succinate, ROS, NO, IL1β, and glutathione. 10.

The effect of iron chelation on these cellular processes could also be further augmented when administered in combination with other host directed therapies during

Mtb infection. For example, retinoic acid can promote internalization of the transferrin receptor and further limit intracellular iron stores thereby reinforcing the effect of

iron chelation. Image produced with the aid of Servier Medical Art software (see copyright license at https://smart.servier.com).

Macrophages play a key role in recycling iron. Excessive levels
of iron have been documented in macrophages and hepatocytes
from populations in Sub-Saharan Africa (148, 149). These
populations are linked with a 3.5-fold increase in the probability
of developing pulmonary TB (149). Excessive levels of iron are
also seen in the macrophages of HIV patients, due to chronic
blood transfusions or inflammation (150). Additionally, smoking
increases the risk of developing active TB; this may be due in part
to increased iron loading AMs. In fact, iron levels in AMs are
over 3.2-fold higher in asymptomatic smokers and up to 5.6-fold
higher in symptomatic smokers compared with nonsmokers; this
could rise to 5.4-fold and 9.2-fold respectively when experimental
variation is taken into account (151). It is also well known that

iron starvation greatly affectsMtb’s ability to proliferate.Mtb also
adapts to low iron levels by upregulating the expression of various
factors such as the ESX-3 secretion system, which facilitates its
survival (152). Although there is no direct proof of cause or effect,
clinicopathological analysis of iron distribution within human
lung tissue shows that Mtb severely disrupts iron homeostasis
in distinct microanatomic locations of the human lung thus
potentially contributing to lung immunopathology (131).

Targeting the hepcidin-ferroportin axis may have clinical
utility and could be exploited as a means to alter intracellular
iron levels. TLR agonists, except TLR2, were shown to polarize
murine BMDMs into pro-inflammatory macrophages and
upregulate hepcidin transcript levels (153). By measuring a
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FIGURE 2 | Iron chelators modulate multiple immunometabolic pathways via the stabilization of HIF1α. Under homeostatic conditions, the PHD enzymes hydroxylate

HIF1α marking it for degradation. These enzymes require oxygen (O2), iron (Fe), α-ketoglutarate (αKG), and ascorbate (Asc) as cofactors to function. When oxygen is

low (hypoxia), the PHD enzymes are disabled, resulting in the stabilization of hypoxia-inducible factor 1α (HIF1α). Other factors such as the accumulation of the

metabolite succinate or reactive oxygen species (ROS) can also inhibit PHD enzymes. The therapeutic use of iron chelators will reduce the availability of iron inside the

cell and therefore deny the PHD enzymes of the iron they require to function. Iron chelators thereby stabilize HIF1α which promotes enhanced flux through glycolysis

by binding to the promoter region of the pfkfb3 gene. This increased rate of glycolysis produces lactate and synthesizes the required building blocks for cellular

proliferation and effector function. PAMP or DAMP signals in the macrophage (such as LPS stimulation or infection with Mtb, for example) leads to increased aerobic

glycolysis and a break in the TCA cycle at 2 points; succinate (which promotes IL1β and ROS production as well as further inhibiting PHD enzymes) and citrate (which

leads to the accumulation of the anti-bacterial metabolite, itaconate, via the enzyme IRG-1). HIF1α also mediates increased flux through the pentose phosphate

pathway (PPP) which provides NADPH required from NO and ROS production. HIF1α promotes fatty acid synthesis (FAS), leading to the accumulation of lipid droplets

and the production of eicosanoids. There is also a role for HIF1α in promoting amino acid metabolism. Glutamine can be used to produce succinate or the antioxidant

glutathione. Tryptophan is processed by the iron-dependent enzyme IDO1, which results in a net anti-inflammatory response but can also produce NAD or picolinic

acid, which has anti-microbial properties. Thus iron chelation may be a useful tool for manipulating macrophage metabolism during Mtb infection through the

stabilization of HIF1α.

