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Abstract

Sensory processing in the brain includes three key operations: multisensory integration—the task of combining cues into a
single estimate of a common underlying stimulus; coordinate transformations—the change of reference frame for a
stimulus (e.g., retinotopic to body-centered) effected through knowledge about an intervening variable (e.g., gaze position);
and the incorporation of prior information. Statistically optimal sensory processing requires that each of these operations
maintains the correct posterior distribution over the stimulus. Elements of this optimality have been demonstrated in many
behavioral contexts in humans and other animals, suggesting that the neural computations are indeed optimal. That the
relationships between sensory modalities are complex and plastic further suggests that these computations are learned—
but how? We provide a principled answer, by treating the acquisition of these mappings as a case of density estimation, a
well-studied problem in machine learning and statistics, in which the distribution of observed data is modeled in terms of a
set of fixed parameters and a set of latent variables. In our case, the observed data are unisensory-population activities, the
fixed parameters are synaptic connections, and the latent variables are multisensory-population activities. In particular, we
train a restricted Boltzmann machine with the biologically plausible contrastive-divergence rule to learn a range of neural
computations not previously demonstrated under a single approach: optimal integration; encoding of priors; hierarchical
integration of cues; learning when not to integrate; and coordinate transformation. The model makes testable predictions
about the nature of multisensory representations.
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Introduction

The brain often receives information about the same feature of

the same object from multiple sources; e.g., in a visually guided

reach, both vision and proprioception provide information about

hand location. Were both signals infinitely precise, one could

simply be ignored; but fidelity is limited by irrelevant inputs,

intrinsic neural noise, and the spatial precisions of the transducers,

so there are better and worse ways to use them. The best will not

throw away any information—in Bayesian terms, the posterior

probability over the stimulus given the activities of the integrating

neurons will match the corresponding posterior given the input

signals. Encoding in the integrating neurons the entire posterior

for each stimulus, and not merely the best point estimate, is crucial

because this distribution contains information about the confi-

dence of the estimate, which is required for optimal computation

with the stimulus estimate [1,2]. A sensible code will also

‘‘compress’’ the information—for example, by representing it in

fewer neurons—otherwise the brain could simply propagate

forward independent copies of each sensory signal.

Psychophysical evidence suggests that animals—and therefore

their brains—are indeed integrating multisensory inputs in such an

‘‘optimal’’ manner. Human subjects appear to choose actions

based on the peak of the optimal posterior over the stimulus, given

a variety of multisensory inputs [1,3–7]. Prism and virtual-

feedback adapation experiments [8–12] have demonstrated the

plasticity of these multisensory mappings, and it is not likely

limited to recalibration: Deprivation studies [13]; afferent re-

routing experiments [14,15]; the ability to learn novel, cross-modal

mappings; and genetic-information constraints together suggest

that integration is learned, with the organization of association

cortices driven by sensory data.

A plausible neural model of multisensory integration, then, must

learn without supervision how to combine optimally signals from

two or more input populations as well as a priori information,

encoding both the most likely estimate and certainty about it—

even when the relationship between the signal spaces is nonlinear

(like retinotopic and proprioceptive-encoded hand location), and

when their relationship is mediated by another variable (like gaze

angle). Existing computational models of multisensory integration

or cross-modal transformation neglect one or more of these

desiderata (see Discussion).

Here we show that the task of integration can be reformulated

as latent-variable density estimation, a problem from statistics that can

be implemented by a neural network, and the foregoing

requirements thereby satisfied. The goal is to learn a data

distribution (here, the activities of populations of visual and

somatosensory neurons while they report hand location in their
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respective spaces) in terms of a set of parameters (synaptic

strengths) and a set of unobserved variables (downstream,

integrating neurons). In particular, we model the cortical

association area with a restricted Boltzmann machine (RBM), an

undirected generative model trained with a fast, effective Hebbian

learning rule, contrastive divergence [16,17]. By making the

machine a good model of the distribution of the training data,

learning obliges the downstream units to represent their common

underlying causes—here, hand location. The same formulation

turns out to be equally suited to coordinate transformation as well.

Results

A network that has learned to perform the integration task will

transmit to downstream neurons (v), on each trial, all the

information in its inputs (r) about the stimulus (s). In our case,

that network is the RBM, the stimulus is the location of the hand,

and the inputs are two neural populations (visual and proprio-

ceptive) encoding hand location in different spaces (Fig. 1A; see

also Methods). Equivalently, integration requires that the

posterior distribution over the stimulus given the activities of the

downstream (‘‘hidden’’ or ‘‘multisensory’’) units, q(sDv), match the

posterior over the stimulus given the two inputs, p(sDr). Hence-

forth, we call the latter of these distributions the optimal posterior,

since it serves as the benchmark for performance. Having

arranged, by our choice of input-population encoding, for the

optimal posterior to be Gaussian (see Methods), its statistics

consist only of a mean and a covariance. Thus to show that the

network successfully integrates its inputs, we need show only that

these two cumulants can be recovered from the multisensory

neurons—intuitively, that they have learned to encode the optimal

stimulus location and confidence in that location, respectively. We

emphasize that throwing away covariance (or other statistical

information) would render subsequent computations suboptimal:

for example, if the integrated estimate is itself to be integrated

downstream with another modality, it must be weighted by its own

precision, i.e. inverse covariance (see Text S1 and Hierarchical
networks below).

