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Abstract 

Background  Allergic diseases are systemic chronic inflammatory diseases associated with multiorgan dam-
age and complex pathogenesis. Several studies have revealed the association of gene expression abnormalities 
with the development of allergic diseases, but the biomedical field still lacks a public platform for comprehensive 
analysis and visualization of transcriptomic data of allergic diseases.

Objective  The aim of the study is to provide a comprehensive web tool for multiple analysis in allergic diseases.

Methods  We retrieved and downloaded human and mouse gene expression profile data associated with allergic 
diseases from the Gene Expression Omnibus (GEO) database and standardized the data uniformly. We used gene sets 
obtained from the MSigDB database for pathway enrichment analysis and multiple immune infiltration algorithms 
for the estimation of immune cell proportion. The basic construction of the web pages was based on the Shiny frame-
work. Additionally, more convenient features were added to the server to improve the efficiency of the web pages, 
such as jQuery plugins and a comment box to collect user feedback.

Results  We developed CTPAD, an interactive R Shiny application that integrates public databases and multiple 
algorithms to explore allergic disease-related datasets and implement rich transcriptomic visualization capabilities, 
including gene expression analysis, pathway enrichment analysis, immune infiltration analysis, correlation analysis, 
and single-cell RNA sequencing analysis. All functional modules offer customization options and can be downloaded 
in PDF format with high-resolution images.

Conclusions  CTPAD largely facilitates the work of researchers without bioinformatics background to enable them 
to better explore the transcriptomic features associated with allergic diseases. CTPAD is available at https://​smuon​co.​
shiny​apps.​io/​CTPAD/.
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Introduction
Allergic diseases represent a group of conditions caused 
by hypersensitivity of the immune system to allergens 
present in the environment [1]. These diseases, which are 
mediated by anti-immunoglobulin E, include bronchial 
asthma (AS), food allergy (FA), drug allergy (DA), atopic 
dermatitis (AD), allergic rhinitis (AR), conjunctivitis and 
chronic rhinosinusitis with or without nasal polyposis 
[2–4]. Over the past few decades, with the acceleration 
of industrialization, increases in environmental pollution, 
changes in lifestyle and dietary structure, and continuous 
increases in allergen exposure, allergy diseases have come 
to affect 30–40% of the global population and impose a 
major public health burden worldwide [5–8], with an 
estimated 300 million patients with AS, 400 million 
patients with AR, 200 million to 250 million patients with 
FA, 150 million patients with DA and numerous patients 
with allergic conjunctivitis, angioneurotic oedema, urti-
caria, eczema, eosinophilic diseases, insect allergy, and 
anaphylactic shock. Concomitantly, allergy is listed by the 
World Health Organization as one of the 6 major chronic 
diseases of the twenty-first century [9].

High-throughput sequencing technologies can help 
reveal genetic and epigenetic influences on allergic dis-
eases and thus reveal potential allergenic genes. A meta-
analysis of allergic diseases showed that thousands of 
genes are associated with allergic diseases, and some of 
them are also associated with processes such as immune 
inflammation, cytokines, and viral infections [10]. More-
over, high-throughput sequencing technologies can be 
used to discover new biomarkers to enable more accurate 
diagnoses of allergic diseases. One study identified some 
genes associated with respiratory diseases, among which 
HLA-DQ and SCGB1A1 were the most highly associated 
with asthma; thus, these genes could be used as new dis-
ease markers to diagnose asthma and other respiratory 
diseases [11].

An increasing number of studies based on transcrip-
tomic datasets have revealed the association between 
genetic susceptibility and allergic diseases [12–15]. 
However, most transcriptomic databases only provide 
processed data within their respective studies; no data 
integration in these databases has been carried out in 
an app, and no batch-corrected values are provided. To 
obtain mechanistic insights into how genes may modify 
biological pathways relevant to a given trait under con-
sideration, public gene expression data from resources 
such as the Gene Expression Omnibus (GEO) are a pri-
mary resource for answering the above questions. Many 
experimental researchers do not have the expertise or 
dedicated computational resources necessary to obtain 
and integrate gene expression microarray, RNA-Sequenc-
ing results, and so on. Even researchers who do have such 

resources may repeat similar analytical tasks every time a 
new association study is performed.