combination of transcript and protein levels of hepcidin and
ferroportin, another study showed that differential TLR signaling
can induce intracellular iron sequestration in THP-1 human
macrophages (154). Specifically, agonists to TLR1/2, TLR2,
and TLR6 significantly reduced transcript levels of ferroportin
in THP-1 cells without affecting transcript levels of hepcidin
(154). Conversely, TLR4, TLR7, and TLR8 agonists significantly
induced both transcript and protein levels of hepcidin without
affecting transcript levels of ferroportin (154). More significantly
however, both alterations in hepcidin and ferroportin resulted
in iron sequestration, suggesting that targeting these may be
therapeutically beneficial. For example, by targeting hepcidin,
this may reduce intracellular iron sequestration potentially
affecting the growth of siderophilic bacteria, such as Mtb, while
enhancing metabolism though HIF1α stabilization. Indeed, the
same study shows that hMDMs infected with the Mtb Erdman
strain induce high protein levels of hepcidin (154). Interestingly,
heparin treatment has recently been shown to reduce hepcidin

transcript and protein levels in THP-1 human macrophages
infected with BCG and Mtb Erdman (155). Moreover, heparin
treated macrophages exhibited higher ferroportin transcript
and protein levels, promoting iron export and decreasing
iron availability to intracellular bacilli. These infected heparin-
treated cells also induce increased protein levels of IL1β further
rendering hepcidin and ferroportin as attractive therapeutic
targets (155).

Macrophage membrane-bound compartments, such as
phagosomes and lysosomes, contain the natural resistance-
associated macrophage protein-1 (NRAMP1). Murine studies
using M. avium-infected BMDMs have shown that NRAMP1
acts to protect the host (156, 157). Moreover, several 3′UTR
polymorphisms in this protein in humans have been shown to
increase susceptibility to TB in specific populations (158–160).
Mechanistically, NRAMP1 creates Fe2+ efflux from the cell, and
TB patients with these NRAMP1 polymorphisms are deprived
of this protective method which would normally restrict Mtb
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growth (156, 158, 161). The use of iron chelators on individuals
with NRAMP1 polymorphisms could potentially provide the
protection that they require. It is also likely that current anti-TB
drugs, and other HDTs, administered in combination with iron
chelators may result in better clinical outcomes. For example,
retinoic acid has re-emerged as a potential HDT as it has been
shown to promote cell-mediated clearance of Mtb H37Ra-
infected BMDMs, hMDMs and human AMs (162). Moreover,
retinoic acid has been reported to significantly reduce transferrin
receptors on the membrane of macrophages, thus reducing the
amount of iron available to the cell (163). Furthermore, as iron
levels have also been shown to significantly reduce the efficacy
of the anti-TB antibiotics isoniazid and ethambutol, the use of
iron chelators may restore the effectiveness of such antibiotics
(164). Targeting iron metabolism has the potential to directly
inhibit the growth of Mtb, by interfering with Mtb-specific iron
pathways and its survival mechanisms. Additionally, restricting
iron availability in host immune cells may also serve to fight
Mtb infection by stabilizing HIF1α to enhance important
inflammatory and metabolic processes central to eradicating
the infection. Therefore, we hypothesize that therapeutic iron
chelation will function as a double-edged sword by boosting
host immunometabolism via the stabilization of HIF1α and by
directly starvingMtb of iron.

FINE-TUNING HIF1α AND IRON; A
MECHANISM TO SUPPORT INNATE HOST
CELL FUNCTION DURING MTB

INFECTION?

Iron chelation may be utilized to artificially trigger HIF1α-
mediated pro-inflammatory and glycolytic pathways in host
immune cells during Mtb infection. In normoxia, HIF1α
is usually undetectable due to the inhibitory action of the
PHD proteins (165). PHD proteins act by hydroxylating the
oxygen-dependent degradation (ODD) domain on HIF1α
(166). To function optimally, PHD proteins require oxygen,
2-oxoglutarate, ascorbate and Fe2+ to successfully modify the
ODD domain on HIF1α (126). When Fe2+ levels are low,
the activity of the PHD proteins is reduced (167). This is
in contrast to hypoxic conditions, where the lack of oxygen
inhibits the PHD proteins, thus stabilizing HIF1α (126). This
allows heterodimerization of HIF1α with its β-subunit, and
translocation into the nucleus where HIF1α binds to hypoxia-
response elements linked with a variety of genes involved in
various cellular processes, including inducing pfkfb3 and IL1β
transcription (168, 169). Moreover, GLUT1, as well as a number
of other glycolytic enzymes such as phosphofructokinase, are
upregulated to promote anaerobic glycolysis, to compensate
for the lack of OXPHOS (170–172). Iron chelator-induced
inhibition of PHD proteins and the resulting HIF1α stabilization
encompasses the potential to trigger this molecular cascade
during Mtb infection under aerobic conditions, thus, boosting
the pro-inflammatory response of the infected host macrophage
and promoting clearance of the infection. Indeed, several
studies have shown that HIF is stabilized upon iron chelation