Multisensory integration in the RBM
We begin by examining the ability of our model to perform

optimal multisensory integration, in the sense just described. We

use our ‘‘standard’’ network, with a visible layer of 1,800 Poisson

units, comprising two 30630 input populations, and a hidden

layer of half that number of Bernoulli units. We trained and tested

this network on separate datasets, with stimuli chosen uniformly in

the 2D space of joint angles (see Methods and Fig. 1B).

Decoding the posterior mean. We first show that the

hidden layer successfully encodes the optimal-posterior mean. For

a fixed stimulus location, s, we compare the distribution of the

stimulus decoded from 15 samples of the hidden units, ŝsRBM(v)
(‘‘RBM-based estimate’’, see Methods), with the distribution of

the optimal-posterior mean, ŝsMAP(r). (The latter estimate also has

a distribution across trials, even for a fixed stimulus, because the

input encodings are noisy.) We compare the distributions of these

two estimates, rather than simply examining the distribution of

their difference, because the resulting figures (Fig. 2A) then

resemble those typically presented in psychophysical studies,

where behavior plays the role of the estimate—and indeed, has

been found to correspond to the optimal-posterior mean [1].

Fig. 2A shows the mean and covariance of the conditional

estimator distributions, p(̂ssDs), for various stimulus locations s, and

for four separate estimates of the posterior mean: the MAP estimate

using the visual-population activities (magenta), the MAP estimate

using the proprioceptive-population activities (orange), the MAP

estimate using both input populations (the ‘‘optimal’’ posterior mean,

black), and the estimate using the hidden-layer activities (‘‘RBM-

based integrated estimate,’’ green). Each ellipse depicts the 95%

confidence interval of the distribution’s covariance, centered at its

mean, as in all subsequent figures. Clearly, the RBM-based estimate

matches the MAP estimate over nearly all of the workspace. Visible

errors occur only at the edges of joint space, probably a result of the

‘‘edge effects,’’ i.e., the proximity of extreme joint angles to regions of

space not covered by the (perforce finite) grid of neurons.

We can quantify the contribution of these imperfections to the

total optimality of the model. Since the MAP estimate is the

unique minimizer of the average (over all stimuli) mean square

error, the marginal error distribution, p(̂ss{s)~
Ð

s
p(s)p(̂ss{sDs),

summarizes all the conditional estimator distributions. These

marginal error statistics (Fig. 2B stdmargstats) show that the

overall performance of the network is very nearly optimal.

Decoding the posterior covariance. We next show that the

hidden layer also encodes the optimal-posterior covariance. The

posterior covariance represents the uncertainty on a single trial

about the true stimulus location, given the specific spike counts on

this trial. Since on a single trial, only one point from the posterior

distribution (presumably the mean) manifests itself in a behavior—

e.g., a reach—, that trial’s posterior covariance cannot be read off

the behavior as the posterior mean can. Nevertheless, the posterior

covariance has important behavioral consequences across trials: it

determines the relative weighting of each input during optimal

integration (see Eq. 3b in Methods). This is clearly a requirement

for the input populations, vis and prop; but if, for example, the

multisensory (hidden-unit) estimate, ŝs(v), is itself to be integrated

with yet another sensory population at a further stage of

processing, optimality of that integration requires knowledge of

the posterior covariance, in order to weight ŝs(v) properly. We

show in Hierarchical networks below that the model can learn

just such an architecture, demonstrating that posterior covariance

information is indeed encoded in the hidden units; but here we

exhibit the result more directly.

The posterior precision (inverse covariance) on each trial is a

2|2 symmetric matrix and therefore ostensibly has three degrees

Author Summary

Over the first few years of their lives, humans (and other
animals) appear to learn how to combine signals from
multiple sense modalities: when to ‘‘integrate’’ them into a
single percept, as with visual and proprioceptive informa-
tion about one’s body; when not to integrate them (e.g.,
when looking somewhere else); how they vary over longer
time scales (e.g., where in physical space my hand tends to
be); as well as more complicated manipulations, like
subtracting gaze angle from the visually-perceived posi-
tion of an object to compute the position of that object
with respect to the head—i.e., ‘‘coordinate transforma-
tion.’’ Learning which sensory signals to integrate, or
which to manipulate in other ways, does not appear to
require an additional supervisory signal; we learn to do so,
rather, based on structure in the sensory signals them-
selves. We present a biologically plausible artificial neural
network that learns all of the above in just this way, but by
training it for a much more general statistical task: ‘‘density
estimation’’—essentially, learning to be able to reproduce
the data on which it was trained. This also links coordinate
transformation and multisensory integration to other
cortical operations, especially in early sensory areas, that
have have been modeled as density estimators.

