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Abstract Dansgaard-Oeschger (D-O) climate instabilities that took place during Marine Isotope Stage 3
are connected to changes in ocean circulation patterns and sea ice cover. Here we explore in detail the
configuration of the water column of the Denmark Strait during D-O events 8-5. How the ocean currents and
water masses within the Denmark Strait region responded and were connected to the North Atlantic are
discussed. We investigate sediment core GS15-198-36CC, from the northern side of the Greenland-Iceland
Ridge, at 30-year temporal resolution. Stable carbon and oxygen isotope reconstructions based on benthic
foraminifera, together with a high-resolution benthic foraminiferal record of Mg/Ca paleothermometry, is
presented. The site was bathed by warm intermediate waters during stadials and cool but gradually warming
intermediate water during interstadials. We suggest that stadial conditions in the Denmark Strait are
characterized by a well-stratified water column with a warm intermediate water mass that lies beneath a cold
fresh body of water where sea ice and brine rejection work in consort to uphold the halocline conditions.
Interstadial periods are not a pure replicate of modern times, but rather have two modes of operation, one
similar to today, and the other incorporating a brief period of warm intermediate water and

increased ventilation.

Plain Language Summary During the last ice age (30-40 thousand years ago), rapid warmings—
Dansgaard-Oeschger events—up to 15 °C occurred over Greenland resulting in Arctic air temperature
warmings, droughts over Africa, stronger monsoons over Asia, and global sea level. These climatic changes
are connected by the global telecommunicator: the Atlantic Meridional Overturning Circulation, which is
largely driven by changes in ocean water properties that take place in the Denmark Strait. We use sediment
cores from the Denmark Strait to extract archives of past abrupt change in ocean temperature to investigate
the dynamic changes in ocean circulation across Dansgaard-Oeschger events. Geochemical analysis of
microfossils that lived on the seafloor reveals that during the cold periods the presence of sea ice is linked to
warming waters at intermediate depth in the Denmark Strait and likely a decrease in the strength of the
overturning circulation. During the warm period, intermediate waters cooled suggesting a heat release to the
atmosphere due to the absence of sea ice. Our research indicates that the absence or presence of Arctic sea
ice is linked to these climate disturbances in the past and is likely linked to the global climate changes the
Earth is experiencing today.

1. Introduction

The Arctic and Nordic Seas regions are currently undergoing major and fast changes in sea ice cover and
ocean properties. Abrupt changes in ocean circulation and sea ice cover in the past may shed light on pro-
cesses involved in such changes, which may be relevant for the present situation, even if they occurred under
different climatic boundary states. The last glacial cycle is highlighted by a series of abrupt climatic excursions
commonly referred to as Dansgaard-Oeschger (D-O) events (Dansgaard et al., 1993). These events corre-
spond to high amplitude changes in oxygen isotopes (5'20) as recorded in multiple Greenland ice cores
and relate to rapid transitions from cold Greenland Stadial (GS) into warm Greenland Interstadials (Gl) and
stepwise gradual retreat back into stadial conditions (Dansgaard et al., 1993; Rasmussen et al, 2014;
Voelker, 2002). The atmospheric temperature changes recorded in the Greenland ice cores are also identified
in marine sediment cores as hydrographic changes in the Nordic Seas (Dokken et al., 2013; Kissel et al., 1999;
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Rahmstorf, 2002; van Kreveld et al., 2000; Voelker, 2002; Voelker et al., 2000; Voelker & Haflidason, 2015).
Multiproxy records from sediment cores across the Nordic Seas are commonly used to describe and detect
changes in the vertical distribution of the water masses at different locations and across GS and Gl periods
and transitions. However, one key area is missing: proxy records documenting changes in intermediate water
in the Denmark Strait.

Within the shallow regions of the Denmark strait three significant water masses pass over the sill: warm
Atlantic Surface water, cold Polar Surface Water (PSW), and cold Denmark Strait Overflow Water (Rudels
et al,, 2005). The strength, temperature, and convection rate of these water masses directly impact the rate
of Atlantic Meridional Overturning Circulation (AMOC) (Logemann & Harms, 2006). During the D-O events
changes in water properties were common from Stadial to Interstadial period (van Kreveld et al., 2000;
Voelker, 2002; Voelker et al.,, 2000). Some studies reconstructing upper water column conditions during
D-O events exist for the Denmark Strait region. Voelker et al. (2000) reconstructed the upper water column
during D-O events by utilizing 5'0 and 5'3C of Neoglobiquadrina pachyderma (N. pachyderma/NP) and ice-
berg rafted detritus (IRD) as surface proxies. They suggest that less ventilated and less saline surface water
(lower 8"3Cyp and §'80yp values) are associated with iceberg discharge and melting during GS as indicated
by high IRD values. Greenland interstadials were generally associated with more saline surface water (higher
5"80yp values) and better ventilation. Results from the Irminger Sea, south of the Greenland-Iceland Ridge by
van Kreveld et al. (2000), also reflect saltier surface waters during Gl, and transfer functions on planktonic for-
aminifera assemblage counts indicate warm subsurface sea temperatures (up to 8 °C). Assessments of bottom
water changes using epibenthic foraminifera 580 and §'3C minima from south of the sill in the Irminger Sea
have been used to argue for short-lasting spikes in brine water production due to sea ice formation in salt-
depleted meltwater influenced surface waters, specifically toward the end of a GS (van Kreveld et al., 2000).

The vertical distribution of water masses and their properties have been extensively examined in the
Norwegian Sea for D-O events 8-5. The majority of these studies show a vertical distribution of water masses
during Gl that reflect conditions comparable to today with an active, warm Atlantic Water (AW) inflow to the
Nordic Seas at the surface, underlain by cold, deep waters overflowing back to the North Atlantic that were
generated by open ocean convection within the Nordic Seas (Dokken et al., 2013; Dokken & Jansen, 1999;
Ezat et al, 2014, 2017; Rasmussen & Thomsen, 2004). These studies suggest that during GS, a thickening
and deepening of the warm Atlantic inflow down to at least 1,179 m (Ezat et al., 2014) as an intermediate layer
beneath a cold fresh surface layer developed a halocline and led to greatly reduced convection and therefore
a decline in cold overflow water during GS (Dokken et al., 2013; Dokken & Jansen, 1999; Ezat et al., 2014;
Rasmussen & Thomsen, 2004). Over half of the modern cold overflow water from the Nordic Seas, 4.3 of
7.9 Sy, flows southward through the Denmark Strait (Nilsen et al.,, 2003). Despite the importance of the
Denmark Strait area, there are no published studies investigating changes in the Denmark Strait intermediate
water during D-O events or how these changes are related to the overall changes in the Nordic
Seas oceanography.