in various cell types, including human renal Hep3B cells,
human breast cancer MDA468 cells, and hMDMs (173–177).
If iron chelation could induce such pro-inflammatory and
pro-glycolytic effects during Mtb infection, then one may
expect the opposite to occur with the addition of iron itself.
Indeed, iron has been shown to promote intracellular and
extracellular growth of Mtb H37Rv in J774A.1 macrophages
(178). Moreover, addition of iron significantly reduces TNFα,
IL1α, IL1β, and IL6 transcripts, along with TNFα protein levels,
during Mtb infection (178). Hence, this work demonstrates that
the modulation of iron metabolism can potentially regulate the
functional relationship between the infected host cell and Mtb.
Additionally, DFX has been shown to boost the autophagic
process, to promote eradication of Mtb (179, 180). Western blot
and immunofluorescence analyses of murine BMDMs incubated
with the iron chelators deferiprone or desferasirox have also
been shown to reduce the intracellular growth of Chlamydia
psittaci and Legionella pneumophilia further suggesting that iron
chelation may be therapeutically beneficial in the context of
Mtb infection (181). Even though host-directed iron chelation
may bring about reductions in intracellular iron levels, stabilize
HIF1α, and trigger pro-inflammatory and glycolytic responses,
intrinsic homeostatic mechanisms are still in place to correct for
low iron levels thereby limiting host cell stress and toxicity. For
example, ferritin, a key intracellular iron storage protein, helps
to maintain optimal cellular function upon iron deprivation
(154). Indeed, extensive flow cytometry analysis, extracellular
metabolic flux analysis and mass spectrometry analysis show that
complete ferritin deficiency in myeloid cells dysregulates host
energy metabolism and increases susceptibility to Mtb H37Rv
infection (131). Furthermore, the use of iron chelators have been
shown to have no effect, and even reduce, the production of
superoxide in Mtb H37Rv–infected U937 macrophage cells and
THP-1 monocytes while simultaneously reducing the number
and viability of Mtb mycobacteria (182, 183). Harnessing the
potential of PHD proteins and their interconnectivity with
HIF1α, through the use of iron chelators, may hold future
promise for the development of HDTs for the treatment of
TB infection and other infectious diseases. It must also be
acknowledged that prolonged induction of HIF1α may cause
detrimental damage to lung tissue by promoting excessive
inflammation and oxidative stress. For example, in hMDMs and
human respiratory A549 cells, HIF1α enhances the expression
and secretion of matrix metalloprotease-1 (MMP-1), the main
protease implicated in the uncontrolled destruction of lung
tissue in TB (184). In fact, HIF1α, which is expressed highly in
lung biopsies from patients with pulmonary TB, is necessary for
MMP-1 gene expression and secretion (184). Moreover, HIF1α,
and DFX, has been shown to positively regulate transcript levels
of heme oxygenase−1 (HO-1), an oxidative stress response
protein that catalyzes the degradation of heme to Fe2+ and
other intermediaries (185, 186). HO-1 expression is also
markedly increased in rabbits, mice, and non-human primates
during experimental Mtb Erdman and Mtb H37Rv infection
and its expression gradually decreases during subsequent
successful therapy (187). Moreover, systemic levels of HO-1 are
dramatically increased in individuals with active pulmonary
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and extra-pulmonary tuberculosis (188). Therefore, a thorough
understanding of the underlying molecular mechanisms
governed by HIF1α during Mtb infection would undoubtedly
help fine-tune the development of combinatorial host-directed
therapeutic approaches, while helping to reduce damage caused
to the lung, thus preventing further TB dissemination. Another
advantage of stabilizing HIF1α through the use of iron chelators
is the potential ability to also boost host immune cell function
through the modulation of alternative metabolic pathways such
as the PPP, fatty acid metabolism and amino acid metabolism.