Integrated atlases for select species, tissues, or diseases 
related to allergies are highly useful as consensus refer-
ence maps and for enhancing downstream analyses. For 
instance, in oncology research, interactive databases 
such as cBioPortal [16], GEPIA2 [17], OncoDB [18], and 
UCSCXenaShiny [19] have become invaluable tools for 
analyzing cancer multiomic data. Since 2013, approxi-
mately 16,000 publications have cited these resources, 
leveraging their capabilities to validate research findings. 
These web applications facilitate a wide range of analy-
ses, from routine transcriptomic data analysis—including 
differential gene expression, pathway enrichment, cor-
relation, and Kaplan–Meier survival analyses—to more 
advanced techniques such as single-cell RNA sequenc-
ing, methylomic, and genomic data analyses. Moreover, 
these platforms excel in delivering high-quality visualiza-
tions, making them essential for both basic and transla-
tional cancer research. However, in the realm of allergic 
diseases, a comparable comprehensive platform is cur-
rently absent. Therefore, there is an urgent imperative to 
develop a robust platform dedicated to exploring gene-
disease associations specifically tailored for immune 
alterations in allergic disease.

To fill this gap, we aimed to collect data from the GEO 
database on allergic diseases. Differentially expressed 
genes, pathway enrichment, immune infiltration, the 
correlation between genes and pathways, and single-cell 
RNA sequencing data analysis were used to explore the 
relationship between genes and disease. Hopefully, our 
study provides valuable data resources and a freely avail-
able platform to investigate gene expression and immune 
trajectory across allergic diseases that can contribute to 
elucidating the immune-related mechanisms of allergic 
diseases and that can strengthen the clinical management 
of these diseases.

Materials and methods
Data preprocessing
We collected and downloaded 46 transcriptomic data-
sets (both single cell sequencing and bulk sequencing) 
related to allergic diseases from the GEO database [20] 
(Table S1). We performed a secondary manual screening 
and review of the included samples. We included only 
baseline data for replicate trials at different time points 
or drug concentrations. All samples were collected from 
untreated patients. Cell lines and data that involved flow 
cytometry sorting were excluded. A total of 1889 tis-
sue samples and peripheral blood samples were eventu-
ally included in this study. The included transcriptome 
data were annotated with gene symbols, normalized, 
and log2 transformed. Among them, microarray data 
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were normalized using the quantile method from the 
limma package (version 3.48.3) [21]. For high-through-
put sequencing data with raw count data, normalization 
was performed using the TMM method from the edgeR 
package (version 3.34.0) [22–24]. For high-throughput 
sequencing datasets lacking raw count data, NCBI-gen-
erated RNA-seq count data were utilized and normalized 
using the TMM- edgeR method, as previously described.

Data analysis
In the differential expression analysis, the limma package 
[21] was used for differential analysis of the expression 
array for gene microarray datasets, while the edgeR pack-
age [22–24] was used for differential analysis of high-
throughput sequencing datasets.

For the enrichment analysis, we first collected 13,661 
gene sets from the MSigDB database [25] for humans 
and 12,297 gene sets for mice (Table S2). Among them, 
the human gene set includes 50 hallmark gene sets, 3050 
canonical pathway (CP) gene sets, and 10,561 Gene 
Ontology (GO) gene sets; the mouse gene set includes 
50 MH gene sets, 1687 CP gene sets and 10,560 GO gene 
sets. For all transcriptome data, we performed gene set 
enrichment analysis (GSEA) pathway enrichment analy-
sis of the differential analysis results using the cluster-
Profiler package (version 4.0.5) [26]. In addition, the 
normalized transcriptome data were subjected to single-
sample gene set enrichment analysis (ssGSEA) with the 
GSVA package (version 1.40.1) [27].

For immune infiltration analysis, we used the immune-
deconv package (version 2.1.3) [28, 29] to assess the level 
of immune cell infiltration in samples. The analysis uti-
lized several algorithms, including CIBERSORT [30], 
MCPCounter (human) [31], mMCPCounter (mouse) 
[32], quanTIseq [33], xCell [34] and EPIC [35]. Signifi-
cance P values were calculated by the Wilcoxon rank sum 
test.