Conceptual theories concerning the mechanisms influencing the hydrography and development of the halo-
cline vary. Rasmussen and Thomsen (2004) propose increases in fresh water due to glacier runoff, whereas
Dokken et al. (2013) argue for an additional role of increased sea ice cover and brine rejection. Contrasting
aforementioned theories, Eynaud et al. (2002) and Wary et al. (2017) argue, based on dinocyst assemblage
results from the Norwegian Sea, that the cold homogenous surface waters and the presence of annual sea
ice cover are rather properties associated with Gl and that there continues to be an active deep convection
during Gl due to brine release. A strong reduction in convection during GS is therefore argued to be a result of
the occurrence of a strong halocline and seasonal thermocline dividing the cold fresher surface layers with
the warm saline layers below (Eynaud et al., 2002; Wary et al.,, 2015, 2017).

We provide the first benthic temperature reconstruction from the western Nordic Seas to clarify the situation
in the Denmark Strait during D-O events and contribute to testing the validity of the various conceptual the-
ories for the role of the Nordic Seas through (1) increasing the sediment core proxy records for the D-O events
8-5 to include intermediate water from the Denmark Strait; (2) implementing Mg/Ca measurements and cali-
brations on benthic foraminifera to reconstruct intermediate water temperatures, and benthic s'3cand5'®0
stable isotopes to elucidate the exchange of warm inflow versus cold outflow over the Greenland-lceland
Ridge during D-O events 8-5; (3) constraining changes in the oxygen isotopic composition of the ambient
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Figure 1. Modern overturning circulation in the Iceland Sea (adapted from Vage et al., 2013) and location of the cores
GS15-198-36CC, which is the primary core used in this study (770-m water depth), alongside some supporting material
from core PS2644-5, marked with a star. Acronyms are: North Atlantic Current (NAC), Northern Icelandic Irminger Current
(NIIC), The Northern Icelandic Jet (NUJ), East Greenland Current (EGC), and Deep Western Boundary Current (DWBC). Map
image originates from Ocean Data View (ODV) (Schlitzer, 2014).

ocean waters (3,,) and thus determining the role of subsurface warming versus changing ,, on calcite 3'20;
and (4) confirming the role of brines in the regional oceanography through construction of the oxygen
composition of ambient ocean water (3,,) record (from combined Mg/Ca and §'%0 analysis). With
increased knowledge of the vertical water column changes within the Denmark Strait we can then begin
to deduce and discuss changes in deepwater formation and changes in circulation and convection in the
Nordic Seas between Gl and GS periods.

2. Oceanographic Setting and Study Site

Under the present interglacial conditions, the Denmark Strait exhibits a complex system of water mass
exchange between the Nordic Seas and the North Atlantic (Figure 1). Northward surface flow of the
Northern Icelandic Irminger Current (NIIC) brings warm (1.5 to 10 °C) and saline (34.92 to 35.2 psu) AW from
the North Atlantic over the Icelandic Shelf and vicinity of the shelf break to the Iceland Sea Gyre (Jonsson &
Valdimarsson, 2004; Swift & Aagaard, 1981; Vage et al,, 2011, 2013). In the Iceland Sea Gyre, the AW loses its
heat to the atmosphere and is transformed into dense water making up the majority of the Denmark Strait
Overflow Waters (DSOW). The DSOW return to the North Atlantic as an intermediate water mass via the
Northern Icelandic Jet (NlJ) (Jonsson & Valdimarsson, 2004, 2012; Vage et al.,, 2011). The origins of the
DSOW are highly debated within the modern community (Eldevik et al., 2009; Jeansson et al., 2008); however,
to remain consistent within this text we rely on the Vage et al. (2011, 2013) circulation scheme for discussions.
Vage et al. (2013) refer to this particular contribution to the DSOW as Atlantic Origin Overflow Water (Atl; >
0°C), and it appears to consistently lie around the 650-m isobath. The Atl comprises the bulk of the NIJ and is
distinguished from deeper Arctic Origin Overflow Water (Arc; < 0 °C), another contributor to the DSOW, by its
higher temperatures and convection location (Vage et al.,, 2013). The Atlantic Ocean is ultimately the original
source for both Atl and Arc, and their labels mainly indicate the geographical domain in which they transform
from surface to intermediate water (Vage et al.,, 2011). The Atl formation takes place along the Norwegian
continental slope when surface AW flowing northward within the NAC densifies, whereas wintertime convec-
tion within the interior Greenland and Iceland seas produces Arc (Vage et al., 2011). Arc water is banked up
high on the Iceland continental slope and forms the densest component of the DSOW supplied by the NLJ.
Another contributor to the DSOW is the East Greenland Current (EGC).
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north of Iceland; icebergs originating from Greenland, solid sea ice and
sea ice brine are, however, liable to also end up in the Iceland Sea
Gyre (Dodd et al.,, 2012). The intermediate and deep waters of the EGC
are fed by modified AW recirculating from the Fram Strait and waters
formed in the Greenland and Iceland Seas (Jeansson et al., 2008;
Rudels, 2002). Vage et al. (2011, 2013) find that these waters are not only
confined to the Greenland shelf and slope but are also associated with a
separated EGC in the interior of the Denmark Strait. This separated EGC is
thought to vary in both strength and laterally across the Denmark Strait
over time (Vage et al., 2011, 2013). Variations in the position and strength
of the EGC and NLJ are highly variable on all time scales and are thought
to largely depend on sea ice production and transport from the Arctic to
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Salinity (psu) the presence or lack of sea ice is largely dependent on the positioning
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' 3'0 ' 3'1 ' 3'2 and strength of the warm inflowing NIIC (Logemann & Harms, 2006;

Density Solignac et al, 2006). The Deep Western Boundary Current (DWBC),
which is fed by the DSOW, is therefore susceptible to any changes in

Figure 2. Conductivity, temperature, and depth (CTD) profile for site GS15-  temperature or positioning of the NIIC (Dickson et al., 2008; Jeansson

198-36CC measured on 26 July 2015. Water masses are indicated based on
descriptions by Vage et al. (2013) and as used in the text, Atlantic Water (AW),

et al,, 2008).

Atlantic Origin Overflow Water (Atl) and Arctic Origin Overflow Water (Arc).  Qur core was obtained from the northern side of the Greenland-Iceland

Density calculations derived using Web resources found at http://www.
csgnetwork.com/water_density_calculator.html and based off work from
Millero et al. (1980). Note that the absence of Polar Surface Water (PSW) is not

a consistent trait of this location.