Multisensory Integration via Density Estimation
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Figure 1. Multisensory integration: data and model. (A) The model and example data. World-driven data are generated according to the
directed graphical model boxed in the lower right: On each trial, a hand location s and the population gains gx and gh for the two sensory modalities
are drawn from their respective prior distributions. Given these, a spike count is drawn for each neuron (magenta and orange colored circles) from a
Poisson distribution (see Eq. 2), yielding (e.g.) the set of firing rates shown by the heat maps at left. The center of mass of each population is marked
with an x. The visual (magenta) and proprioceptive (orange) neural populations each encode the location of the hand, but in different spaces: 2D
Cartesian space and joint space, respectively, drawn in outline in the heat maps. Since the neurons’ preferred stimuli uniformly tile their respective
spaces (indicated by the grids), but the forward kinematics relating these variables is nonlinear (inset; joint limits are indicated with red shading, joint
origins with black lines), hand position is encoded differently by the two populations. These population codes also constitute the input layer, R, of the

Multisensory Integration via Density Estimation
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of freedom. However, as shown below in Eq. 3a (Methods), the

encoding scheme constrains it to a lower-dimensional manifold:

the only quantities that change from trial to trial are the ‘‘total

spike counts,’’
P

i rx
i ~: gx,

P
i rh

i ~: gh, and the location where

the Jacobian of the forward kinematics is evaluated. The latter is

given by the posterior mean, which we have just shown can be

reconstructed nearly optimally. Therefore, reconstruction of the

posterior precision requires the additional recovery only of the

total spike counts of the respective input populations.

Fig. 3A shows the coefficients of determination (R2) for two

different estimators of the total spike counts, one using 15 samples

from the hidden-layer units (as for the posterior mean above), and

the other using hidden-layer means (i.e., infinite samples; see

Methods). In all cases, R2 values are greater than 0.82, with the

infinite-sample decoder approaching 0.9.

How do these values translate into the quantity we really care

about, the posterior covariance, and by implication the posterior

distribution itself? To quantify this, we employ the standard

measure of similarity for distributions, the KL divergence. Since

the true posterior is Gaussian, and since the RBM encodes the

(nearly) correct mean and variance of q(sDv), it too must be (nearly)

Gaussian. (Given a specified mean and finite variance, the

maximum-entropy distribution is normal. Thus if q(sDv) and

p(sDr) have identical mean and variance, but the latter is Gaussian

while the former is not, then the former has lower entropy—which

is impossible, since information about S cannot be gained in the

transition from R to V.) The KL divergence between two

Gaussian distributions has a very simple form, and in fact we make

it simpler still by examining only that portion contributed by the

covariances—i.e., ignoring mean differences, since we have just

examined them in the previous section: KLfN (m,S0),N (m,S1)g
~(trace(S{1

1 S0){log(DS{1
1 S0D){m)=2, where m is the number

of dimensions. The first bar of Fig. 3B show this divergence from

the optimal posterior to the RBM-based posterior (again based on

15 samples).

What constitutes a proper point of comparison? Consider a

fixed computation of the covariance which uses Eq. 3a but using

the average (across all trials) total spike counts, �ggx and �ggh, rather

than their trial-by-trial counterparts. If the model had learned

the prior distribution over the total spike counts, but was not

actually encoding any trial-by-trial information, it could do no

better than this fixed computation. The KL divergence of the

optimal posterior from this fixed computation is shown in the

second bar of Fig. 3B. The model is clearly far superior,

demonstrating that it is indeed transmitting trial-by-trial

covariance information.

RBM (lower right). Its hidden units, V, are Bernoulli conditioned on their inputs, corresponding to the presence or absence of a spike. The green heat
map in the upper right depicts the mean of 15 samples from the hidden layer of a trained network for the example inputs shown at left. (B) Testing
and training. In the first step of training (first panel), the external world elicits a vector of Poisson spikes from the input layer, driving recurrent activity
in the neural network—up, down, and back up (second through fourth panels). The weights are then adapted according to the one-step contrastive-
divergence rule. Testing also begins with a world-driven vector of Poisson spikes from the input populations, which drives 15 samples of hidden-layer
activity (second panel). We then decode the input and hidden layers, yielding their respective posterior distributions.
doi:10.1371/journal.pcbi.1003035.g001

Figure 2. Recovery of the posterior mean. The four ellipses in each plot correspond to the covariances of four different estimates of the
stimulus: the MAP estimate of the stimulus using only the visual input population (magenta), the MAP estimate using the proprioceptive input
population (orange), the MAP estimate using both populations (i.e., the true posterior mean, which is the optimal estimate; black), and the estimate
based on decoding the hidden layer (‘‘RBM-based estimate’’; green). (The color conventions are the same throughout the paper.) Each ellipse bounds
the 95% confidence interval and is centered at its mean. All results are shown in the space of joint angles in units of radians. (A) Conditional errors.
The middle plot shows the conditional errors for a grid of stimulus locations (each centered at the true stimulus); four examples are enlarged for
clarity. Note that nontrivial biases arise only at the edges of the workspace. (B) Marginal error statistics. The RBM-based error (green) is unbiased and
its covariance closely matches the optimal covariance (black).
doi:10.1371/journal.pcbi.1003035.g002

Multisensory Integration via Density Estimation
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Finally, we directly demonstrate the fidelity of the entire model

posterior, q(sDv), to the entire optimal posterior, p(sDr), as a

function of the population gains, by calculating the fractional

information lost in terms of the normalized KL divergence:

fractional information lost for fixed

g1, g2~
SKLfp(sjr)jjq(sjv)gTq(vjr)p(rjg1,g2)

SKLfp(sjr)jjp(s)gTp(rjg1,g2)

