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Innate immunity is a primary defense system against microbial infections.

Innate immune pattern recognition receptors (PRRs) play pivotal roles in

detection of invading pathogens. When pathogens, such as bacteria and

viruses, invade our bodies, their components are recognized by PRRs as

pathogen-associated molecular patterns (PAMPs), activating the innate

immune system. Cellular components such as DNA and RNA, acting as

damage-associated molecular patterns (DAMPs), also activate innate

immunity through PRRs under certain conditions. Activation of PRRs triggers

inflammatory responses, interferon-mediated antiviral responses, and the

activation of acquired immunity. Research on innate immune receptors is

progressing rapidly. A variety of these receptors has been identified, and their

regulatory mechanisms have been elucidated. Nucleotide-binding and

oligomerization domain (NOD)-like receptors (NLRs) constitute a major

family of intracellular PRRs and are involved in not only combating pathogen

invasion but also maintaining normal homeostasis. Some NLRs are known to

formmulti-protein complexes called inflammasomes, a process that ultimately

leads to the production of inflammatory cytokines and induces pyroptosis

through the proteolytic cascade. The aberrant activation of NLRs has been

found to be associated with autoimmune diseases. Therefore, NLRs are

considered targets for drug discovery, such as for antiviral drugs,

immunostimulants, antiallergic drugs, and autoimmune disease drugs. This

review summarizes our recent understanding of the activation and regulation

mechanisms of NLRs, with a particular focus on their structural biology. These

include NOD2, neuronal apoptosis inhibitory protein (NAIP)/NLRC4, NLR family

pyrin domain containing 1 (NLRP1), NLRP3, NLRP6, and NLRP9. NLRs are

involved in a variety of diseases, and their detailed activation mechanisms

based on structural biology can aid in developing therapeutic agents in

the future.
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Introduction

Bacteria and viruses invading our bodies are recognized as

foreign substrates and, therefore, activate the immune system.

Immune responses are classified into innate and acquired

immunity. In the early stages of microbial invasion, innate

immunity is triggered first (1, 2). Pathogen-associated

molecular patterns (PAMPs) are recognized by an innate

immune receptor called pattern recognition receptor (PRR)

(3). Signals are transmitted downstream, ultimately triggering

inflammatory responses, interferon-mediated antiviral

responses, and the activation of acquired immunity (4). The

discovery of toll-like receptors (TLRs) in the late 1990s led to an

explosion of research on innate immune receptors, resulting in

the identification of a variety of innate immune receptors (5).

Each of these receptors was found to be involved in the

recognition of unique PAMPs (6). Previously, innate immunity

was considered a nonspecific immune response; however, it has

now been recognized as a specific immune response due to PRRs

(7). In addition to recognizing PAMPs, innate immune receptors

may be activated by self-derived molecular patterns (damage-

associated molecular patterns, DAMPs) released from necrotic

cells, which are known to cause autoimmune diseases (8).

Therefore, innate immune receptors are potential drug targets,

such as for antiviral drugs, immunostimulants, antiallergic

drugs, and drugs for autoimmune diseases (9).

In addition to the aforementioned TLRs, representative

innate immune receptors have been identified as nucleotide-

binding and oligomerization domain (NOD)-like receptors

(NLRs) (10), retinoic acid-inducible gene I (RIG I)-like

receptors (11), absent in melanoma 2 (AIM2)-like receptors

(12), and cyclic GMP-AMP synthase (cGAS)/stimulator of

interferon genes (STING) (13). TLRs are located on the

plasma membrane surface and endosomal membranes,

whereas other receptors are located in the cytoplasm.

Moreover, TLRs recognize PAMPs and DAMPs that have

entered the cell. Recently, a rapid progress in the study of

intracellular sensors that exist in the cytoplasm and activate

innate immunity by recognizing foreign substances, such as

pathogen-derived DNA and RNA, has been observed (14, 15).

Structural biology studies using X-ray crystallography and cryo-

electron microscopy (EM) have made remarkable progress in

recent years. Moreover, these studies have played a major role in

elucidating the mechanisms by which innate immune receptors

recognize PAMPs and DAMPs and activate innate immunity.