Ridge within the Denmark Strait at 770-m water depth (Figure 1). The core
site lies almost directly on the northern part of the Hornbanki hydro-
graphic section as described by Jonsson and Valdimarsson (2004), west
of the Kolbeinsey Ridge (Jonsson & Valdimarsson, 2012) and very close
to the present boundary between the NIJ and the separated EGC (Vage et al., 2013). At the time of core col-
lection, warm and saline surface water flowed in the NIIC over the core site to a depth of approximately 150 m
where the halocline lay (Figure 2). Potential temperatures and salinity at our coring site have been measured
by conductivity, temperature depth sensors (CTD), 26 July 2015 recording —0.38, 0.22, and 4.44 °C and 34.92,
34.90, and 34.99 psu at 770, 400, and 100 m, respectively (Figure 2). These depths align with AW, Atl, and Arc,
respectively (Figure 2). Oxygen isotopic analyses of bottom water obtained from 760-m water depth at the
time of coring gave a 61805\,\, of 0.41%eo. Extracted GLODAPv2 data (Olsen et al., 2016) from 66 to 69°N and

19-30°W produced average carbonate ion saturation (A [CO];’) values of seawater to be 52.07 umol/kg

(>500 m), 62.22 umol/kg (500 m > <150 m), and 73.94 umol/kg (>150 m). The A[CO];’ were calculated from
tCO? and alkalinity at in situ temperature, pressure, phosphate, and silicate and implemented the dissociation
constants from Lueker et al. (2000). For this reason, the modern waters are not considered to be undersatu-
rated in respect to calcite.

3. Materials and Methods

The Calypso core GS15-198-36CC (67°51’N, 21°52'W, water depth 770 m) was retrieved during an Ice2lce
cruise onboard R/V G.O. Sars in July 2015 (Figure 1). Magnetic susceptibility measurements were conducted
onboard at the time of core retrieval, using a hand-held Bartington MS3 Magnetic Susceptibility meter with a
MS2E surface Scanning Sensor. Measurements were carried out at 1-cm intervals.

Samples were obtained at 0.5-cm intervals, and each sample was wet sieved over 63-, 150-, and 500-u
m sieves, oven dried, and the >150 pm fraction was further dry sieved to narrow sample size to
between 150 and 212 um for the geochemical analyses. Every 5 cm the absolute abundance of the
benthic foraminifera, Elphidium excavatum, was counted, and planktic foraminifera, N. pachyderma, were
picked to run for isotopes. Specimens of the benthic foraminifera, Cassidulina neoteretis, were hand-
picked every 0.5 cm. All C. neoteretis specimens were counted for determination of absolute
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abundance and subsequent selection of only the most pristine individuals for geochemical analysis. The
majority of samples (127 of 184) contained enough specimens to retain the 0.5 cm sample spacing;
however, in some cases where the abundance was too low to run all geochemical analyses, two to four
samples were combined together (35, 14, and 8 samples in 1-, 1.5-, and 2-cm resolution, respectively).
Shells of C. neoteretis were gently crushed between two glass plates under a microscope to allow visual
contaminants to be removed, homogenized, and then split into at least two aliquots; one approximately
40-80 pg to be cleaned and analyzed for stable isotopes and the other 300-360 pg for measuring
Mg/Ca. In some cases where there was enough sample a third aliquot has been saved to run for repli-
cates or further analysis.

Aliquots for isotope analysis were cleaned using methanol and ultrasonicated for 5 s, dried, and then run on a
Kiel IV preparation line coupled to a Thermo Finnigan MAT 253 at FARLAB at the University of Bergen. Results
are reported relative to Vienna Pee Dee Belemnite (VPDB), calibrated using NBS-19 and crosschecked with
NBS-18. Long-term reproducibility (1 s) of in-house standards for samples between 10 and 100 g is
<0.08%o and 0.03%o for 5'80 and §'3C, respectively.

The samples for trace element analysis were cleaned following the procedure described by Boyle and
Keigwin (1985) and Barker et al. (2003) and included clay removal, reductive, oxidative, and weak acid leach-
ing steps. All samples were dissolved in trace metal pure 0.1 M HNO3 and diluted to a final concentration of
40 ppm of calcium. Trace elements were measured at the Trace Element Lab (TELab) at Uni Research Climate,
Bergen (Norway) on an Agilent 720 inductively coupled plasma optical emission spectrometer (ICP-OES)
against standards with matched calcium concentration to reduce matrix effects (Rosenthal et al., 1999). Six
standards have been prepared at TELab and have a composition similar to foraminiferal carbonate (0.5-
7.66 mmol/mol). Every eight samples, known standard solution with Mg/Ca ratio of 5.076 mmol/mol was ana-
lyzed to correct for instrumental biases and analytical drift of the instrument. Long-term Mg/Ca analytical pre-
cision, based on standard solution is £0.026 mmol/mol (1o standard deviation) or 0.48% (relative standard
deviation). Average reproducibility of duplicate measurements (pooled standard deviation, dof = 18) is
equivalent to an overall average precision of 3.25%. The average Mg/Ca of long-term international limestone
standard (ECRM752-1) measurements is 3.76 mmol/mol (16 = 0.07 mmol/mol) with the average published
value of 3.75 mmol/mol (Greaves et al., 2008).

The r* of regression between Mg/Ca and Fe/Ca, Al/Ca, and Mn/Ca are 0.027, 0.001, and 0.013, respectively,
indicating no systematic contamination due to insufficient cleaning. The average downcore
measurements for Fe/Ca, Al/Ca, and Mn/Ca analyses in C. neoteretis are 42, 299, and 267 pmol/mol,
respectively. Fe/Ca and Al/Ca are well below contamination limits, 100 umol/mol (Fe/Ca) and
400 umol/mol (Al/Ca) (Barker et al., 2003; Barrientos et al, 2018; Skinner et al., 2003; Skirbekk et al.,
2016). The measured Mn/Ca ratios are over the 105 pmol/mol limit as determined by Boyle (1983) and
covary in some sections of the downcore measurements (Figure 3), which indicates that our samples have
the potential to be contaminated by ferromanganese precipitate. However, being an infaunal species C.
neoteretis can be expected to have high Mn/Ca ratios indicating a strong influence of hypoxic conditions
rather than temperature on the incorporation of Mn into the foraminifera shell (Groeneveld & Filipsson,
2013; Hasenfratz et al., 2017; Skinner et al., 2003). Therefore, although the possibility of contamination
cannot be ruled out, temperature is assumed to be the dominant control on the Mg/Ca variability in C.
neoteretis in this study.

