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Abstract 

Objectives:  Three-dimensional (3D) printing technology is an emerging manufacturing process for many orthodon-
tic appliances, and the aim of this study was to evaluate the mechanical properties of resin-based materials as alterna-
tives for the in-house preparation of orthodontic brackets.

Material and Methods:  Two types of 3D printed resins used for temporary (T) and permanent (P) crown fabrica-
tion were included in this study. Ten blocks from each resin were manufactured by a 3D printer and, after embedding 
them in acrylic resin, the samples were subjected to metallographic grinding and polishing, followed by instrumented 
indentation testing (IIT). Martens hardness (HM), indentation modulus (EIT), and elastic index (ηIT) were determined 
with a Vickers indenter recording force-indentation depth curves from each specimen. After calculating descriptive 
statistics, differences between material types were investigated with Wilcoxon rank sum test accounting for clustering 
of measurements within specimens at alpha = 5%.

Results:  No statistically significant differences in the mechanical properties of the two tested materials were seen: 
HM: median 279 N/mm2 (interquartile range [IQR] 275–287 N/mm2) for T and median 279 N/mm2 (IQR 270–285 N/
mm2) for P (P value = 0.63); EIT: median 5548 MPa (IQR 5425–5834 MPa) for T and median 5644 (IQR 5420–5850 MPa) 
for P (P value = 0.84); ηIT: median 47.1% (46.0–47.7%) for T and median 46.0% (IQR 45.4–47.8%) for P (P value = 0.24).

Conclusions:  Under the limitations of this study, it may be concluded that the mechanical properties of the two 3D 
printed resins tested are equal, and thus, no differences in their clinical performance are expected.
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Introduction
Aesthetic brackets present an alternative to the clas-
sic metallic fixed appliances, which is highly desirable 
among adults and even some adolescent patients. How-
ever, their optical superiority over the metallic brackets 
does not necessarily directly translate to their mechani-
cal properties as well. Ceramic brackets, for instance, 

have increased brittleness that can result to wing frac-
tures [1, 2], impacts of the archwire surface on their 
surface [3], as well as wear of antagonist teeth [4]. Fur-
thermore, their inability to plastically deform is associ-
ated with difficulties during the debonding process and 
with increased risk of damaging tooth enamel [5]. On 
the other hand, plastic brackets are soft and compliant, 
undergo intra-oral plasticization, and offer minimal 
resistance to deformation [6–8]. As a result, these lead 
to reduced material longevity, impaired tooth move-
ment accuracy, and troublesome torque implementa-
tion [7, 9, 10], which result in a questionable efficacy of 
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the orthodontic therapy. Although controversial, both 
types seem to impede sliding mechanics due to fric-
tion enhancement [11–13]. Taking into account these 
findings, it becomes clear that material selection is of 
paramount importance for the clinical performance of 
aesthetic brackets.

Apart from the raw material per se, the manufactur-
ing method can also influence considerably the mate-
rial properties, since it can lead to the presence of 
material imperfections or defects, generation of stress 
concentration areas, or partial polymerization—all of 
which may have detrimental consequences on the end 
product’s strength, modulus of elasticity, and hardness. 
Additive technology in particular has become a highly 
popular solution for the construction of orthodontic 
appliances as it reduces costs, increases efficiency, and 
offers many customization possibilities [14, 15]. The 
technique is based on 3D models stored in a computer 
and utilizes a printer for fabricating the appliance in an 
incremental fashion layer by layer. Some first attempts 
to produce ceramic brackets [16] or resin-based ones 
have been reported [14, 17], but in general the selection 
of an appropriate new material for printing aesthetic 
brackets that bypass the inherent problems of commer-
cially available ones still remains a challenge. Figure  1 
demonstrates a pair prototype bracket manufactured 
from resin by 3D-printed technology.

However, to the best of our knowledge the mechani-
cal properties of the resin-based materials that can be 
used by 3D printing technology for the production of 
orthodontic brackets are still unknown, and thus, the 
aim of this study is to investigate these properties of 
two available resin based materials for this purpose. 
The null hypothesis was that there is no significant dif-
ference between the properties of these two materials.

Materials and methods
Two types of resins used for the 3D printing of tempo-
rary (T) (temporary CB resin, Formlabs, Somerville, 
MA, USA) or permanent (P) (permanent crown resin, 
Formlabs, Somerville, MA, USA) crown fabrication 
comprised our sample. Ten blocks with dimensions 
10 mm × 10 mm × 1.5 mm from each type were designed 
using the computer-aided design software Meshmixer 
(Autodesk, San Rafael, California, USA). The blocks were 
exported from the software and virtually positioned on 
the 3D printer’s (Formlabs 3B, Somerville, Massachu-
setts, USA) platform to be manufactured by it. Printing 
time was approximately 20  min for both samples. After 
printing, the samples were immersed and washed in the 
Formwash machine (Formlabs, Somerville, MA) using 
isopropyl alcohol for 15  min. The samples were then 
cured in the Cure M curing unit (Graphy, Seoul, Korea) 
for 20 min on each side.