This review focuses on NLRs, a family of innate immune

receptors that exist primarily in the cytoplasm, and introduces

the mechanisms of activity regulation and signal transduction

revealed by structural biology studies conducted over the past

decade (Table 1).
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NOD-like receptors

To date, 22 NLRs with various functional roles have been

identified in humans (31). NLR typically consists of three

functional domains, namely N-terminal signaling, central

[NAIP, CIITA, HETE, TP1 (NACHT)], and leucine-rich

repeat (LRR) domains (32–35) (Figure 1A). The N-terminal

signaling domain is responsible for signal transduction through

interactions with downstream adaptor proteins. The central

NACHT domain has ATPase activity and is assumed to be

self-oligomerized through this domain on activation. The

NACHT domain is further classified into nucleotide-binding

domain (NBD), helical domain 1 (HD1), winged-helix domain

(WHD), and HD2 subdomains. The LRR domain on the C-

terminal side is believed to be involved in ligand recognition and

functional regulation. NLRs are classified into subfamilies

according to the type of N-terminal signaling domain: those

with pyrin domain (PYD) are called the NLR pyrin domain

containing (NLRP) family and those with caspase recruitment

domain (CARD) are called the NLR CARD containing (NLRC)

family. An NLRP uses its PYD to form a scaffold that interacts

with the adaptor, apoptosis-associated, speck-like protein

containing a CARD (ASC) through PYD-PYD interactions to

recruit procaspase-1. Procaspase-1 is activated to caspase-1,

which further cleaves pro-interleukin (IL)-1b and pro-IL-18,

resulting in the generation of mature IL-1b and IL-18,

respectively, and triggering an inflammatory response.

Caspase-1 also induces pyroptosis by cleaving gasdermin D. In

addition to the caspase-1-mediated canonical inflammasomes,

noncanonical inflammasomes involving caspase-4/5 in human

and caspase-11 in mice have been identified and are known to

respond to cytosolic LPS (37). An NLRC, however, is thought to

activate caspase-1 through direct CARD-CARD interactions in

addition to the ASC-mediated activation of caspase-1. Diverse

PAMPs and DAMPs have been found to activate NLRs. Some

NLRs are known to activate innate immunity by forming high-

molecu la r -we ight mul t i -pro te in complexes ca l l ed

inflammasomes to signal downstream.
TABLE 1 Summary of structural studies of NLRs.

Structural features

NLRC4 Inactive form (monomer) (16)
Active form (ring-like oligomer complexed with NAIP/ligand) (17–21)

NLRP3 Inactive form (NEK7-bound monomer) (22)
Inactive form (cage-like oligomer) (23–25)
Inhibitor bound form (23, 24, 26)

NLRP1 Inactive C-terminal fragment (DPP9-bound form) (27, 28)

NOD2 Inactive form (monomer) (29)

NLRP9 Inactive form (monomer) (30)
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NLRC4

In the neuronal apoptosis inhibitory protein (NAIP)/NLRC4

pathway, flagellin, a component of bacterial flagella, and the

bacterial rod protein PrgJ bind to NAIPs, whereupon NLRC4

binds as an adapter to form active inflammasome (38–43).
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In 2013, the first crystal structure of NLR was reported for

the inactive form of NLRC4, lacking the CARD domain (16)

(Figure 1B). The inactivated conformation of NLRC4 was a

monomeric, autoinhibited conformation, in which the region of

the NACHT domain involved in self-association was covered by

the LRR domain. Thus, the LRR domain of NLRC4 functions to
B

A

FIGURE 1

Domain organization and structures of inactive NLRs. (A) Domain organization of NLRs. Each of the domains and sub domains are indicated by
the different colors and are correspondingly indicated in Figure 1B. (B), Structures of inactive NLRs. Structures of inactive NLRC4 (PDB 4KXF)
(16), NLRP3-NEK7 complex (PDB 6NPY) (36), NOD2 (PDB 5IRN) (29), and NLRP9 (PDB 7WBT) (30) are shown with the domains colored as per
(A). Bound ADP molecules are shown in space filling representations. In the NLRP3-NEK7 complex, bound NEK7 is shown in gray. The potential
ligand-binding site in NOD2 and the C-terminal region of NLRP9 are indicated. Structural figures were generated using CueMol throughout this
review (http://www.cuemol.org).
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sequester NLRC4 in a monomeric state. It was also found that

ADP bound to the NACHT domain stabilizes the closed and

autoinhibited conformation of NLRC4 by mediating the

interactions between the subdomains of the NACHT domain.