There are two published Mg/Ca calibrations for C. neoteretis. (Mg/Ca = 0.864(+0.07) * exp(0.082(x0.02) *
BWT)) is based on core top data from Kristjansdottir et al. (2007), covering a water depth from 211 to
483 m with a Mg/Ca range of 0.93-1.38 mmol/mol and a temperature range of 0.96-5.47 °C.
Mg/Ca = 1.009(+0.02) * exp(0.042(+£0.01) * BWT)) from Barrientos et al. (2018) incorporates core tops from
Kristjdnsdottir et al. (2007) and 15 new core top measurements (Table 1 and Figure 4). The Barrientos et al.
(2018) calibration covers a water depth from 159 to 1118 m with a Mg/Ca range of 0.84-1.38 mmol/mol
and a temperature range of —0.10 to 5.47 °C. Only 25% and 47% of our measured samples, respectively,
fit within the Kristjansdéttir et al. (2007) and Barrientos et al. (2018) Mg/Ca ratio range of these calibra-
tions. Both of these calibrations give unrealistically cold end temperatures down to —3.4 and —10 °C
(Kristjansdéttir et al.,, 2007; Barrientos et al., 2018, respectively) when applying this calibration to our
Mg/Ca data set. The Barrientos et al. (2018) Mg/Ca range has a wide spread over a very narrow
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Figure 3. Trace element content of C. neoteretis samples analyzed for Mg/Ca. Downcore contaminants (a-c) of Mn/Ca
(green), Fe/Ca (red) and Al/Ca (blue) to Mg/Ca (grey) indicating general contamination limits with black dashed lines for
each element. C-d) Scatter of Mn/Ca (green), Fe/Ca (red) and Al/Ca (blue) plotted against Mg/Ca showing no covariance
between these trace metals.

temperature interval, and the resulting temperatures for our Mg/Ca ratios become excessively cold, well
below physically realistic values. The Kristjansdottir et al. (2007) calibration gives the least unrealistic
values, and the core tops are from the same region as we investigate. Therefore, we opted to use the
calibration from Kristjdnsdéttir et al. (2007) but modified it slightly to address the too cold temperature
end-member issue in two ways: first by adding a modern, Rose Bengal stained core top sample from
our study site (GS15-198-36MCA; Table 1) and second by attempting two alternative C. neoteretis
calibration equations that force the cold end-member data to realistic values by adding a cold end
cutoff temperature of —0.38 and —1.8 °C for our four lowest Mg/Ca measurements (Table 1). The
temperature —1.8 °C was chosen as the absolute coldest temperature physically obtainable within the

Table 1

Sample Data Used in Mg/Ca-Temperature Calibration Equation

Number Core site Depth (m) ICT® (°C) Mg/Ca (mmol/mol) Reference

1 B997-314 245 5.07 1.241 Kristjansdottir et al. (2007)
2 B997-315 211 5.07 1.377 Kristjansdottir et al. (2007)
3 B997-321 483 1.43 1.0 Kristjansdéttir et al. (2007)
4 B997-324 278 3.87 1.286 Kristjansdoéttir et al. (2007)
5 B997-326 362 2.07 0.987 Kristjansdottir et al. (2007)
6 B997-327 360 451 1.158 Kristjansdéttir et al. (2007)
7 B997-337 220 547 1.355 Kristjansdéttir et al. (2007)
8 B997-337 220 547 1.379 Kristjansdottir et al. (2007)
9 BS11-91-K15 445 0.96 0.927 Kristjansdottir et al. (2007)
10 BS11-91-K15 445 0.96 0.933 Kristjansdottir et al. (2007)
11 GS15-198-36CC 770 —0.38 (—1.8) 0.652 This Study

12 GS15-198-36CC 770 —0.38 (—1.8) 0.662 This Study

13 GS15-198-36CC 770 —0.38 (—1.8) 0.670 This Study

14 GS15-198-36CC 770 —0.38 (—1.8) 0.674 This Study

15 GS15-198-36MCA 770 —0.38 0.847 This Study

?sotopic calcification temperature from modern sites (excluding core site BS11-91-K15, which does not have bottom
water 81805%\,\,&,t€,r measurements and have therefore used the CTD temperature for this site (see (Kristjansdottir
et al.,, 2007, p. 16) for details), and site GS15-198-36 that assumes the coldest measured Mg/Ca ratios from down core
samples to have a cutoff of —1.8 °C (the coldest possible Arctic water temperature) or —0.38 °C, the measured BWT at
site GS15-198-36 in modern times. Note that numbers 11-14 are appointed Mg/Ca values and not measured, whereas
number 15 is a Rose Bengal stained core top sample
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Figure 4. Mg/Ca versus isotopic calcification temperature, exponential cali-
brations for the benthic species C. neoteretis that are discussed in this
study. Temperatures referred to in the text use equation (2) plotted here in
orange/yellow/black line with sample points shown with orange circles
(arbitrary temperature from Table 1), yellow diamond (Core top, Table 1) and
black triangles (Kristjansdottir et al. (2007) Table 1), and a 95% confidence
envelope. The original data points as used in Kristjansdottir et al. (2007) are in
black triangles and black line; the calibration with a low end-member of
—1.8 °C (equation (1)) are shown in navy/yellow/black line and incorporates
the navy plus symbols (arbitrary temperature from Table 1), yellow diamond
(Core top, Table 1) and black triangles (Kristjansdéttir et al.,, 2007; Table 1).
See Kristjansdéttir et al. (2007) and Table 1 for details concerning the cali-
bration and isotopic calcification of temperatures. The green line and green
squares are from the Barrientos et al. (2018) calibration that is not used in this
study. The solid orange line is the linear calculation formed from the same
sample points as equation (2) and is not discussed further in the text. The
black bar on the left of the figure indicates the Mg/Ca measurement range of
all 180 measurements for this study. Note how the majority of measurements
are outside of the Kristjansdéttir et al. (2007) temperature calibration range.

Arctic Ocean Waters during modern times (Rudels et al., 2000) and
—0.38 °C chosen as the modern potential temperature measured on this
site (Figure 2). This results in two exponential curves expressed as

Mg/Ca = 0.832(+0.03)" exp(0.091(+0.02)+BWT) R =094, (1)

Mg/Ca = 0.763(+0.05)" exp(0.111(+0.02)*BWT) RR=090 (2)

for an end-member cutoff of —1.8 and —0.38 °C, respectively (Figure 4). A
20 temperature error (95% confidence level) for equation (2) results in
temperature uncertainty of +0.64 to +0.97 °C for the temperature range
(—1.45-5.66 °C) covered by the core GS15-198-36CC. Further discussions
and use of Mg/Ca derived temperatures within this article will use the cali-
bration as expressed for the end member cutoff of —0.38 °C (equation (2))
as we believe this to be a conservative estimate of how warm the bottom
water at our site would be during glacial times. For the region, it is within
the middle range for modern bottom water temperature as shown in Vage
et al. (2013).

When calculating the stable oxygen composition of ocean water (3,,), the
5'%0 sea level corrections follow the sea level reconstruction from
Waelbroeck et al. (2002). One meter of sea level change is considered to
represent a 0.009%o change in 8'80 (Adkins et al., 2002; Elderfield et al,,
2012; Schrag et al., 1996; Shackleton, 1974). The mean C. neoteretis 5'%0
of the Late Holocene (0-3.6 ka BP) value from MD95-2011 (4.1%o), repre-
senting intermediate water depths in the eastern Nordic Seas
(Risebrobakken et al., 2003), is used as a modern reference for the down-
core sea level corrections. We calculated temperature using (equation (2))
and use the temperature from the CTD potential temperature at 770-m
depth, —0.38 °C. Oxygen isotope-based temperature estimates are gener-
ated using the 0.25%o/1 °C relationship, which is close to linear for this
temperature range (Marchitto et al., 2014). The difference between VPDB
and 3§, is corrected for using a constant of 0.3%o. Hence, the relative
change in d,, at site GS15-198-36 can be explained by: §,, = (sea level
(m) *0.0092) — ((Ttop — Toown) * 0.23) + 0.3 where T, is the temperature

at core top (or CTD) in °C and Tgown is the down core temperature in °C as measured on the

foraminifera samples.