THE POTENTIAL EFFECT OF IRON, IRON
CHELATORS AND HIF1α STABILIZATION
ON ALTERNATIVE METABOLIC PATHWAYS

Alternative metabolic pathways are also crucial for cellular
growth and function particularly during Mtb infection. These
alternative metabolic pathways may play a crucial role in the host
response to infection and could potentially be targeted by iron
chelation therapy. As HIF1α is a well-documented regulator of
glycolysis, it is plausible that it can potentially regulate specific
alternative metabolic pathways and support immunity during
Mtb infection. These metabolic pathways include the PPP, fatty
acid metabolism and the metabolism of important amino acids,
namely glutamine and tryptophan.

The PPP is tightly coupled to glycolysis through the glycolytic
intermediate glucose-6-phosphate (G6P), which can be shunted
to the PPP to generate NADPH, ribose-5-phospate and other
biosynthetic intermediates also utilized in the glycolytic process
(189). Coupled with the fact that glycolysis has been shown to
be induced upon Mtb infection in human AMs, this may also be
indicative of an upregulation of the PPP during Mtb infection
(7). Indeed, the lungs of Mtb-infected mice exhibit upregulated
gene expression of enzymes involved in both glycolysis and the
PPP (83). In this study, transcript levels of the PPP genes Gpi1,
G6pdx, and Pgd were analyzed (83). The first enzyme of the
oxidative phase of the PPP, glucose-6-phosphate dehydrogenase
(G6PD), is induced by HIF1α in several different cancer cell
lines (171, 190–192). Moreover, metabolomic analyses show
that HIF1α overexpression results in increased levels of PPP
metabolites in murine BMDMs (26). Importantly, the PPP is a
major source of NADPH, which is necessary for the production
of free radicals like NO and superoxide, and for protecting the
cells against oxidative stress (193). The importance of the PPP
for ROS production duringMtb infection has also been suggested
by one study linking G6PD deficiency in humans with increased
susceptibility to BCG infections due to impaired ROS production
by neutrophils andmonocytes (194). Another study investigating
metabolomic profiles in murine macrophages treated with iron
show increased levels of NADPH and 6-phosphogluconic acid,
indicating the potential involvement of other factors, in addition
to HIF1α, in the iron-mediated regulation of the PPP (195).
Since the upregulation of glycolysis for rapid ATP production
is an important host response against Mtb, downregulation
of the PPP could further increase flux through the glycolytic
pathway thus supporting host immune cells further. Whether

these observations reflect the findings in iron chelated-Mtb-
infected host cells has yet to be examined and needs to be
investigated.

HIF1α has also been shown to be involved in fatty acid
metabolism. Research shows that upon infection with Mtb, host
cells differentiate into lipid forming foamy macrophages due to
pathogen-induced dysregulations in lipid metabolism (113, 115).
In an ESAT-6 mediated feedback mechanism, another study
shows thatMtb actively manipulates host cells into metabolizing
fatty acids, by diverting glycolytic metabolism toward ketone
body synthesis, by enabling feedback activation of the anti-
lipolytic G protein-coupled receptor GPR109A resulting in
lipid body accumulation (115). Studies in cancer cells also
show that hypoxia boosts the expression of fatty acid synthase
and lipin-1 through HIF1α and the sterol regulatory element
binding protein resulting in elevated fatty acid synthesis and
lipid storage (196, 197). In accordance with that, murine
peritoneal macrophages exposed to hypoxia show increased
accumulation of lipid droplets, fatty acid synthesis and TAG
synthesis (198). Importantly, hypoxic conditions also result
in the downregulation of acyl-CoA synthase and acyl-CoA
dehydrogenase, two key enzymes of the fatty acid β-oxidation
pathway (199). These metabolic conditions could favor growth
of mycobacteria, which use host derived fatty acids as a major
carbon source (107). However, it remains to be investigated if
iron chelation, and subsequent stabilization of HIF1α affects fatty
acid metabolism inMtb-infected host cells.