This was consistent with previous biochemical experiments

showing that the deletion of the LRR domain leads to self-

activation without NAIP or FliC (39).

Subsequently, cryo-EM analysis revealed that the

inflammasome structure of NAIP2-NLRC4 is induced by the

bacterial rod protein PrgJ, as reported almost simultaneously by

two groups (17, 18) (Figure 2). A low-resolution structure of the

NAIP5-NLRC4 helical oligomer induced by flagellin was also

reported using cryo-EM tomography (19). Afterwards, cryo-EM

structures of the flagellin-NAIP5-NLRC4 were reported,

revealing the detailed ligand recognition mechanism of NAIP5

as well as how it leads to the oligomerization of NLRC4 (20, 21).

The NAIP2-NLRC4 or NAIP5-NLRC4 oligomer induced by

ligand forms a ring-like structure consisting of 10–12

molecules, including one NAIP molecule (Figure 2B). This

oligomer is formed by unidirectional chain oligomerization of

NLRC4 molecules, starting with the ligand-bound NAIP
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molecule. In the upper part of the ring, CARD assembly may

provide a scaffold for CARD-CARD interactions with

downstream caspase-1 (Figure 2B). Upon activation, closed

NLRC4 is converted to an open conformation by binding to

open NLRC4 via the NACHT domain (Figure 2A). During this

process, rigid body motion at the linkage between HD1 and

WHD of the NACHT domain is observed. This mechanism

amplifies the signal by catalytically converting the closed

structure to an open structure in a self-propagating manner.

Moreover, this mechanism contrasts with the activation

mechanism of the apoptotic protease-activating factor-1

(Apaf-1) apoptosome (octameric ring structure), which is

related to the NLR. In the case of Apaf-1, each subunit must

be activated by its own ligand, that is, a stoichiometric number of

ligands is required for all subunits activation (44).
NLRP3

NLRP3 is one of the most well-studied inflammasome-

forming NLRs. Moreover, its activators are diverse. For
B C

A

FIGURE 2

Ring-shaped active oligomer of NLRC4. (A) Structural changes underlying NLRC4 oligomerization. The NLRC4 monomer undergoes a structural
change from a closed (PDB 4KXF) (16) to an open form (PDB 3JBL) (17), causing the NBD-HD1 part to undergo a large rotational movement
relative to the other parts. This opens the NACHT domain and the corresponding activated NLRC4 molecules to form a laterally aligned dimer
and subsequently form ring-shaped oligomer. (B) Structure of 11-fold ring-shaped NLRC4 oligomer (PDB 3JBL) (17). Top (left) and side (right)
views are shown. The CARD domains are predicted to be concentrated at the top of the ring as shown schematically in the side view (right).
(C) Hypothetical structure of NLR3-NEK7 oligomer. The structure of the inactive form of the NLRP3-NEK7 complex (6NPY) (36) was split into
the NBD-HD1 and the WHD-HD2-LRR parts, and each was fitted into the corresponding part of the 11-fold ring oligomer of NLRC4 (PDB
3JBL) (17).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.953530
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ohto 10.3389/fimmu.2022.953530
instance, nigericin, uric acid, amyloid-beta fibrils, extracellular