The specimens were embedded in acrylic resin (Verso 
Cit-2, Struers, Ballerup, Denmark), ground up to 4000 
grit-size SiC abrasive grinding papers under water cool-
ing, polished with a water-based diamond suspension 
(NapR1 DiaPro, Struers, Ballerup, Denmark) of 1 µm par-
ticle size in a grinding/polishing machine (Dap-V, Stru-
ers, Ballerup, Denmark), and subjected to instrumented 
indentation testing (IIT). Martens hardness (HM), 
indentation modulus (EIT), and elastic index (ηIT) were 
assessed. Testing was conducted in a universal hardness 
testing machine (ZHU0.2/Z2.5, Zwick Roell, Ulm, Ger-
many) with a Vickers indenter at ambient temperature. 
The HM, EIT, and ηIT were acquired from force–indenta-
tion depth curves applying a maximum load of 4.9 N for a 
2 s contact time. Six measurements from each block were 
taken into consideration to determine the specimen’s 
mechanical properties, which were calculated according 

Fig. 1  Prototype resin bracket manufactured by 3D printing technology
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to formulas provided by the international standard 
ISO14577-1 [18].

After checking for normality through visual inspection 
and formally with the Shapiro–Wilk test, descriptive sta-
tistics were calculated including medians and interquar-
tile ranges (IQR). Differences between T and P crown 
materials were checked through Wilcoxon rank sum test 
accounting for clustering of measurements within each 
specimen at alpha = 5%. All analyses were run in R Soft-
ware version 4.0.3 (R Foundation for Statistical Comput-
ing, Vienna, Austria) with an open dataset [19].

Results
Figure  2 shows a selection of force-indentation depth 
curves from both groups. All curves are similar in shape 
and position without any obvious differences. The results 
of all mechanical properties including their statistical 
analysis are presented in Table  1. No statistically sig-
nificant differences between temporary and permanent 
resins were found for HM (medians of 279 and 279  N/
mm2, respectively; P = 0.63), EIT (medians of 5548 and 
5644 MPa, respectively; P = 0.84), or ηIT (medians of 47.1 
and 46.0%, respectively; P = 0.24).

Discussion
Since no significant differences were observed between 
groups, the null hypothesis cannot be rejected, and 
therefore, the scenario of the two materials having similar 

mechanical properties is compatible with the data. The 
materials under investigation underwent IIT testing, 
which provided crucial information about fundamental 
mechanical properties such as their hardness, modulus of 
elasticity, and brittleness (elastic index) [18]. The method 
itself is highly versatile as there is no need for rectangu-
lar or cylindrical specimens and circumvents the clas-
sic measurement of residual indentation and the related 
limitations, providing fully automated and highly reliable 
results [20].

The 3D-printed resins showed mechanical characteris-
tics substantially superior than the commercially availa-
ble plastic brackets. The theoretical Vickers Hardness was 
also calculated for the tested material (35 HV) just for 
comparison purposes with previously published data and 
found almost 2 times higher compared to HV reported 
for plastic brackets (19.6–16.9 HV) [21] In particular, 
hardness which is defined as the resistance to indentation 
and concomitantly is a measure of wear resistance was 
found to be 270 N/mm2 which approaches the hardness 
of stainless steel bracket wings (360 N/mm2) [22]. How-
ever, as with the case of stainless steel brackets a concern 
may arise when the hardness of archwires is considered; 
this may range from 1500 to 2600 MH, depending on the 
alloy used with the nickel-titanium alloys being toward 
the lower side and the stainless steel ones being on the 
high side [22, 23]. As a rule, a mismatch in hardness is 
not desirable since it promotes wear across the path of 
the archwire into the slot. The harder material will leave 
an imprint in the softer and in most cases that is the 
stainless steel or nickel-titanium wire leaving an imprint 
in the plastic brackets. The opposite is happening on the 
other side in ceramic brackets. The clinical significance 
of this finding about hardness may pertain to the fact 
that low hardness wing may impede the movement of 
bracket along the buccal wire segment in case of sliding 
mechanics or complicate the transfer of torque from an 
activated archwire to the bracket, as well as may preclude 
full engagement of the wire to the slot wall and possible 
plastic deformation of the wing [24]. An increased hard-
ness is necessary to facilitate surface integrity and pre-
clude binding of the wire onto the bracket slot walls. This 
problem had been encountered with conventional plastic 
brackets as well as metal injection molding (MIM) metal-
lic brackets. The latter are cast appliances, and as a result, 
the traditional concept of low hardness low modulus 
bracket base to facilitate uneventful debonding and high 
hardness high modulus wings to withstand the forces and 
moments developed during mechanotherapy could not 
be applied [25].