4. Chronology

Cores GS15-198-36CC and PS2644-5 (67°52.02'N, 21°45.92'W, 777-m water depth Voelker and Haflidason
(2015)) are for all essential purposes, from the same location. When establishing the age model of GS15-
198-36CC, we rely on the published age model established for PS2644-5. The previously published age model
of PS2644-5 is based on 80 '*C dates, and the assumption that meltwater events recorded in the PS2644-5
core coincided with GS and cooling episodes with periods of large iceberg release from ice sheets (Voelker
et al.,, 1998, 2000; Voelker & Haflidason, 2015). The first step we did to establish the age model of GS15-
198-36CC was to tune the magnetic susceptibility record of GS15-198-36CC to the magnetic susceptibility
record from PS2644-5 (Laj, 2003), to establish the correct D-O events and approximate ages. Next, we rely
on a stratigraphic tuning of the marine records to the NGRIP §'20 record to further refine the chronology
(Figure 5). The PS2644-5 core is previously tuned to the §'80 from NGRIP using 5'20 of N. pachyderma
(Voelker & Haflidason, 2015). To avoid dependence on interpretations of water mass changes, we instead
tune the high-frequency variations in magnetic susceptibility in the marine core to the NGRIP §'80 record
on the GICCO5 timescale (Svensson et al.,, 2008), using AnalySeries 2.0 (Paillard et al., 1996). This results in
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Figure 5. Age model development of core GS15-198-36CC based on magnetic susceptibility (MS) using core PS2644-5 as
an age indicator where (a) shows MS of GS15-198-36CC versus original depth, (b) shows MS of PS2644-5 versus original
depth, (c) shows MS for both cores on the PS2644-5 age model revealing how very similar the cores are, and (d) shows MS of
GS15-198-36CC using the PS2644-5 age model in relation to the NGRIP 3'20 transitions in red (note the offset), and the MS
for GS15-198-36CC using the new age model of this study in relation to the NGRIP §'20 transitions on the GICCO5 timescale
(black). The red lines are the PS core, the black are for GS15-198-36CC, and the grey are for NGRIP.

an offset of approximately 150 years from the PS2644-5 age model. It has been shown that the rapid
oscillations in magnetic properties during MIS3 in the North Atlantic/Nordic Seas are coherent with
changes in the §'80 record of Greenland (Kissel et al., 1999). Throughout the paper, all data from GS15-
198-36CC and PS2644-5 are shown on the same age scale, tuned to NGRIP based on magnetic susceptibility.

5. Proxy Description and Use

Cassidulina neoteretis is a shallow infaunal benthic foraminifera species (Jansen et al, 1990) and known
to live in cooled and modified AW with optimal temperatures, and therefore highest abundance,
around —1 °C (Jennings & Helgadottir, 1994; Mackensen & Hald, 1988; Seidenkrantz, 1995) but are
known to survive in waters up to 5 °C (Kristjansdottir et al., 2007). They are often associated with
fine-grained, organic-rich terrigenous mud, that is, plenty of food particle sedimentation, and weak bot-
tom currents (Lorenz, 2005; Mackensen & Hald, 1988; Seidenkrantz, 1995). However, they may also
relate to high nutrient contents found in the occurrence of phytoplankton blooms, which can also be
present beneath sea ice (Arrigo et al.,, 2012; Jennings et al.,, 2004; Lubinski et al., 2001). Cassidulina neo-
teretis tends to prosper in stable marine environments with salinity of 34.91-34.92 psu and is often
associated with glacial episodes or periods (Mackensen & Hald, 1988). Elphidium excavatum is known
to dominate in highly unstable and turbid environments and is most commonly found living in shallow
water (Rytter et al, 2002). It is therefore often assumed that if found off the shallow shelves, it has
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been reworked posthumous during periods with stronger currents (Hald et al.,, 1994). Changes in abso-
lute abundance of C. neoteretis and E. excavatum are used to argue for changes in type of water mass
bathing GS15-198-36CC during D-O events 8-5. For example, periods with the highest abundance
(greater than 20 #/g dry bulk sediment) of C. neoteretis are linked to Arc water, periods with middle
range abundance (greater than 5 and less than 20 #/g dry bulk sediment) are linked to Atl water,
and periods with the lowest (less than 5 #/g dry bulk sediment) or no specimens at all are linked to
AW. The increased presence of E. excavatum is linked to stronger currents or a shift in current bound-
ary, that is, more unstable environment.

The stable high percentage of N. pachyderma from core PS2644-5 is used as an argument to support the con-
tinued presence of cold polar water at the surface or near surface throughout the stadial-interstadial period.
Neoglobiquadrina pachyderma moves vertically throughout the top of the water column to depths down to
300 m to try and avoid low salinity environments (Carstens et al., 1997) and aids to justify surface depth inter-
pretations in our discussions.

Oxygen isotopes of foraminiferal calcite are commonly used to reconstruct changes between stadial-
interstadial cycles (Dokken et al, 2013; Ezat et al., 2014; Ravelo & Hillaire-Marcel, 2007). 5'20 in foraminifera
are a function of seawater §'20, which is linked to glacio-eustatic changes and salinity, and of temperature
(Ezat et al,, 2014; Marchitto et al., 2014). In addition, brine rejection through sea ice formation will provide
water masses with low §'80 and relatively high salinity (Craig & Gordon, 1965). We use planktic §'®Oyp of
PS2644-5 as an indicator of the influence of near surface freshwater as demonstrated by Voelker and
Haflidason (2015) where light "0y is an indicator of fresher surface water, and heavy 8'80yp of more saline
surface water. Benthic 8'80¢y, which is remarkably similar to NGRIP 3'20 in their shape and amplitude, is
used, following Dokken et al. (2013), to infer presence of sea ice formation and concurrent brine rejection
when §"0¢y is light and open ocean when §'80¢y is heavy.

The isotopic signature of carbon in foraminiferal calcite is related to ventilation and water mass age (Dokken
et al, 2013; Ravelo & Hillaire-Marcel, 2007). When the sea surface is covered by sea ice, surface exchange of
CO, is inhibited; the seawater '3C decreases due to aging and supply of '2C from gradual decomposition of
organic matter. We therefore infer that lower §"3Ccy values are an indicator of extensive sea ice cover and less
ventilation and higher values reflect sea ice free and well-ventilated conditions.