For correlation analysis, gene-to-gene, gene-to-path-
way, and pathway-to-pathway correlations were per-
formed using normalized transcriptomic data with 
ssGSEA scores. Pearson and Spearman correlation analy-
ses were used to calculate correlations between variables.

For single-cell RNA sequencing analysis, 8 single-cell 
RNA-seq datasets were analyzed using the Seurat pack-
age (version 4.4.0) [36]. Cells with UMI counts greater 
than 2500 or less than 200, and mitochondrial percent-
ages exceeding 5% were filtered out. The remaining 
data were log-transformed using the “NormalizeData” 
function and assessed for variability using the “Find-
VariableFeatures” function with the “vst” method, iden-
tifying 2000 highly variable features per dataset. Principal 
component analysis (PCA) clustering was conducted 
using the “RunPCA” function, followed by non-linear 

dimensionality reduction using Uniform Manifold 
Approximation and Projection (UMAP) for improved 
data visualization. Cellular markers were identified 
using the “FindAllMarkers” function, and differentially 
expressed genes (DEGs) were filtered based on log2 fold 
change (> 1). Cell types were manually annotated based 
on DEGs expressed in different cells.

Data visualization
For visualization of the analysis results, we used the 
ggplot2 package (version 3.5.0) [37] to generate vol-
cano plots for differential analysis, stacked histograms 
for immune infiltration, box plots for immune infiltra-
tion, and scatter diagrams for correlation analysis. Heat-
map visualization for the differential expression analysis, 
enrichment analysis, and immune infiltration analysis 
was implemented with the ComplexHeatmap package 
(version 2.8.0) [38, 39]. Dot plots and ridge plots for 
enrichment analysis were generated with the enrichplot 
package (version 1.12.2) [40], and GSEA maps were gen-
erated with the GeseaVis package (version 0.1.0) [41]. 
Correlation heatmaps were plotted using the corrplot 
package (version 0.92) [42]. Single-cell sequencing data 
were visualized using the “FeaturePlot” function from the 
Seurat package.

Shiny web application construction
CTPAD was built with the shiny package (version 1.8.1.1) 
[43]. No user login is required to access any of the func-
tional modules of the CTPAD. High-resolution PDF 
image download capability is provided for all analyti-
cal visualization results of CTPAD. The data tables cor-
responding to the analysis results are generated by DT 
package (version 0.33) [44], allowing users to search, sort, 
and download the data (in CSV format). CTPAD is availa-
ble at https://​smuon​co.​shiny​apps.​io/​CTPAD/ (alternative 
URL: http://​robinl-​lab.​com/​CTPAD/), with the corre-
sponding code accessible in the public GitHub repository 
(https://​github.​com/​ZJYY-​ONCOL​OGY/​CTPAD).

Nasal sample collection
This study was approved by the Institutional Review 
Boards of Zhujiang Hospital, Southern Medical Univer-
sity, China. All participants provided informed consent in 
accordance with the Declaration of Helsinki. Biopsy spec-
imens of the inferior turbinate (IT) were obtained from 
control individuals and AR patients with septal deviation 
during septal plastic surgery. AR was diagnosed accord-
ing to the Initiative on Allergic Rhinitis and Its Impact 
on Asthma guidelines [45], based on either the skin prick 
test (Alutard, ALK-Abellórd, Denmark) or serum total 
immunoglobulin E detected using an allergy screen test 
(LG Chem, South Korea). All recruited AR patients were 
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free of rhinosinusitis, lower respiratory tract infections, 
and self-reported or physician-diagnosed asthma and 
smoking.

After excision, all samples were washed with saline 
solution to remove surface bloodstains and processed 
within 15  min as follows: Samples designated for histo-
logical analysis were fixed in 4% paraformaldehyde tissue 
fixative (Biosharp, BL539A) for 24 h. Following fixation, 
samples were embedded in paraffin and continuously 
sectioned at 5  μm thickness. The nasal tissue sections 
were then placed on a slide warmer and baked at 60  °C 
for over 1 h for subsequent analysis.