ATP, and reactive oxygen species are a few activators of NLRP3

(20, 35). Some of these are thought to trigger NLRP3 activation

by lowering intracellular K+ concentrations (45). NLRP3

activation requires two steps of stimulation: “priming” and

“activation” (45–47). Priming stimuli include the TLR ligands

Pam3CSK4, Poly(I:C), lipopolysaccharide (LPS), and R848,

which activate TLRs to upregulate NLRP3 and caspase-1

expression and provide the soil for NLRP3 activation. In

addition, priming causes post-translational modifications in

NLRP3, such as phosphorylation (48), which are thought to be

important for NLRP3 activation. The activating factors include

nigericin, extracellular ATP, as well as silica, cholesterol, and uric

acid crystals that destabilize lysosomes. As mentioned

previously, a wide variety of NLRP3 activators exists, and the

direct triggers of NLRP3 activation remain unclear. In addition,

it has been reported that NLRP3 activation involves interactions

with a variety of proteins. These include SGT1, HSP90 (49),

thioredoxin-interacting protein (TXNIP) (50), mitochondrial

antiviral-signaling protein (MAVS) (51), never in mitosis A-

related kinase 7 (NEK7) (52–54), MAP/microtubule affinity-

regulating kinase 4 (MARK4) (55), macrophage migration

inhibitory factor (MIF) (56), DEAD box RNA helicase (DDX)

3X (57), and receptor of activated protein C kinase 1 (RACK1)

(58). However, the mechanisms by which these factors regulate

NLRP3 activation remain unclear.
NLRP3–NEK7 complex

As a starting point for the structural biology studies of

NLRP3, the cryo-EM structure of inactivated human NLRP3

(PYD domain deleted) bound to NEK7 was first revealed (36)

(Figure 1B). The overall structure was similar to the previously

reported structures of NLRC4 (16) and NOD2 (29) in the

inactivated form. The kinase C-lobe of NEK7 binds to the

concave side of the LRR of NLRP3. Only the C-lobe of NEK7

was visible in the cryo-EM map, but the N-lobe did not clash

with NLRP3 even when full-length NEK7 was superimposed.

NLRP3 binds to NEK7 at multiple interaction sites (LRR, HD2,

and NBD). This binding is suggested to involve electrostatic

interactions between the positively charged surface of NEK7 and

the negatively charged surface of NLRP3. NEK7 is known to

form a complex with NEK9 to participate in mitosis (59);

however, the NEK7 surface used for this complexation

overlaps in part with the surface used for binding to NLRP3.

Therefore, it was expected that once NEK7 binds to NLRP3, it

cannot bind to NEK9 and vice versa.

As mentioned previously, upon activation, NLRC4

multimerizes and activates by opening the NACHT domain

via a large rigid body rotation between HD1 and WHD

(Figure 2A) (17, 18). Imitating the oligomeric structure of

NLRC4, an oligomeric model of the NLRP3-NEK7 complex
Frontiers in Immunology 05
was constructed (Figure 2C), where NEK7 was found to be

located at the boundary with the neighboring molecule in the

oligomer. To investigate the importance of this modeled

oligomeric interface, the authors of this paper performed

experiments using mutants of NLRP3 and NEK7 and

demonstrated that both mutants reduce NLRP3 activation,

indicating that this NEK7–NLRP3 interface may be used when

NLRP3 is activated (36). In the case of NLRC4, in addition to the

contacts at the NACHT site, interactions at the LRR-LRR sites

are observed during the formation of ring-shaped oligomers

(Figure 2A, B) (17, 18). However, the LRR-LRR interaction in

the NLRP3 oligomer is not possible between adjacent monomers

because the LRR of NLRP3 is smaller than that of NLRC4.

Considering the result of the mutational experiment showing the

importance of hypothetical NEK7-NLRP3 interface describe

earlier, NEK7-mediated bridging of adjacent LRRs of NLRP3

may reinforce the oligomerization of NLRP3. In other words, in

NLRP3, as in the case of NLRC4, the interaction between

NACHTs in the inner ring layer and that between LRRs via

NEK7 in the outer ring layer are thought to contribute to

oligomer formation.
Full-length NLRP3 oligomer

Although experimental structural information on the

activated oligomer of NLRP3 is not yet available, three groups

have reported cryo-EM structures of the full-length NLRP3

oligomer in its inactivated form recently (Figure 3) (23–25).

Paradoxically, this inactivated oligomer formation has been

shown to be important in the regulation of NLRP3 activation

(25). Mouse NLRP3 forms 12-, 14-, and 16-mer (Figure 3A) (23,

25), whereas human NLRP3 forms 10-mer (Figure 3B) (24)

hollow, cage-like oligomeric structures with NACHT on the top

surface and LRR-LRR interactions on the sides. The density of

the PYD domains could not be clearly confirmed, but they were

considered to be disordered and located inside or at the top of

the cage.