:
ð1Þ

Figure 3. Recovery of the posterior distribution. (A) Reconstruction of the input total spike counts, gh and gx, for VIS and PROP, resp., from 15
samples of the hidden units (‘‘samples’’), and from infinite samples of the hidden units (‘‘means’’). Decoding these, along with the posterior mean
(demonstrated in Fig. 2), is sufficient to recover to posterior covariance. (B) Average (across all trials) KL divergences for two distributions from the
optimal posterior, p(sDrh,rx): (black) the posterior over s given the mean (across trials) total spike counts (�ggx and �ggh) and the optimal posterior mean,
ŝs(r) :~E½SDr�; and (green) the sample-based model-posterior, given also the optimal posterior mean. The mean-based model posterior, not shown, is
visually indistinguishable. This measures purely the divergence resulting from failure to pass covariance information on to the hidden units. That the
RBM-based posterior is so much smaller demonstrates that the model is not merely passing on mean spike-count information, but their trial-by-trial
fluctuations. (C) Percent of total information lost from input to hidden units (measured by normalized KL divergence between the optimal and RBM-
based posteriors; see Text S1), as a function of gains. Information loss is less than about 1.2% for all gains. (D) Posterior distributions (means and
covariances) from three randomly selected trials. Color scheme is as throughout; dashed green shows the posterior computed from hidden-unit
means (�vv), as opposed to samples (v, solid green).
doi:10.1371/journal.pcbi.1003035.g003

Multisensory Integration via Density Estimation
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This quantity is 0 in the best case, when q(sDv)~p(sDr), and 1 in

the worst, when q(sDv)~p(s). (See also Text S1 for a more

extended discussion.) Fig. 3C shows that slightly more information

is lost at low visual gains, but that in fact the slope is very shallow,

since all information losses are between the small amounts of 0:9%
and 1:2%. To visualize this small discrepancy, Fig. 3D provides a

qualitative comparison of the single-population, dual-population

(optimal), and RBM-based posterior distributions, for three

random trials. (These are not to be confused with the distribution

of the posterior mean, as in Fig. 2A, which is measured across

trials.) The match between model and optimal posterior is evident

for both covariance (size and shape of the ellipse) and mean (its

location).

Effects of hidden-layer size and hidden-layer noise. Figs. 2

and 3 have shown model performance to be ‘‘nearly’’ optimal, in

that both the posterior mean and the posterior covariance are

encoded in the hidden layer. The small deviations from optimality

can result from two distinct causes: (1) the network having failed to

learn the ideal information-preserving transformation, and (2) the

noise in the hidden layer having corrupted that transformation. In

order to gauge the relative contribution of the two, we re-tested the

model under a range of different capacities and noise levels by

varying the number of hidden units and the number of samples

taken at the hidden layer, respectively. Note that since the hidden

units are Bernoulli, increasing the number of samples is akin to

increasing the time window over which mean rates of activity are

computed. Our assay is the error in the RBM-based estimate of the

posterior mean; and since we observe that only the size, rather than

the shape or position, of the error-covariance ellipse is greatly

distorted as a function of decreasing samples, for simplicity we plot

only the determinant of the error-covariance matrix.

Fig. 4 shows that, as expected, the error measure decreases

both with more hidden units and more samples. However, a

comparison of the different curves shows that the error asymptotes

at N hidden units (cyan line), which is the number of units in one

input population—increasing the hidden layer beyond that has no

effect on performance. Performance also asymptotes at around ten

samples per unit. At asymptote, the errors are close to optimal

(solid black line), and much better than the single-input (PROP)

error (dashed black line). (The VIS determinant is much larger and

therefore omitted.).

Fig. 4 also shows the error for a network with 5N hidden units

and the use of means (equivalent to taking infinite samples) in the

hidden layer (dotted black line). This error lies about halfway

between the optimal and asymptotic RBM-based errors, showing

that about half that network’s suboptimality is due to noise, and

half due to network architecture and the learning algorithm; but in

any case the network performance is quite close to optimal.

Simulating psychophysical studies of optimal integration
We now relate our model to some familiar results from

psychophysical investigations of multisensory integration. In the

foregoing simulations, the input populations were driven by the

same stimulus. The most common experimental probe of integra-

tion, however, is to examine the effects of a small, fixed discrepancy

between two modalities—with, e.g., prism goggles or virtual

feedback [1,3,4,18–20]. Integrated estimates tend to fall between

the means of the discrepant inputs, revealing the relative weighting

of the two modalities. The mean location of the integrated estimate

therefore allows experimenters to assess integration without having

to obtain reliable estimates of the error covariance. Notice this point

will not necessarily lie along the straight line connecting the input

means, since the sensory covariances need not be aligned [1].

To replicate these experiments, the trained network from Fig. 2

was tested on sets of ‘‘shifted’’ data in which joint angles had been

displaced from their corresponding visual locations by a fixed quantity,

the ‘‘input discrepancy,’’ before being encoded in the prop population.