Immunohistochemistry (IHC)
Paraffin sections were deparaffinized by immersing 
them in xylene for 20  min each, followed by a series of 
ethanol and distilled water washes. Antigen retrieval was 
performed by boiling the sections in antigen retrieval 
solution, followed by cooling to room temperature and 
washing with phosphate-buffered saline (PBS). To block 
endogenous peroxidase activity, tissue sections were 
circled with an IHC hydrophobic barrier pen, treated 
with hydrogen peroxide blocking reagent, incubated for 
20 min, and washed with PBS.

To identify and localize the protein expression of 
MUC2, SLC7A1 (CAT-1), and BCL2L15, IHC stain-
ing was utilized. Tissue sections were incubated with 
primary antibodies overnight at 4  °C, then washed with 
PBS. This was followed by secondary antibody incuba-
tion using horseradish peroxidase (HRP) polymer for 
20  min at room temperature and another PBS wash. 
The 3,3ʹ-diaminobenzidine (DAB) working solution was 
prepared by mixing DAB buffer with DAB solution, and 
DAB staining was performed for 1–5  min, followed by 
rinsing with running water. Sections were then coun-
terstained with hematoxylin, rinsed, and dehydrated 
through a series of ethanol and xylene washes. Finally, the 
sections were mounted with neutral balsam.

The primary antibodies used were as follows: MUC2 
polyclonal antibody (1:2000, 27675-1-AP, Proteintech), 
SLC7A1/CAT-1 polyclonal antibody (1:200, 14195-1-AP, 
Proteintech), and BCL2L15 polyclonal antibody (1:250, 
23975-1-AP, Proteintech).

IHC image quantification analysis
IHC images were captured using a Leica DM6 micro-
scope and analyzed with ImageJ software (version 1.54j). 
The study included both control and AR groups, with 
three IHC images of the inferior nasal concha mucosa 
randomly selected from each group. These images con-
sistently demonstrated the integrity of the nasal mucosal 
epithelium.

Quantitative analysis involved selecting three ran-
dom fields of view from each image to measure the 
percentage of positively stained area. ImageJ software 
processed the images, specifically using color decon-
volution to analyze DAB-stained regions. A uniform 
measurement threshold ensured consistency and com-
parability across all images. The percentage of positive 
area was calculated by dividing the stained area by the 
total area of a fixed rectangular frame. Statistical sig-
nificance was assessed using the Wilcoxon rank sum 
test.

Results
Overview
CTPAD is a shiny web tool for the study of allergic dis-
eases. The web tool incorporates 46 allergic disease-
related datasets (both single cell sequencing and bulk 
sequencing) from the GEO database, containing 2 spe-
cies, 9 diseases, and 1,889 samples (Fig. 1). The CTPAD 
home page provides a flowchart for the web tool and 
sample visualizations of each functional module for a 
quick overview of the main functions of the web page. 
All visualizations are provided with a download button 
for easy access to high-resolution vector images. The 
Data page integrates detailed descriptions of the datasets 
included in CTPAD. Users can obtain detailed answers 
to common questions they may encounter when using 
CTPAD on the about page or can communicate with the 
authors according to the contact information provided.

Differential expression analysis module
The Differential Expression Analysis module allows 
users to access information on the differential expres-
sion of genes in the dataset and to explore statistically 
significant up- and downregulated genes. For gene dif-
ferential expression analysis results, two visualizations 
are provided: the volcano plot (Fig. 2A) and the heatmap 
(Fig. 2B). In the Volcano Plot tab, users can first select a 
dataset of interest by searching for disease type or data-
set name. The default screening criteria for differen-
tially expressed genes were a p value less than 0.05 and 
|log2(FoldChange)| over 2. Additionally, the names of 10 
significantly upregulated and 10 significantly downregu-
lated differentially expressed genes are clearly labelled on 
the volcano plot. The above threshold criteria and gene 
name annotations can be freely adjusted according to 
user requirements. Of note, to enhance advanced visu-
alization capabilities and better meet user needs, CTPAD 
supports customizable color patterns and gene selection 
on volcano plots. In the Heatmap tab, after determin-
ing the dataset of interest and differential gene screen-
ing criteria, users can choose between two heatmap 
visualization options: plotting the top 10/top 5 up- and 
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downregulated differentially expressed genes (default) or 
searching and selecting the gene symbol of interest for 
plotting.