LRR-LRR interactions on the side of the cage are the main

contributors to the multimer formation. The interactions at this

site are “face-to-face” or “head-to-head,” in which neighboring

LRRs interact closely with each other (Figure 3). These

interactions are mainly due to electrostatic complementarity

and hydrophobicity, respectively. In contrast, the NACHTs on

the upper and lower surfaces of the cage are proximal to each

other, but there is little direct interaction between them. As a

result, in all the reported oligomer structures, the density of the

LRR portions on the sides of the cage is clear, whereas that of the

NACHT portions on the top and bottom surfaces of the cage is

relatively obscure.

The structure of the NLRP3 protomer in the oligomer

matches well with the previously reported structure of NLRP3

in the inactivated NLRP3-NEK7 structure (36). The LRR-LRR
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and NLRP3-NEK7 interaction interfaces overlap, suggesting that

this cage-like NLRP3 oligomer cannot accommodate NEK7.

Moreover, this suggests that the cage-like NLRP3 oligomer is

reorganized when NEK7 binds to and activates NLRP3.

Furthermore, it has been shown that adding NEK7 to the

NLRP3 oligomer partially dissociates the oligomer (36). NEK7

is a centrosomal kinase that mainly localizes to the microtubule-

organizing center (60, 61), where NLRP3 does not encounter

NEK7 in resting cells, suggesting that spatial isolation is one of

the mechanisms preventing NLRP3 from being unintentionally

activated (25).
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Although the density of PYD was not clearly identified in the

cage-like oligomeric structure, it is likely that PYD contributes to

the formation of this cage-like oligomer, as it does not form

when PYD is deleted (23, 25). Moreover, the PYD-deleted form

of human NLRP3 forms a hexamer, while intact human NLRP3

forms a cage-like decamer (29, 59). The cage-like NLRP3

oligomers did not induce downstream ASC filament formation

(25), suggesting that the PYDs in the oligomers were confined or

spatially constrained within the cage, thereby inhibiting filament

formation (23–25). This has been proposed as one of the

mechanisms limiting NLRP3 activation.
B

A

FIGURE 3

Cage-shaped inactive oligomer of NLRP3. Top and side views of the structure of (A) full-length mouse NLRP3 dodecamer (PDB 7VTQ) (23) and
(B) Human NLRP3 decamer (PDB 7PZC) (24). Each protomer is shown in a different color. The LRR-mediated oligomer interfaces are indicated.
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The cage-like NLRP3 oligomer has been shown to have an

affinity for membranes (23, 25). Oligomers of NLRP3 have been

detected in membrane-extracted fractions from HEK293T cells

overexpressing NLRP3 or from immortalized bone marrow-

derived macrophages that express NLRP3 endogenously

by LPS stimulation (25). Lipid strip assay results have

shown that NLRP3 has an affinity for acidic lipids such as

phosphatidylinositides, phosphatidic acid, phosphatidyl serine,

and cardiolipin (23, 25). This corresponds well with the

localization of NLRP3 to acidic lipids in the trans-Golgi

network (TGN) (62). Furthermore, thorough functional assay

results indicated that the cage-like NLRP3 oligomer is essential

for TGN dispersion and NLRP3 activation (25).

In summary, the following mechanism has been proposed

(23–25): NLRP3 is localized as a cage-like oligomer on the TGN

and mitochondrial membranes in the resting state, where its

activation is inhibited by the confinement or structural

restriction of PYD. NLRP3 is then activated by activation

signals such as due to nigericin, which induces a

conformational change to form an activated oligomer.
NLRP3 inhibitor

The cryo-EM structures of the artificial hexamer of human

NLRP3 (PYD-deficient), full-length mouse NLRP3 dodecamer

(23), and full-length human NLRP3 decamer (24) as well as the

crystal structure of the NACHT domain of human NLRP3 (26)

have been determined in the presence of the NLRP3 inhibitor

MCC950 or its analogs (63–66). This revealed the inhibitor

binding mode and the mechanism of inhibition of NLRP3

activation (Figure 4). The inhibitor binds to the bottom of the

cavity in the NACHT domain. This cavity is composed of all the

domains and subdomains of NLRP3. Although the inhibitor

binds spatially close to the ADP binding site, the binding sites

are separated by an interaction between NBD, HD1, and WHD,

allowing the inhibitor to access NLRP3 from the NBD-HD2-

LRR side, whereas ADP accesses NLRP3 from the opposite side.