Mg/Ca measurements of C. neoteretis are applied to the Mg/Ca temperature calibration (equation (2)) to
reconstruct past temperatures. Cold temperatures (<0 °C) are used to argue for the presence of Arc
water (i.e., surface AW that is transformed to intermediate water in the Greenland or Iceland Seas).
Temperatures between 0 and 3 °C are used to argue for Atl water (i.e., surface AW that has transformed
to intermediate water along the Norwegian Continental Slope or Fram Strait) and temperatures greater
than 3 °C as an indicator of AW flowing directly over the site within a deepened and stronger NIIC (Vage
et al, 2011).

During the process of sea ice growth, the brine rejected from the ice will have differing salinity values,
but an unchanged §'80 due to the invariance of §'80 with freezing and leads to a flat (close to zero)
stable oxygen composition of ocean water (dw) (Craig & Gordon, 1965; Tan & Strain, 1980) while main-
taining a low 8'80 and increased salinity (Dokken & Jansen, 1999). Brines are generally formed in shelf
areas but can be transported downslope and mixed with different water masses (Dokken et al.,, 2013;
Dokken & Jansen, 1999; Rohling, 2013). Therefore, 3., is used to support the presence or near-absence
of sea ice based on the assumption that the oxygen isotopic signature of the low salinity water where-
from sea ice formed and that this makes resultant inmixed waters deviate from the normal
salinity/oxygen isotope relation (Craig & Gordon, 1965; Dokken & Jansen, 1999). It is used in this study
to argue for the reduced influence of sea ice formation when the §,, benthics is high (>1). We argue
for the increased influence of sea ice when 3, is low (~0.5).

Although not counted in this study, the high IRD abundances from the PS2644-5 core (Voelker &
Haflidason, 2015) are used to indicate periods of the increased presence of icebergs and freshwater. It
is also used as an accessory proxy to support the presence of sea ice, as increased iceberg rafting is
associated with stadial periods, cold waters with potentially increased sea ice presence (Barker et al.,
2015; Dokken et al., 2013).
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6. Results
6.1. Benthic Species

The absolute abundance of C. neoteretis has its highest values during interstadial periods (up to 66
specimens/g dry bulk sediment; Figure 6). Minimum absolute abundances of C. neoteretis (down to zero
specimens/sample) are seen subsequent to the highest values during interstadials and at the same time as
Mg/Ca ratios of the same species begin to rise. Overall, the absolute abundance of C. neoteretis is lower during
stadials than during interstadials, but never drops to zero during the stadial. High absolute abundances coin-
cide with heavier values of 8’80 in the same species. The low-resolution counts of E. excavatum show an
increase in species absolute abundance directly before the largest abundance of C. neoteretis. We acknowl-
edge that the counts are only every 5 cm, compared to every 0.5 cm with the C. neoteretis, and need higher
resolution to be able to say anything concrete concerning the oceanic environment.

6.2. Cassidulina neoteretis Stable Isotopes

880 of C. neoteretis (5'%0cy) indicates clear variations between two modes with lightest values during the
stadials, increasing from 3.9%o to the heaviest values during the interstadials at 5.6%o (Figure 6). The transi-
tion from heavy to light oxygen isotope composition is gradual, beginning during the interstadial, in contrast
to the transitions from stadial to interstadial which are marked by an abrupt increase from light to heavy iso-
topic values on the onset of the transition. The §'3C of C. neoteretis (5'>Ccy) also shows strong phase align-
ment with the D-O transitions with heavier (up to —0.2%o) values during interstadials and lighter (down to
—0.8%o0) values during stadials. Transitions on both ends of a D-O cycle in the §'3Ccy signal are abrupt.

6.3. Cassidulina neoteretis Mg/Ca

The Mg/Ca results shown in Figure 6 are well aligned with 5'®0cy changes seeing higher values (warmer
approximately 0-3 °C) during stadials and lower values (colder approximately —1-1 °C), in general, during
interstadials. Both Mg/Ca and §'®0y suggests a gradual warming beginning in the middle of the intersta-
dials and have relatively abrupt coolings toward the onset of an interstadial. The Mg/Ca record shows a brief
warming just after the onset of an interstadial that is rapid in both onset and offset with similar or higher
values than seen during stadials. This is seen clearly in Gl 8 and 6, and less clearly in GI 7 and 5, potentially
due to lower sampling resolution.

6.4. Ocean Water 520

The stable oxygen isotope composition of standard mean ocean water as calculated using the benthic
5'80cy and Mg/Ca results indicate that the intermediate water is strongly influenced by brine rejection dur-
ing GS, decreased salinity in the majority of the Gl and increased salinity during the interstadial warm episode
(Figures 6 and 7). Overall, we see that there is increased salinity or a different originating water mass passing
over core site GS15-198-36CC during interstadials than during stadials.

7. Discussion
7.1. Stadials, Mode A

Our Mg/Ca temperature reconstruction (Figure 6) indicates that during GS site GS15-198-36CC was covered
by a relatively warm, between 1 and 3 °C, intermediate water mass. Although the Mg/Ca calibrations that are
available are not optimal at the extreme cold end, the midrange temperatures are well captured (Barrientos
et al,, 2018; Kristjansdottir et al., 2007). We therefore consider these temperatures calculations to be robust
leaving them to fall into the Atl water category according to Vage et al. (2011, 2013) (Figures 6 and 7). Atl
water is not optimal for C. neoteretis, as it is slightly too warm, and the salinity range associated with Atl. water
slightly too fresh (~34.85-34.90 psu), but it has stable conditions and is a cooled Atlantic originating water
mass. We see these attributes reflected in the midrange absolute abundance between 5 and 20
specimens/g dry bulk sediment where the specimens are not thriving but are not disappearing either
(Figure 6). Cassidulina neoteretis is often associated with glacial episodes or periods but are not inclined to
excessive IRD as they thrive in fine-grained mud associated with high food availability (Mackensen & Hald,
1988). We do see high influx of IRD within the GS (Figure 6), which we associate with increased iceberg rafting
and fresher surface waters but also the presence of sea ice. Sea ice has the potential to have massive phyto-
plankton blooms and thereby provide the nourishment needed for the benthic foraminifera albeit the rain
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Figure 6. Down core data set from (a) NGRIP, (c-e), PS2644-5 and (e-k) GS15-198-36CC covering the period between 39 to
31.5 ka and D-O events 8-5 on the GICCO5 (b2k) age scale. (a) NGRIP 5'% (proxy for Greenland air temperature and used
for age model construction). (b) Relative sea level curve above modern sea level (Waelbroeck et al., 2002). (c) % N. pachy-
derma from core PS2644-5, indicating consistently cold polar water. (d) Lithic grain counts greater than 150 pm (PS2644-5)
indicating icebergs and meltwater. (e) 5'80 of N. pachyderma (solid line PS2644-5, dotted line GS15-198-36CC) interpreted
as a freshwater signal. (f) Benthic 3'80 of C. neoteretis aids in reconstructing temperature and salinity. (g) Standard mean
ocean water for intermediate water and an indicator for brine contribution. (h) Mg/Ca ratios plotted in mmol/mol for C.
neoteretis. (i) The temperatures associated with the Mg/Ca values as calculated using equation (2). (j) Benthic 813cof C.
neoteretis used as an indicator for ventilation. (k) Absolute benthic counts plotted per g of dry bulk sediment of C. neoteretis
(counted every 0.5 cm, solid black line) an indicator for NIIC modified water, and E. excavatum (only counted every 5 cm,
dotted black line) an indicator for unstable environments. Interstadial periods are noted by grey shading and numbered 8-
5, and stadial periods are white. The light turquoise shading indicates Mode C. Lithic grains and N. pachyderma data ori-
ginally published in (Voelker et al., 2000; Voelker & Haflidason, 2015).
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Figure 7. Box schematics showing interpretations for changes in water masses within the water column between modes in
the Denmark Strait. Mode A represents the stadial conditions where brine rejection is illustrated by white dots. Mode B the
baseline interstadial conditions and Mode C the warm episode that occurs at intermediate depth during an interstadial. The
double-sided arrow in Mode B indicates that the surface can switch between summer and winter conditions, as in modern
times. The dashed arrow in Mode B indicates the gradual deepening of the Atl toward the end of an interstadial. The C.
neoteretis at 770 m represents the abundance of species relative to each mode. Note that the core site itself is at 770 m and
the suggested depths for surface changes originate from modern observations where the halocline sits at 150 m and the
Iceland shelf at approximately 300 m. Acronyms for the water masses are as follows: Polar Surface Water (PSW), Atlantic
Originating Water (Atl), Arctic Originating Water (Arc), and Atlantic Water (AW). Currents are bracketed and are as follows:
East Greenland Current (EGC), Northern Icelandic Jet (NlJ), and Northern Icelandic Irminger Current (NIIC).