Enrichment analysis module
The enrichment analysis module provides two com-
mon pathway enrichment analysis algorithms, GSEA 

Fig. 1  Workflow diagram presenting data collection, preprocessing, and web tool construction for the CTPAD web tool (Created with BioRender.
com)

Fig. 2  Volcano plot and heatmap visualization results based on DEG analysis results in the Expression Analysis module. A Volcano plot showing 
the names of significantly up- and downregulated differentially expressed genes in the GSE5667 dataset. B Heatmap depicting gene expression 
between atopic dermatitis (AD) and controls, with red representing upregulation and green representing downregulation, where p values were 
calculated by the t test built into the limma package. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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and ssGSEA, for users to explore the enrichment status 
of different pathways in the target dataset. Users can 
explore nearly 25,000 human and mouse pathways from 
the MsigDB database. For the GSEA results, three visu-
alizations are provided: point plots (Fig. 3A), ridge plots 
(Fig.  3B), and GSEA plots (Fig.  3C). Notably, CTPAD 
provides rich visualization customization functions. For 
point plots, users can adjust the number of gene sets dis-
played for visualization. In GSEA plots, users can choose 
to annotate the visualization results with the gene sym-
bols that contribute most to the enrichment score and 

can customize the number of gene annotations. For the 
ssGSEA results, users can select the heatmap (Fig.  3D) 
for visualization. The normalized ssGSEA enrichment 
scores, detailed grouping information, and significance 
of pathway enrichment differences are presented on the 
heatmap. Similarly, the number of visualized pathways 
can be adjusted by the user as well.

Immune infiltration module
The Immune Infiltration module provides users with 
five commonly used immune infiltration algorithms to 

Fig. 3  Multiple visualization results of pathway enrichment analysis in the Enrichment Analysis module. A GSEA enrichment results 
between the atopic dermatitis group and the normal group. The scatter diagram shows the top 20 gene sets sorted according to the p-adjusted 
value. B Expression distribution of core enriched genes in the set of CP genes enriched by GSEA between the atopic dermatitis group 
and the normal group. The x-axis is log2-fold of the change in expression of core enriched genes in the enrichment pathway, > 0 indicates 
upregulated expression, and < 0 indicates downregulated expression. C GSEA plot showing the enrichment of the REACTOME_ANTIMICROBIAL_
PEPTIDES pathway in the atopic dermatitis group compared to the normal group. The top 25 genes in the gene set that contributed most 
to the GSEA enrichment score are labelled in the figure. D Differences in ssGSEA enrichment scores between the atopic dermatitis group 
and the normal group; red represents upregulation, and green represents downregulation. p values were calculated by the Wilcoxon test. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001
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explore the infiltration of immune cells in different sub-
groups of the target dataset. Three visualization methods, 
stacked histogram, heatmap, and box plot, are provided 
for users to choose from according to their research 
needs. Among them, the stacked bar chart provides an 
overview of the proportion of different immune cell infil-
trations between the disease and control groups. If users 
want to visualize the significant differences in immune 
infiltration under different groupings, they can choose a 
heatmap and boxplot to visualize the results. Taking the 
GSE148240 dataset as an example, Fig. 4A–C shows the 
corresponding three visualization result plots.