The closed conformation of NACHT domains is generally

characterized by tight packing between NACHT subdomains

via ADP binding (16, 29, 30, 36). Like ADP, the inhibitor binds

to NLRP3 and mediates its interaction with its subdomain as

well as with LRR. This suggests that inhibitors stabilize the

closed conformation of the NACHT domain of NLRP3, thereby

preventing the NACHT domain from changing to an open

conformation and being activated (23, 24, 26).
NLRP1

Human-NLRP1 is an NLR with an atypical domain

configuration with PYD, NACHT, LRR, a function to find

domain (FIIND), and CARD domains from the N-terminal to
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the C-terminal side (Figure 5A) (67, 68). FIIND is further

divided into ZU5 (found in ZO-1 and UNC5) and UPA

(found in UNC5, PIDD, and ankyrins) subdomains.

Autoproteolysis between these two subdomains is important

for NLRP1 activation (69, 70). Gain-of-function mutations in

NLRP1 are known to cause inflammatory diseases, particularly

in the skin (67, 71). NLRs generally signal through their N-

terminal PYD or CARD domains, but previous studies have

shown that the C-terminal CARD domain is responsible for

signaling in NLRP1 (69). The trigger for the activation of NLRP1

has been unknown for many years. However, recently, it was

shown that the activation is triggered by the cleavage of human

NLRP1 via the enteroviral 3C protease at the linker between

PYD and NACHT (Q130-G131) (Figure 5A) (72, 73). The

resulting N-terminal glycine activates the N-glycine-mediated

degradation pathway, which degrades the autoinhibitory

NACHT-LRR domain and releases a C-terminal fragment

(UPA-CARD) to activate NLRP1 (74–76). The CARD domain

of the free C-terminal fragment forms filaments, through which

ASC or procaspase-1 is recruited to form the inflammasome (77,

78). Similarly, mouse NLRP1B is cleaved near its N-terminal side

by bacterial lethal toxin proteases, resulting in the initiation of

N-terminal degradation and release of the C-terminal activating

fragment (79–81). In addition, ubiquitination of NLRP1B by

bacterial pathogen Shigella flexneri IpaH7.8 E3 ubiquitin ligase

has shown to activate NLRP1B (75). Dipeptidyl peptidase (DPP)

8 and DPP9 are cytoplasmic dipeptidyl peptidases that bind

directly to NLRP1 and inhibit its activation. Inhibition of NLRP1

by DPP8/DPP9 is counteracted by DPP8/DPP9 inhibitors;

DPP8/DPP9 inhibitors activate NLRP1 (74, 82–85).

Furthermore, human NLRP1 has been shown to be activated

by recognition of virus-derived double-stranded RNA

(dsRNA) (86).

Regarding the structural biology of NLRP1, the structure of

the region containing the central NACHT-LRR domain has not

yet been elucidated. However, cryo-EM analysis has recently

revealed a mechanism by which the C-terminal fragment

released by the N-terminal degradation is repressed by DPP9

(Figure 5B) (27, 28). A ternary complex consisting of one

molecule of full-length NLRP1 (NLRP1A) and one molecule of

the C-terminal fragment of NLRP1 (NLRP1B) with one molecule

of DPP9 was elucidated. The complex contained full-length

NLRP1A, but only DPP9, the FIIND domain of NLRP1A (ZU5

and UPA), and the UPA portion of NLRP1B were resolved by

cryo-EM analysis; other portions were not observed in the cryo-

EM map. A peptide of approximately 10 residues on the N-

terminal side of NLRP1B, generated by the auto-cleavage of the

FIIND domain, was inserted into the substrate recognition

pocket of DPP9. Thus, inhibitors of DPP9 that bind to this

pocket competitively drive out NLRP1B, allowing the C-terminal

fragment to escape capture by DPP9 and become active. In the

complex structure, interactions between ZU5 of NLRP1A and

DPP9, UPA of NLRP1B and DPP9, as well as UPAs of NLRP1A
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and NLRP1B were identified. It has been shown that mutations