To determine how large to make this discrepancy, we returned to the

Figure 4. Dependence of error covariance on numbers of samples and hidden units. Networks with different numbers of hidden units (see
legend; N~ number of units in a single input population) were trained on the input data, and then decoded for the posterior mean in the usual way
but using different numbers of samples from the hidden layer (abscissa) before averaging. The determinants of the resulting error covariances are
plotted here with colored lines. Dashed line, MAP error covariance using only proprioceptive input; solid line, optimal error covariance; dotted line,
error covariance from the 5N network when using means in the hidden layer—i.e., infinite samples—the asymptote of the colored lines.
doi:10.1371/journal.pcbi.1003035.g004

Multisensory Integration via Density Estimation
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original, unshifted data. Although the average discrepancy between the

two inputs in this data set is zero (as seen in the locations of the

magenta and orange ellipses in Fig. 2), the noisy encoding

renders the discrepancy on single trials non-zero, with the pro-

bability of finding such a discrepancy determined by the sum of

the input covariances, (SxzSh)~: SIN. This quantity provid-

ing, then, a natural measure of discrepancy, each set of shifted

data was created with an input discrepancy of K standard

deviations of SIN, with K[f2:5, 5, 7:5, 10, 12:5, 15g. Note that

large K enables a further investigation—into the generalization of

the trained network: The extent to which the RBM’s optimality is

maintained as the input discrepancy grows indicates, qualitatively,

the generalization powers of the machine on these data.

Fig. 5A shows the error statistics for these testing datasets for

several discrepancy magnitudes along a single direction (discrep-

ancies along other directions, not shown, were qualitatively

similar). Psychophysicists examine conditional errors, but again

for generality we have averaged across stimulus locations to

produce marginal errors. The RBM-based estimator (green)

becomes noticeably suboptimal by 7.5 standard deviations.

Furthermore, the distribution of errors becomes distinctly non-

normal for large input discrepancies, spreading instead over the

arc connecting the centers of the input error distributions. This arc

corresponds to the location of the optimal estimate for varying

relative sizes of the input error covariances [1]. Whether such a

pattern of errors is exhibited by human or animal subjects is an

interesting open question.

Another way of measuring machine generalization is to test its

performance under gain regimes outside its testing data. Since no

discrepancy is enforced between the modalities, biases should be

zero. Performance should be approximately optimal in the

training regime, where gains ranged from 12 to 18 spikes. And

indeed, Fig. 5B shows that neither the error covariance (the

relative shapes of the green and black ellipses) nor the bias (the

relative positions of the green and black ellipses) are noticeably

worse than in the training regime until the gain ratios (PROP/

VIS) reach the extreme values on the plot.

Finally, we examine machine performance under both input

discrepancy and gain modulation, with a constant input discrep-

ancy of 2.5 standard deviations and various gain ratios Fig. 5C.

The black and green dotted lines, nearly identical, track the

movement of the error means of the optimal and RBM-based

estimators, respectively. This reproduces the familiar psychophys-

ical finding that varying the relative reliability of two discrepant

inputs will bias downstream activity (sc., behavior) toward the

more reliable modality’s estimate [1].

Different training data
Learning non-flat priors. So far we trained on stimuli that

were chosen uniformly in joint space, so that the posterior mean is

simply the peak of the likelihood given the inputs, p(rh,rxDh). In

general, of course, these quantities are distinct. Since the learning

algorithm we employ is a density estimation algorithm, it is

expected to reproduce the marginal density p(rh,rx)~
Ð

h p(h)p

(rh,rxDh)dh, and thus should learn the prior over the stimulus as

well as the likelihood. Therefore, the distribution of hidden-layer

activities in the trained model will reflect both of these ‘‘input

distributions,’’ and we should be able to decode the maximum a

posteriori (MAP) estimate from the RBM. Importantly, we use the

same decoding scheme employed as throughout (see Methods),

ensuring that the prior is instantiated in the RBM rather than the

decoder.

For simplicity, we chose the prior p(h) to be a tight Gaussian—

with covariance on the order of the input covariances—centered

in the middle of joint space (see The optimal posterior
distribution over the stimulus in Methods). Thus, for a

fixed stimulus, the (conditional) optimal estimator will be biased

toward the center of joint space relative to that stimulus. Averaged

over all stimuli, the (marginal) optimal estimator will be centrally

located, but have smaller error covariance than its flat-prior

counterpart—intuitively, the prior information increases the

precision of the estimator.

This is precisely what we see for the RBM-based estimate in

Fig. 6A,B. Its conditional statistics are shown for six different fixed

stimuli in Fig. 6A, along with those of the two unisensory MAP

estimates and the optimal estimate (the MAP estimate given both

input populations). The corresponding marginal error statistics,

averaged over all stimuli under their prior distribution, are shown

in Fig. 6B The RBM-based error covariance, like its optimal

counterpart, is tighter than that achieved with a flat prior (cf.

Fig. 2B).

Sometimes-decoupled inputs. We have been supposing the

model to correspond to a multisensory area that combines

proprioception of the (say) right hand with vision. When not

looking at the right hand, then, the populations ought to be

independent; and an appropriate model should be able to learn

this even more complicated dataset, in which the two populations

have a common source on only some subset of the total set of

examples. This is another well known problem in psychophysics

and computational neuroscience (see e.g. [21]). When the

integrating area receives no explicit signal as to whether or not

the populations are coupled, the posterior distribution over the

right hand is a mixture of Gaussians, which therefore requires the

encoding of numerous parameters—two means, two covariance

matrices, and a mixing proportion—and is therefore rather

complicated to decode. Simulations, omitted here, show that the

RBM does indeed learn to encode at least the peaks of the two

Gaussians.