Glutamine metabolism represents another important
metabolic pathway duringMtb infection. Glutamine metabolism
is also a metabolic target of HIF1α signaling. During Mtb
H37Rv infection, nuclear magnetic resonance analysis of
infected C57BL/6 murine lungs shows an upregulation of
succinate, which can be generated from glutamine through
glutaminolysis (85). Silencing of PHD2 in skeletal cells, which
stabilizes HIF1α, results in an increase in glutamine uptake
and an increase in the expression of glutaminase-1, the enzyme
that catalyzes the conversion of glutamine to glutamate.
Glutamate can then be fed into the TCA cycle to produce
αKG and succinate. Importantly, glutamate-derived αKG may
also be used by the TCA cycle to produce succinate. Increased
succinate oxidation by the succinate dehydrogenase (SDH)
enhances the production of mitochondrial ROS, which in
turn boosts HIF1α and IL1β levels in LPS-stimulated murine
BMDMs (102). Furthermore, metabolizing glutamate through
the arginosuccinate shunt, which links the TCA cycle with
the urea cycle, results in the production of NO (40). Thus,
increases in glutamine metabolism may potentially support
anti-microbial immune responses in Mtb-infected host cells.
However, glutamine can be preferentially used for glutathione
production rather than being shunted into the TCA cycle
(200). Glutathione is known to be an important antioxidant
and reducing agent protecting cells from being damaged by
oxidizing conditions thus may be critical during Mtb infection
to protect the delicate lung tissue (201). Whether HIF1α
stabilization through iron chelation has similar effects on
glutamine metabolism in Mtb-infected host cells remains to be
seen.
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Tryptophan metabolism is another important metabolic
pathway regulated through iron and HIF1α. Tryptophan is
a crucial amino acid for intracellular bacterial growth and
depletion of tryptophan through activation of the kynurenine
pathway has been shown to inhibit growth of Toxoplasma gondii
and Legionella pneumophila in monocytes and fibroblasts (202).
Mycobacterial growth, however, is unaffected by tryptophan
starvation in murine peritoneal macrophages, due to the
bacteria’s capacity to synthesize tryptophan de novo (97).
However, picolinic acid, a natural degradation product of
tryptophan, inhibits intra-macrophagic growth of M.avium and
Mtb in vitro (93, 202). Nevertheless, IDO1, the first rate-limiting
enzyme in kynurenine metabolism, is upregulated in murine
BMDMs upon infection with M.avium, however, its deficiency
does not impact on the outcome of the infection (93). Increased
IDO1 activity is known to suppress the protective immune
response in rhesus macaques, particularly the production of
IFNγ by CD4+ T cells, and correlates with a higher bacterial
Mtb CDC1551burden (203). Therefore, inhibition of IDO1 may
be beneficial for TB, in the context of persistent live bacterial
infection. Interestingly, IDO1 is a heme-containing enzyme; iron
chelation reduces its activity and iron supplementation increases
its activity thus the effect of iron chelation on tryptophan
metabolism inMtb-infected cells may be promising and warrants
further investigation (204).

CONCLUSION

Despite various treatment options available to treat active
TB, the prevalence of drug-resistant TB is increasing, further
highlighting the need for novel therapies to fight the bacteria.

Themajority of individuals infected withMtbmount an adequate
innate immune response which results in early clearance of the
bacteria. This suggests that supporting myeloid cell function
could serve as a host directed preventative or therapeutic strategy.
We hypothesize that restricting iron availability, through the use
of iron chelators, may be an effective host-directed approach to
supporting protectiveMtb-infected macrophage responses which
may enhance early clearance of the infection. As Figure 2 depicts,
by depriving macrophages of iron and stabilizing HIF1α, this
could potentially function as a double-edged sword by boosting
host immunometabolism and by directly starving Mtb of iron.
In addition to boosting multiple metabolic pathways, HIF1α can
directly and indirectly support many key cellular mediators, such
as the multi-functional effects of IFNγ. Thus future studies need
to investigate the use of iron chelators and their potential to be
utilized as a HDT to boost the host immune response to Mtb
infection.
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