in the first two parts cause constitutive activation of NLRP1,

while mutations in the latter inhibits NLRP1 activation. This

suggests that not only the C-terminal fragment of NLRP1B,

which binds to the substrate recognition pocket of DPP9, but

also the ZU5 domain of full-length NLRP1A is important for the

inhibition of activation of the C-terminal fragment of NLRP1B
Frontiers in Immunology 08
by DPP9. In other words, when a small amount of the C-

terminal fragment is unintentionally generated, the presence of

intact NLRP1 provides a checkpoint to prevent unintended

activation of NLRP1 by the DPP9 inhibitory mechanism

(27, 28). However, increased production of the C-terminal

fragment of NLRP1, such as during viral infection, is thought

to decrease intact NLRP1, rendering this DPP9 checkpoint
FIGURE 4

Structural basis of NLRP3 inhibitor binding. Protomer structure of the human NLRP3 (PYD deleted) hexamer (PDB 7VTP) (23) with bound
molecules of the ADP and NLRP3 inhibitor, MCC950, is illustrated as space filling representations. Ribbon representation (top left) and surface
representations from three different views (top right, bottom left, and bottom right) are demonstrated.
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dysfunctional, resulting in the release of the C-terminal

fragment, which in turn leads to NLRP1 activation.

However, the mechanism of NLRP1 activation remains

unclear. In other NLRs, oligomerization via the NACHT-LRR

portion causes spatial proximity between the signaling domains,

which is thought to trigger activation (17, 18). The NACHT-LRR

portion of NLRP1 acts as a domain that inhibits the release of the

C-terminal fragment in the functional degradation mechanism

(75, 76) described above. Moreover, the NACHT-LRR portion of

NLRP1 is involved in dsRNA recognition during NLRP1

activation by a recently reported virus-derived dsRNA (86).
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Further studies are required to elucidate the precise role of the

NACHT-LRR portion of NLRP1.
NOD2

NOD2 is a member of the NLRC family, and its mutations are

closely associated with inflammatory diseases such as Crohn’s

disease, Blau syndrome, and early-onset sarcoidosis (87, 88),

requiring further functional explanation based on its structural

biology. It has two CARD domains on its N-terminal side as
B

A

FIGURE 5

Mechanism underlying NLRP1 activation and DPP9-mediated suppression of NLRP1 activation. (A) NLRP1 activation mechanism. The domains
are indicated in various colors and are correspondingly represented in Figure 5B. (B) Structure of the DPP9-NLRP1 complex (PDB 6X6A) (28). In
the structure, the ZU5-UPA region from intact NLRP1 (denoted as NLRP1A) and UPA portion of the C-terminal fragment of NLRP1 (denoted as
NLRP1B) bound to a DPP9 molecule are indicated. The schematic of the complex is represented in the right panel.
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signaling domains (Figure 1A). NOD2 is believed to be activated by

muramyl dipeptide (MDP) from the bacterial cell wall (89, 90). In

addition, diverse stimuli, including Salmonella typhimurium

effector protein SipA and SopE have been identified to activate

NOD2 (91, 92). Upon activation, NOD2 oligomerizes to bring its

CARD domains into proximity, recruiting downstream RIPK2

through CARD-CARD interaction, and ultimately activating

nuclear factor-kB and inducing an inflammatory response (89, 90).

To date, the crystal structure of the ADP-bound, inactivated

form of NOD2 lacking the CARD domain has been determined

(Figure 1B) (29). Similar to the inactivated forms of NLRC4 (16)

and NLRP3 (36) (Figure 1B), the NACHT domain maintains a

closed structure by binding ADP. Mutations that disrupt the

interactions between NACHT subdomains increase NOD2

activation, indicating that the interactions between these

subdomains are important in maintaining the inactivated

conformation (29). The MDP-binding site inferred from

previous mutation experiments (93) was located on the

concave side of the LRR (29). Mutations in the residues at this

site have been shown to decrease the MDP responsiveness of

NOD2. It is thought that the binding of MDP to this site induces

a conformational change that results in oligomer formation;

however, the details have not been yet clarified. Disease-

associated mutations are distributed throughout NOD2.