A slightly simpler model includes among the input data an

explicit signal as to whether the input populations are coupled, in

our case by dedicating one neuron to reporting it. This model is

shown in Fig. 6C: populations were coupled in only 70% of trials;

in the others, the vis (magenta) population reports the ‘‘left hand,’’

and the unit labelled T indicates this by firing at its maximum

mean spike count (otherwise it is off). Derivation of the optimal

error covariance for the MAP estimate is given in Text S1;

intuitively, the model must learn to encode different distributions

in its hidden units depending on whether or not T is on. When T
is off, these units should integrate the stimulus estimates encoded

by the two populations and encode this integrated estimate (and its

variance). When T is on, it should encode the proprioceptive

stimulus and the visual stimulus separately. The optimal error

variance is calculated by a weighted average of the error variances

in the two conditions, smaller and larger respectively, the weights

being the percentage of the time each conditions occurs (0:7 and

0:3, resp.). (The optimal error mean is still zero.) Fig. 6D shows

that a network trained on these data—with the same architecture

as throughout—again achieves this optimum.

Other architectures
Hierarchical networks. A plausible neural model of multi-

sensory integration will be composable in the sense that the

integrating neurons can themselves serve as an input population

for further integration with, e.g., another modality. Fig. 7A

illustrates the architecture of one such network. As above, input

layers are Poisson, hidden layers are Bernoulli. The first RBM is

the same as in the foregoing results; the second was trained on an

input layer comprising the hidden-layer population of the first

Multisensory Integration via Density Estimation
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RBM (‘‘integrated representation 1’’) and a new input population

(‘‘PROP 2’’), which for simplicity encodes joint angles, just as the

first-layer proprioceptive population (‘‘PROP 1’’) does—though of

course the population activities are different, since these are noisy.

The second population also has a different gain on each trial (see

the bottom panel of Fig. 7A).

Again we focus on the error statistics of the posterior mean

(Fig. 7B). Both integrated representation 1 (using two inputs) and

integrated representation 2 (using all three inputs) approach their

optimal values. Although these error statistics are direct measures

of posterior-mean encoding only, that the posterior variance is

being encoded is demonstrated indirectly, as well: Proper

Figure 5. Model generalization across input discrepancies and input gains. After training, the model was tested on data that differ from its
training distribution. (A) Discrepant-input data: PROP input (orange) is shifted by progressively greater increments of the input covariance (see text),
leading to suboptimal integration, as expected, and structured error distributions. The hidden-layer error mean, like the optimal error mean, shifts
rightward with the PROP ‘‘bias.’’ (B) Gain-modulated data: The training data had gains between 12 and 18. Testing on gains (ratios listed between
panels (B) and (C)) outside this regime yields suboptimal error covariances but essentially zero biases. (C) Gain-modulated, input-discrepant data: As
the relative reliability of PROP is increased, the optimal estimate shifts toward PROP and away from VIS. The green and black dotted lines, nearly
identical, trace this movement for the machine-based and optimal estimates, resp. For larger discrepancies (not shown), this optimal behavior breaks
down, the green and black lines diverging.
doi:10.1371/journal.pcbi.1003035.g005
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integration at the second level requires variance information to be

encoded in the first hidden layer. The (nearly) optimal error

statistics for the second layer show that indeed the posterior

variance information is encoded on a per-trial basis in the (first)

hidden layer.

Coordinate transformation. We consider now another,

seemingly different, computational problem studied in the sensori-

motor literature, coordinate transformation (sometimes called

‘‘sensory combination’’ [22]). In general, the relationship between

proprioception and visually-encoded stimuli is mediated by other

quantities—gaze angle, head-to-body orientation, body-to-arm

orientation, etc. —which are themselves random variables. In the

simplest version, the relationship of vision to proprioception

depends only upon gaze position, X~F (H){E, and the ‘‘stimuli’’

consist of two independent random variables H and E [23]. Fig. 7C

depicts a probabilistic graphical model for this scenario, along with

the RBM that is to learn these data (cf. Fig. 1A). The optimality

equations are slightly more complicated for this problem (see

Coordinate Transformations in Text S1), but conceptually

similar to that of simple multisensory integration (Eq. 3).

In this model, the proprioceptive population is responsible for a

larger space than either of the other two variables, a consequence of

our choice to sample in the space of the latter (see Fig. S2A and

related discussion in Tuning of the coordinate-transforming
neurons in Text S1). Allocating to each population the same

number of neurons, while also demanding that the H variance be

Figure 6. Other data distributions. (A,B) : Learning a prior. The network was trained on population codes of an underlying stimulus that was
drawn from a Gaussian (rather than uniform, as in the previous figures) prior. This makes the MAP estimate tighter (cf. the black ellipses here and in
Fig. 2B) —and indeed the RBM-based estimate’s error covariance is correspondingly tighter. (A) Conditional estimate statistics (color scheme as
throughout): The output estimates (green) have smaller covariances, but they, like the optimal estimates (black) are also biased toward the mean of
the prior, located at the center of the workspace. The match between them is evidently very good. Note that the stimulus location for each of these
conditional statistics is eight standard deviations from the mean of the prior—so the model has generalized well to points that constituted a trivial
fraction of the training data. (B) Marginal error statistics. (C,D): Learning that the inputs need not report the same stimulus. (C) A graphical model
showing the independence relationships holding among the variables of this model. The (observed) toggle T determines whether the visual
population is reporting the left (SL) or right (SR) hand. (D) Marginal error statistics (colors as throughout) for the mean of the posterior distribution
over the right hand. Since the visual population provides information about the right hand only 70% of the time, the optimal error covariance is
broader than its counterpart in Fig. 2B. The RBM-based estimate again nearly matches it.
doi:10.1371/journal.pcbi.1003035.g006
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small enough for its contribution to affect appreciably the integrated