down of extensive IRD (Arrigo et al., 2012; Jennings et al., 2004). Further indications for the presence of sea ice
arise from the light 8'0¢y, which is in shape and form similar to the NGRIP §'®0 (Figure 6). Dokken et al.
(2013) explain this by two different modes of deep water production that are dependent on sea ice
conditions. One of which suggests that when sea ice is present, and Greenland is cold, §'®0cy becomes
lighter in the deep Nordic Seas because there is sea ice formation along the Norwegian continental shelf,
which creates dense and istopically light brine water that is subsequently transported downward (Craig &
Gordon, 1965; Dokken et al., 2013; Dokken & Jansen, 1999). Many studies suggest that little to no open
ocean convection took place in the Iceland Sea during GS (Dokken et al.,, 2013; Ezat et al., 2014; Rasmussen
et al, 2016; Rasmussen & Thomsen, 2004).

To further the argument of brines being produced during GS due to the presence of sea ice, we look at the
temperature relationship between 3'0¢y and 8'80 of seawater (Figure 6). The oxygen isotopic composition
of foraminifera reflects the oxygen isotopic composition of seawater in which the shell calcifies; however it is
also dependent on temperature (Marchitto et al., 2014; Ravelo & Hillaire-Marcel, 2007). We notice that the
amplitude of the §'80¢y signal if calculated to be driven by temperature alone is significantly higher than
is reasonable in terms of maintaining a stable water column and much smaller than the Mg/Ca-derived tem-
perature amplitude. There should therefore be a residual component of the light §'80¢y peaks that in the
stadial phases that originates from changes in the 5'0,,, presumably caused by influence of water masses
with low oxygen isotopic content from brine rejection processes around the basin, as explained in the follow-
ing: Marchitto et al. (2014) illustrate a temperature dependence of —0.25%o per °C in cold water. At first
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glance, the strong correlation in the stadial mode between the benthic §'80¢y record and the Mg/Ca-derived
benthic temperature reconstructions suggest that '®Ocy values are largely representative of deepwater
temperature changes (Figure 6). However, the changes in 3'80cy are typically 0.8-1%o lighter during stadials
compared to interstadials, which coincide with an approximate 3-4 °C temperature increase from interstadial
to stadial conditions (Figure 6), whereas we see the Mg/Ca changing from approximately —0.5 °C during
interstadials to approximately 2 °C during stadials, which is only a 2.5 °C shift. This difference between
3'80cn and Mg/Ca may be within the potential uncertainty of the methods and Mg/Ca calibration uncer-
tainty; however, as the higher §'80¢y signal is consistently on the outer end of uncertainties, we infer that
brine rejection must also affect the §'0cy, At the same time as 5'%0cy is lighter, our §'3Ccy is
lighter/lower (Figure 6). As a ventilation indicator, lighter 8'>Ccy would suggest reduced surface ventilation
(potentially due to sea ice cover and or a strong halocline) with seawater 3'3C influenced by '°C enriched
older waters (Dokken et al., 2013).

Supporting evidence in favor of a meltwater cap and sea ice exists from core PS2644-5 (Voelker & Haflidason,
2015), indicating light values of §'80yp during stadials in comparison to heavier values during interstadials
(Figure 6). The lighter 5'%0np during stadials indicate either a fresher near surface water, warmer waters at
the near surface, or a combination of both to depths of up to 300 m (habitat depth of N. pachyderma;
Carstens et al., 1997). In agreement with Voelker and Haflidason (2015) we consider that the 5'80\p is mainly
recording a cold fresh surface layer as it is accompanied by a large increase in IRD abundance, and the % N.
pachyderma is relatively consistent between 95 and 100% indicating consistently cold, polar waters (Voelker
& Haflidason, 2015). As icebergs reach waters with temperatures above freezing they begin to melt adding
cold, fresh water to the Denmark Strait that, due to its freshness cannot sink to depths and therefore resides
at the surface. As the icebergs melt, they release IRD to the Denmark Strait and this is recorded in the sedi-
ment from PS2644-5 (Voelker & Haflidason, 2015).

7.2. Transition to Interstadial

Throughout the GS, the warm intermediate water would deepen and expand until reaching a critical point in
which connection to the atmosphere takes place, due to a destabilization of the water column causing an
overturning and upwelling of warm water to the sea surface. To detect the deepening of the warm intermedi-
ate water, we would need a transect of core sites reaching from shallow shelves to the abyssal plain. Hence,
our site does not record this deepening. The clearest indicators of overturning and ventilation from our data
set come from the synchronized rapid decrease in Mg/Ca values with the increase in §'80cy, thereby indicat-
ing the end of the stadial mode (Figure 6). The most favorable mechanism for causing the rapid changes in
ocean water and simultaneously atmospheric conditions over Greenland, as indicated by 5'®Onggp is a swift
decay of sea ice (Gildor & Tziperman, 2003; Li et al., 2010; Petersen et al., 2013). However, as mechanisms and
triggers relating to the abrupt changes between GS and Gl is not the focus of this study we do not go into
details here.

7.3. Interstadial

Our site records a more complicated Gl water column than that of the GS, and we therefore divide it into two
modes: Mode B, baseline GI mode, and Mode C, an interstadial warm episode, to explain the shifts in
proxies (Figure 7).