Among these, gain-of-function mutations are particularly

prevalent at residues located at the interface between the

NACHT subdomains. Few studies reported that NOD2

functions by binding to the membrane (94), and some disease-

associated mutations are located on positively charged surface

residues of HD2, suggesting that NOD2 may bind to the

membrane at this site (29).
NLRP9

NLRP9, a member of the NLRP family, together with DExH

box RNA helicase (DHX) 9, recognizes rotavirus RNA in

intestinal epithelial cells to form inflammasomes and is

involved in resistance to rotavirus infection (95). Recently, the

crystal and cryo-EM structures of an ADP-bound inactivated

form of NLRP9 lacking the PYD domain have been reported

(Figure 1B) (30), and both structures are nearly identical. ADP-

bound NLRP9, like other inactive forms of NLRs (16, 29, 36), has

a closed NACHT domain. Approximately 10 residues on the C-

terminal side of NLRP9 have been found to fold back from the

tip of LRR to the concave side of LRR, forming an extensive

interaction with the concave side of LRR. As discussed, the

concave surface of the LRR of each NLR has a distinctive

function (23–25, 29, 36, 96). Moreover, it has been speculated

that this region of NLRP9 may also play an important role in

interactions with other proteins and oligomer formation.

However, most mechanisms remain unclear, including the

mechanism of inflammasome activation by NLRP9 and the
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recognition of virus-derived RNA in cooperation with

DHX9 (95).
NLRP6

NLRP6 is a member of the NLRP family and, as with NLRP9,

plays an important role in immune responses in intestinal epithelial

cells (97, 98). Similar to NLRP9, it cooperates with DHX15, an

RNA helicase, to bind to the RNA introduced by enteric viruses and

induce interferon production through MAVS (98). It is also known

to sense microbiota-associated metabolites and form ASC-

dependent inflammasomes (97). For NLRP6, the structures of the

PYD domain and its filament structure are known (99). However,

the structure of the remaining NACHT-LRR portion remains

unclear. Recently, it has become clear that liquid-liquid phase

separation (LLPS), which has attracted much attention recently

because of its involvement in various biological phenomena, plays

an important role in the activation of NLRP6 (100). In vitro and

intracellular experiments indicate that dsRNA induces LLPS

formation of NLRP6 and that this LLPS formation is important

for the activation of the NLRP6 inflammasome. The adaptor

molecule ASC solidifies the LLPS of NLRP6 and activates the

inflammasome. The poly-lysine sequence in the NACHT domain

of NLRP6 has been shown to be important for LLPS formation.

LLPS-mediated NLRP6 activation is a novel NLR inflammasome

activation mechanism, and whether similar mechanisms exist for

other NLRs must be further investigated in the future.
Concluding remark

The past decade has provided a better understanding of the

activation mechanisms of NLRs based on structural biology

studies. The mechanism of ring-shaped oligomers as a starting

point for downstream adaptor signaling, as evidenced

structurally in NLRC4 and postulated in NLRP3, is now clear.

However, there is little structural evidence regarding the

activation mechanism of NLRs. For instance, how ATPase

activities of NLR are involved in the activation, how the

conformational change leading to the oligomerization is

triggered, and further studies are essential to clarify the

activation mechanisms of NLRs. In contrast, the mechanism

by which the NACHT-LRR portion of NLRP1 is degraded and

that by which the released C-terminal fragment serves as a

scaffold for downstream adaptor molecules have been

elucidated. Moreover, the mechanism by which NLRP6

condensed by LLPS serves as a scaffold for downstream

adaptor molecules has also been revealed. Although these

activation mechanisms promote recruitment of downstream

adaptor molecules by increasing the local concentration of

signaling domains, diverse NLR activation mechanisms are

still being uncovered. NLRs are involved in a variety of
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diseases, and their detailed activation mechanisms based on

structural biology should be further studied to aid in developing

therapeutic agents.
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