Correlation analysis module
The correlation analysis module allows users to explore 
correlations between genes, between pathways, and 
between genes and pathways. To meet the need for the 
number of variables in different studies, scatter diagrams 
and correlation heatmaps are provided. Among these vis-
ualizations, the scatter diagram supports studies explor-
ing two variables (gene and gene, gene and pathway, 
pathway and pathway), while the correlation heatmap can 
support correlation studies among up to 20 genes. Both 
visualizations provide 3 study groups (disease group only, 
control group only, disease group vs. control group) and 2 
statistical methods of correlation analysis, namely Spear-
man correlation coefficient and Pearson correlation coef-
ficient) for users to flexibly choose from. Users are free 
to search for gene or pathway names of interest in the 
target dataset according to the purpose of the study. For 
example, in the GSE150910 dataset, MUC5B expression 
was previously found to be associated with epithelial cell 
development in patients with chronic allergic pneumonia 
by weighted gene coexpression network analysis [46]. We 
analysed and visualized the correlation between MUC5B 
expression and the GOBP_EPIDERMIS_DEVELOP-
MENT pathway in the disease group of this dataset by 
scatter diagram (Fig. 5A), and this result verified the posi-
tive correlation between the two. For the gene correlation 
heatmap, the user is free to adjust the number of genes 
visualized, and the correlation coefficients and their sig-
nificance are visually and clearly labelled on the graph 
(Fig. 5B).

Single‑cell RNA sequencing analysis module
The single-cell RNA sequencing analysis module in 
CTPAD enables researchers to explore intercellu-
lar heterogeneity, identify molecular markers within 
the transcriptome, and assess pathway activation sta-
tuses at the cellular subpopulation level. This technique 
offers a significant advancement over bulk sequencing, 
which averages gene expression across the entire tissue 
sample, thereby masking the rich diversity of cellular 

subpopulations and the behaviors of individual cells. In 
CTPAD, users have access to powerful visualization tools 
such as cluster plots, feature plots and heatmap, which 
are instrumental in analyzing and interpreting embedded 
scRNA-seq data. Cluster plots (Fig.  6A, B) are essential 
for visualizing the distinct cellular subpopulations within 
a sample. CTPAD employs UMAP for dimensional 
reduction, where distinct colored clusters represent dif-
ferent cell types or states, grouped based on their gene 
expression profiles. Feature plots and Heatmap (Fig. 6C–
E) allow users to investigate the expression levels of spe-
cific genes or pathways across different cell populations 
by utilizing DEGs and ssGSEA scores.

Validation of CTPAD findings via IHC: exploring DEGs 
associated with AR
Using CTPAD, we conducted a comprehensive DEG 
analysis across multiple datasets to investigate gene bio-
markers associated with AR. We included eight datasets 
encompassing human nasal biopsies from both con-
trol and AR patients (GSE19187, GSE43523, GSE44037, 
GSE46171, GSE51392, GSE118243, GSE119136, and 
GSE206149). DEGs were defined as genes with a p-value 
less than 0.05 and an absolute |log2(FoldChange)| greater 
than 1. Our analysis revealed that in 5 out of the 8 human 
AR datasets, three genes (BCL2L15, MUC2, SLC7A1) 
were significantly upregulated in the disease group com-
pared to the normal control group. This observation 
was further validated using IHC on samples from our 
local cohort. Consistent with the CTPAD bioinformatic 
results, BCL2L15 and MUC2 exhibited significantly 
enhanced protein expression in the inferior nasal concha 
mucosa of the AR group (Fig. 7). Therefore, we propose 
that BCL2L15 and MUC2 are potential novel biomarkers 
for allergic rhinitis.

Discussion
CTPAD is the first comprehensive web tool that has been 
developed for the integration of multiple analysis tools 
and interactive analysis in allergic diseases. The data in 
CTPAD include gene expression data from 46 datasets, 
from both single-cell RNA sequencing data and bulk 
RNA sequencing data, from 1889 samples, from mice 
and humans, and from blood and tissue in 9 common 
allergic diseases. CTPAD is a time-saving, free, and intui-
tive tool for tapping the full potential of publicly available 
transcriptomics data, which enables biologists and clini-
cians without any programming experience to visualize 
allergy-related gene expression and immune profiles and 
to perform a diverse range of data analyses.