estimate, requires that we increase its relative gain; hence we let

gx~5, gh~15, ge~5. In keeping with the simple relationship just

given, all variables are one-dimensional; the network allocates

60 units to each, yielding 180 total input units. The hidden layer has

only 160, respecting our requirement that it be smaller than the

input layer. (The ratio of hidden/input was chosen with the

following rationale: The input layer encodes six random variables—

the three ‘‘stimuli,’’ X, H, and E, plus their three associated gains—

whereas the hidden layer needs to encode five, one of the stimuli

being redundant with the other two. And indeed, using fewer than

160 hidden units yields suboptimal results. Cf. the ‘‘standard’’

network, for which the input encodes six variables—the two gains

and the two 2D stimuli—, and the hidden layer encodes four—two

gains and a single 2D stimulus. A longer discussion of these

approximate calculations can be found in Text S1.) Fig. 7D shows

Figure 7. Other architectures. (A,B) A ‘‘hierarchical’’ network, in which a third modality must be integrated with the integrated estimate from the
first stage—which is just the original model. (A) Data generation (bottom), population coding (middle), and network architecture (cf. Fig. 1A). Input
units are Poisson and hidden units (green) are Bernoulli. The population codes, depicted in one dimension for simplicity, are actually 2D. Each hidden
layer has half (~900) the number of units in its input layer (~1800). (B) Marginal error statistics. The error ellipses for PROP 1 (orange), for VIS
(magenta), for both PROP 1 and VIS (dashed black), and for ‘‘integrated representation 1’’ (dashed green) replicate the results from Fig. 2B. PROP 2 is
encoded in the same way as PROP 1 (though their activities on a given trial are never equal because of the Poisson noise), and so has identical error
statistics (orange). Conditioning on this third population in addition to the other two shrinks the optimal error covariance (solid black), and the
estimate decoded from ‘‘integrated representation 2’’ (solid green) is correspondingly smaller as well, and again nearly optimal. (C,D) Coordinate
transformation. (C) Data generation (bottom), population coding (middle), and network architecture (top). Each input population (bottom panel,
color coded) depends on its own gain; whereas, both PROP (h, orange) and VIS (x, magenta) depend on the stimulus (hand position), and both VIS and

EYE (e, blue) depend on gaze angle. (D) Mean square errors. The RBM-based estimates have nearly minimal MSEs, demonstrating that these estimates
are nearly equal to the mean of the true posterior distribution. Inset: the physical setup corresponding to coordinate transformation. Red shading
denotes joint limits; the black line denotes the origin of joint space.
doi:10.1371/journal.pcbi.1003035.g007
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that mean square errors (MSEs) of the RBM-based estimate of the

stimulus are, once again, nearly optimal given the three inputs. (We

can show mean and variance together as MSE without loss of

generality because the posterior mean is the unique minimizer of the

MSE, so showing that the RBM-based estimator achieves minimum

MSE shows that it is the posterior mean.) This demonstrates the

generality of our approach, as the same network and algorithm will

learn to perform multisensory integration or coordinate transfor-

mations, depending simply on its inputs (cf. the networks of [24–27],

which are built specifically to perform coordinate transformations).

Nor is there reason to believe that learnable transformations are

limited to simple combinations of the form X~F (H){E, which

was chosen here merely to simplify our own computations of the

optimality conditions (see Coordinate Transformations in

Text S1).

Properties of the hidden units and their biological
implications

We now examine some of the properties of the hidden units,

especially those that electrophysiologists have focused on in multi-

sensory neurons in rhesus macaques.

Integrating neurons. Fig. 8A shows tuning curves for a

random subset of 16 tuned hidden units in our ‘‘standard’’

multisensory-integration network (Multisensory integration in
the RBM). (By ‘‘tuned’’ we mean neurons whose mean firing

rate—i.e., probability of firing—varied by more than 0.1 over the

stimulus range.) To render tuning more clearly, curves were

computed noiselessly—using means in both the input and hidden

layers—and with a fixed gain of 15 for both populations.

Interestingly, the two-dimensional tuning for joint angles (left

column) is multimodal for many cells—although also highly

structured, as apparent from comparison of tuning for the trained

(upper row) and untrained (lower row) networks. Although

multimodal tuning has been found in multisensory areas, for

example, area VIP (see Fig. 3 of [28]), a comparison of these plots

with empirical data is complicated by the fact that neurophysiol-

ogists typically do not collect tuning data over a complete planar

workspace.