As far as modulus of elasticity is concerned (the higher 
the modulus, the higher the stiffness of a structure), 
the tested resinous materials (5.5–5.6 GPa; Table  1) 

Fig. 2  Representative force-indentation depth curves from both 
groups tested

Table 1  Results of the instrumented indentation testing

IQR, interquartile range

Property Temporary
Mean (IQR)

Permanent
Mean (IQR)

P value

HM (N/mm2) 279 (275, 287) 279 (270, 285) 0.63

EIT (MPa) 5548 (5425, 5834) 5644 (5420, 5850) 0.84

ηIT (%) 47.1 (46.0, 47.7) 46.0 (45.4, 47.8) 0.24
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demonstrate much lower modulus of elasticity compared 
to alumina brackets (138–141 GPa) [26] and metallic 
brackets made of stainless steel alloys (62–83 GPa) [22]. 
This property has various implications on the under-
standing of several phenomena encountered during 
clinical practice. As high moduli of elasticity imply high 
resistance to deformation, they are desirable for areas 
where no deflection is required. These include the brack-
ets slot walls and wings, which should not be compliant 
to allow for efficient transmission of the loads applied by 
an activated archwire to the tooth. To this end, ceramic 
brackets show higher stiffness as a result of the arrange-
ment of atoms and bonding inside their structure, and 
for this reason, they present better performance when it 
comes to transmission of loads, whereas plastic brack-
ets apart from their lower stiffness, which in most cases 
make them unsuitable for this task, show also several 
other disadvantages such as potential release of bisphe-
nol A. Even though a high modulus of elasticity is pre-
ferred for some components of the bracket, for other 
parts, such as the bracket base, this is an undesirable 
feature [24]. This is due to the difficulty in squeezing a 
stiff base at debonding, which necessitates the applica-
tion of increased forces; this effect coupled with sensitive 
and / or sore teeth increases the discomfort/pain during 
debonding and iatrogenic trauma on tooth enamel [26, 
27]. Future developments on this field could include the 
heavy filling of resin used for the 3D printing of brackets 
which would improve its modulus of elasticity.

Elastic index is indicative of a material’s brittleness [28], 
and the higher the elastic index the higher the brittleness, 
and from this standpoint a lower elastic index is desirable 
for orthodontic appliances. Besides, the clinical failure 
of ceramic alumina brackets during therapy or debond-
ing [29, 30] has been associated with their brittle nature, 
which is reflected on the absence of plastic deformation 
and low fracture toughness [26]. The tested materials 
presented intermediate values of elastic index (46–47%), 
which are somewhere between the values of alumina 
(55–62%) [26] and the values of stainless steel brackets 
(15–22%) [26]. This means that they are less susceptible 
to chipping or fracture compared to alumina brackets, 
even though their behavior still remains inferior com-
pared to metallic ones at this perspective.

Apart from the mechanical properties considered in 
the foregoing discussion, in-house, 3D-printed plastic 
brackets offer significant advantages with respect to 
appliance design and features. The deviation from the 
concept of a standard-sized and prescription bracket 
offers the opportunity to arrange these two charac-
teristics per malocclusion variation. Therefore, the 
width of the bracket may be increased in cases of large 
rotations or inclinations to accommodate improved 

rotational and tip control; the torque prescription can 
be altered in scenarios where larger maxillary anterior 
torque is needed to maintain torque or regain it dur-
ing retraction; and the thickness of the bracket can also 
be modulated to account for posterior teeth, most often 
maxillary second premolars which tend to be smaller 
in the buccolingual dimension and therefore in some 
extraction cases contribute to the formation of black 
corridors in the buccal segment after extraction [31].

Moreover, the customized 3D printing offers the ability 
to individually arrange and assess the prescription values 
which have been shown to vary extensively in manufac-
tured bracket slots [32].

Conclusions
Under the limitations of this research, the 3D printed res-
ins tested exhibited mechanical properties superior than 
contemporary plastic brackets, whereas they offer the 
unique feature of customized size, shape, and prescrip-
tion according to specific characteristics of the malocclu-
sion treated.
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