CTPAD represents a pioneering web tool designed to 
integrate and analyze comprehensive gene expression 
data across diverse allergic diseases. On the one hand, 
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Fig. 4  Multiple visualization results for immune infiltration analysis in the Immune Infiltration module. A Overview of the different immune 
cell infiltration proportions between the BioPM-exposed and control groups. B Heatmap showing the difference in immune infiltration scores 
between the BioPM-exposed and control groups. C Boxplot visualizing the difference in the difference in the percentage of immune cell infiltration. 
p values were calculated by the Wilcoxon test. BioPM: biological particulate matter. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Fig. 5  Two visualizations of correlation analysis in the Correlation Analysis module. A Scatter diagram showing a positive correlation 
between MUC5B mRNA expression and GOBP_EPIDERMIS_DEVELOPMENT pathway ssGSEA score (R = 0.6, p < 0.001). B Correlation heatmap 
showing the results of correlation analysis between the 5 genes; green represents a positive correlation, and purple represents a negative 
correlation. R is the Spearman correlation coefficient. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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we offer users diverse features in terms of disease-related 
allergy, analysis methods, visualization, and customiza-
tion. On the other hand, we identified the functionally 
distinct cell types that comprise the immune response, 
assessing immune infiltration and determining whether 

differences in the composition of immune infiltration 
can improve the development of novel immunothera-
peutic drugs to target these cells. Most importantly, the 
reliability of CTPAD results is further validated through 
bench experiments. In CTPAD, DEG analysis reveals 

Fig. 6  Visualizations of Single-cell RNA Sequencing Analysis Module. A, B Cluster plot displaying distinct cell subtype clusters following UMAP 
dimensionality reduction. Each point represents an individual cell colored according to its assigned cluster identity. C, D Feature plot illustrating 
the expression patterns of genes of interest and pathway activation profiles using the ssGSEA algorithm. E, F Heatmap showing the expression 
levels of genes of interest and pathway activation profiles using the ssGSEA algorithm. ssGSEA: single sample Gene Set Enrichment Analysis; UMAP: 
Uniform Manifold Approximation and Projection
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that three genes (BCL2L15, MUC2, SLC7A1) are sig-
nificantly upregulated at the mRNA level between the 
control group and the AR group. This observation is cor-
roborated at the protein level by IHC staining, which 
shows increased protein expression of BCL2L15 and 
MUC2 in the inferior nasal concha mucosa of the AR 
group. This proposition is partially supported by previ-
ous publications indicating the significant roles of these 
genes in the immune system and inflammation [47–49]. 
Notably, MUC2 encodes a mucin protein, which is a high 
molecular weight glycoprotein and a major component 
of mucus [50]. Excessive secretion of mucus is an impor-
tant hallmark of many allergic diseases, ranging from AR 
to asthma. Hence, CTPAD holds significant promise for 
identifying novel biomarkers for allergic diseases and 
robustly validating these findings through bioinformatic 
analysis, thereby bridging the gap between computational 
predictions and experimental validation.

Nevertheless, our study is subject to several limita-
tions. Firstly, we acknowledge potential biases or chal-
lenges associated with data retrieval and preprocessing. 
Despite conducting thorough manual screening in four 
rounds and employing double-check procedures, the 
possibility of missing datasets remains. Also, our inclu-
sion criteria are constrained to datasets available until 
May 2024, thereby restricting our analysis to a specific 
timeframe. To mitigate this issue, we have implemented 

an alternative module on the CTPAD website, enabling 
users to submit dataset requests via a comment box. 
Another limitation pertains to the current inability of our 
platform to perform integrated analysis of multiple data-
sets or to accommodate user-uploaded data. To coun-
teract these limitations, we are committed to regularly 
updating the CTPAD website every 3–4  months with 
newly acquired datasets and functions, ensuring ongoing 
relevance and comprehensiveness. We intend for CTPAD 
to be a comprehensive and high-quality repository for 
processed gene data.

To better serve the allergic disease research commu-
nity, we will not only continuously update the allergic 
disease-related datasets as new studies are published but 
also develop new analytical features for further explora-
tion of the available big genomic data. Our next plan is 
to obtain public multiomics data on allergic diseases and 
build an enhanced database based on comprehensive 
genome-level data for the effective visualization and anal-
ysis of all human genes in the future. As the functions of 
more genes are revealed in specific diseases, CTPAD will 
become a useful platform for both bench scientists and 
computational biologists and will contribute to clinical 
and translational studies.
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