7.3.1. Interstadial, Mode B

Mode B, is characterized by benthic Mg/Ca derived temperatures below 0 °C for intermediate water
(Figure 6). The Mg/Ca ratios in these time periods are those that are most affected by the alternative calibra-
tion (equation (2)) that we use in this study (Figure 4). If we use prepublished calibrations, our Mg/Ca for these
periods results in unrealistically cold temperatures (Barrientos et al., 2018; Kristjansdéttir et al., 2007). This
may be because the calibrations are inadequate at the low temperature end or that our site is affected by
A[Coﬁ_ during cold periods in MIS3 (Elderfield et al., 2006). Our modern core top sample and modern A
[CO]? indicate that at present this site is not undersaturated. However, there are no calibrations for calculat-

ing A[COE_ for C. neoteretis and is needed to further investigate this issue. There are times when the tempera-
tures rise above zero, to ~1 °C; however, this is within likely uncertainty of the Mg/Ca temperature calibration
and we therefore feel confident to relate these temperatures to Arc water as denoted by Vége et al. (2011,
2013). To further this argument, C. neoteretis peaks (>20 specimens/g dry bulk sediment) during these
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periods, especially before the gradual warming begins (Figure 6). Cassidulina neoteretis thrives in tempera-
tures around —1 °C, and especially at times with significant food availability, increased sedimentation, and
low occurrence of IRD, all of which are indicators of an iceberg and sea ice free (or in any case inconsistent)
cover (Jennings et al., 2004; Mackensen & Hald, 1988; Seidenkrantz, 1995).

While Mg/Ca ratio indicates cold temperatures, the 8'0cy, if purely recording temperature, is also indicating
a period of cold intermediate waters (Figure 6). When both are used to determine the 3., the result is a rela-
tively high value close to 0.5 %o. This implies that the seawater at depth was not likely affected by brine rejec-
tion, such is the Arc water today. Higher §'3Ccy suggests that Gl had increased ventilation in comparison to
GS (Figure 6). This fits an interpretation where sea ice free conditions and open ocean convection could have
occurred in the Iceland Sea, similar to present (Figure 7; Dokken et al., 2013; Ezat et al., 2014; Rasmussen &
Thomsen, 2004; Vage et al., 2011; Wary et al., 2017).

Other proxies indicating open water come from the surface records for our site, where we rely on the PS2644-
5 record (Voelker et al.,, 2000; Voelker & Haflidason, 2015). The surface tends to remain fairly consistent
between Gl showing low IRD depositional periods, and heavy 5'®Op (Figure 6). We interpret the surface
waters to be more saline than during GS as indicated by the heavy 3'®0yp due to less glacial runoff and or
iceberg release as indicated by the lower IRD record. Higher salinity could relate to increased AW via the
NIIC or a decrease in iceberg discharge and freshwater input. The consistently cold conditions (> 95% N.
pachyderma) supports the presence of cold surface water, but it is quite probable that the region is made
up of PSW in winter and AW in summer as in modern times.

7.3.2. Interstadial Warm Episode, Mode C

Mode C, the interstadial warm episode, is a bit more difficult to explain than Modes A or B, as the proxy-based
reconstructions reveals inconsistent timing and intensity of the occurrences. It is clear, however, that a differ-
ent intermediate water mass and or current is present during these periods. The benthic Mg/Ca values indi-
cate a brief increased warming episode within each GI, defined as, an increase of 2-5 °C from baseline
interstadial temperature followed by a return to baseline cold interstadial temperatures that occurs within
50-200 years (Figure 6). For GI8, this occurs almost immediately and is the longest and warmest episode
of its type lasting approximately 200 years and reaching up to 6 °C as calculated using equation (2);
(Figure 6). For each interstadial warm episode recorded, there is a low absolute abundance of C. neoteretis
(sometimes disappearing) and the highest recorded §'3Ccy of each interstadial (Figure 6). Low abun-
dance, high temperatures, and increased ventilation indicate a rejuvenation of the NIIC and AW.
However, the warm temperature episodes are not recorded or recognized by any changes in the §'®0¢y
record. This mode has a large response in estimated SMOW value that hints at large reductions in brine con-
tributions to the water masses with increased salinity that prevents 880y from becoming lighter when bot-
tom temperatures rise. It is unclear what drives the change in modes, especially since the change does not
always occur at the same time within a Gl. It is possible that the only real Mode C occurs in GI8, directly after
Heinrich events 4 (H4), and the interstadial warm episodes that appear in the other Gl's are indicators of some
instability in the system and or be a result of lower resolution just at those periods on account of the low
abundance of C. neoteretis. Increased sampling during these periods, and a full benthic relative abundance
reconstruction would aid in the understanding of these episodes.

7.4. Transition to Stadial

All proxies indicate that there is a gradual transition into GS. The Mg/Ca-derived temperature reconstruction
indicates a warming trend toward the GS and we interpret this to be gradual deepening of the Atl as sea ice
begins to grow towards the end of the Gl (Figure 7). This is mirrored by the gradual lightening of 5'%0cn, gra-
dual lightening of 5'80yp, gradual increase in IRD and the decrease in C. neoteretis absolute abundance.

8. Conclusions

Our results alongside supporting material from site PS2644-5 promote the following interpretations for MIS3
D-0O events 8-5. First and foremost, GS appear to be periods of stability whereas Gl are relatively unstable,
undergoing changes throughout their durations. The Denmark Strait surface and intermediate water masses
undergo three distinct modes during D-O events (A, B and C; Figure 7). The stadial mode (Mode A) has a per-
ennial sea ice cover in the western Nordic Seas. The water column is well stratified with a fresh, cold PSW
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underlain by warm, brine influenced, Atl Water within the intermediate layer. Low abundance of C. neoteretis
implies that the warm Atlantic water flowed into the Nordic Seas through the Faeroe-Shetland Channel rather
than through the Denmark Strait. Over time the Atl gradually thickened and deepened, flowing out of the
Nordic Seas through the Denmark Strait. At some critical time, the water column became unstable and over-
turned causing sea ice to rapidly disappear; initiating the baseline interstadial mode (Mode B). Mode B com-
prises an interstadial mode of circulation and water column development similar to modern times with
outflowing cool PSW in the EGC at the surface and Arc at depth and inflowing AW via the NIIC on the shelves
(and potentially further into the strait during summer). Within each interstadial Mode B there appears to also
be a Mode Cinterval, a period of instability where warming of intermediate water occurs in combination with
increased ventilation, increase in salinity, and a drop in C. neoteretis abundance. We interpret this as a sudden
rejuvenation of warm, saline, AW as NIIC inflow at depth. However, the mechanism for the transition from
Mode B to Mode C is unclear, especially as the timing of the mode C between interstadials is different. At
some point conditions become ideal to initiate sea ice growth causing gradual reestablishment of a stratified
ocean with a strong halocline and the stadial mode is re-established.
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