We therefore restrict attention to the 1D submanifold of joint

space indicated by the black slash through the 2D tuning curves,

corresponding to an arc in the visual space, since tuning over this

range was reported in [29] (see especially the supplement) for

multisensory neurons in Area 5 and MIP; we show the

corresponding model tuning in the right column for the same

sixteen neurons as the left column. The determination of whether

or not model neurons are tuned was made along this arc (rather

than the entire planar workspace); in this limited range, 137 of the

900 hidden units were tuned. Results are qualitatively similar

between data and model: Along the arc, units in the trained

network are unimodal and occasionally monotonic (unlike in the

untrained model, bottom right). Furthermore, although none of

these 16 cells exhibited bimodal tuning for this arc, from the

distribution of planar tuning we expect that some cells would; and

indeed a subset of cells in [29] exhibit bimodal tuning (see Fig. 5

and Supplemental Fig. 6C in the cited work).

Fig. 8A also shows how the tuning along the 1D arc depends on

the input gains. Although broadly similar across gains, increasing

gain does result in a subtle sharpening of the tuning curves. This

can be quantified more directly by simply counting the number of

active neurons for a given stimulus under different gains: sharper

tuning curves will result in fewer neurons firing (though possibly

more total spikes). And indeed, after sampling 15 spikes from the

hidden layer, the percent of neurons firing is 22:5, 21:2, and 20:3,

for gx~gh~12, 15, 18, respectively. This is in contrast to the

input layer, where increase in gain increases the number of spiking

units. Sharpening is also in contrast to the theoretical predictions

of [2], where the hidden layer is a probabilistic population code of

the same form as the inputs, with both having the property that

higher gains imply a greater number of active neurons. This

feature has not been investigated directly in multisensory areas of

the cortex, and presents a useful test for the model. Although the

absence of sharpening would not rule out a broader class of density

estimation models, it would indeed rule out this particular

implementation.

Coordinate-transforming neurons. Investigation of multi-

sensory tuning properties has a longer history for coordinate

transformations. Here, especially in Area 5d, MIP, and VIP,

neurons have been reported to encode objects in references frames

intermediate between eye and body (‘‘partially shifting receptive

fields’’) —i.e., the receptive field moves with the eye, but not

completely; and eye position modulates the amplitude of the

tuning curve (‘‘gain fields’’) [28–31]. As in those studies, we find

examples of retinotopic, body-centered, and partially shifting

receptive fields—even fields that shift opposite to the change in

gaze-angle. Fig. 8B shows examples of all four types (see legend).

(We conflate head-centered and body-centered tuning in what

follows, since we assume a head-fixed model.).

More recently, Andersen and colleagues [31,32] have proposed

to analyze these qualitative descriptions in terms of (1) the

‘‘separability’’ of the tuning curve—whether it can be written

f (s,e)~fs(s)fe(e); and (2) the reference frame in which the neuron

is tuned—body, eye, or something intermediate—as measured by

the gradient of the tuning in the (s,e) space, since the direction of

steepest change indicates the strongest tuning. All and only the

neurons with pure gain fields (no shift) will be separable. The

extent of receptive-field shift for inseparable neurons is indicated

by the gradient analysis.

We reproduce that analysis on our model here. In [31], there is

a third variable in addition to hand location and gaze position,

namely target. However, direct comparison between model and

data can be made simply by identifying the hand and target.

Finally, since all tuning curves were measured in visual space, we

do the same; thus we define: Tret :~X , the retinotopic hand/

target location in visual space; and Tbody :~L cos(H), the body-

centered hand/target in visual space; giving the familiar equation

Tret~Tbody{E. Fig. 8C shows the resulting histogram of gradient

directions, which is qualitatively quite similar to its counterpart,

the top panel of Figure 4 of [31]: a peak at Tbody, minor peaks at

the other ‘‘unmixed’’ stimuli, with representative neurons at all

stimuli combinations—except those intermediate between

TbodyzE and E, where there is a gap in the histogram.

Nevertheless, we emphasize that correspondence between

model and data in Fig. 8C should be interpreted with extreme

caution: it is possible to obtain different distributions of receptive-

field properties with our model; see Text S1 : Tuning of the
coordinate-transforming neurons for further discussion.

Discussion

We have demonstrated a neural-network model of multisensory

integration that achieves a number of desirable objectives that have

not been captured before in a single model: learning de novo to

integrate the mean and covariance of representations of nonlinearly

related inputs; learning prior distributions over the encoded stimuli;

staged, hierarchical integration; and ‘‘coordinate transformations.’’

Our approach is based on two central ideas. The first, following

[2], is that the goal of multisensory integration is not (merely) to

encode in the multisensory neurons (v) an optimal point estimate
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of the stimulus (s) given the activities of the input populations

(r~½rh,rx�); but to encode an entire (optimal) distribution, so that

q(sDv)~p(sDr). This criterion is equivalent to demanding that all the

information in the input populations about the stimulus—the mean,

variance, and higher cumulants, if applicable—be transferred to the

multisensory neurons v. Behavior itself corresponds to a single point

from this distribution, but the higher cumulants will be necessary for

intervening computations: for example, the variance of the inte-

grated estimate determines how to integrate it optimally with

other estimates downstream (see Fig. 7).

Figure 8. Tuning curves in the hidden layer. (A) Tuning curves for the multisensory-integration model/data (Figs. 1 and 2). The left column
shows tuning curves in the space of joint angles for sixteen randomly chosen hidden units; the right column shows those same units for the arc of
reach endpoints from [29]. The top row shows tuning curves for the trained model; the second row shows the same curves for the untrained model.
The location of the arc in joint space is shown by the black slash through the tuning curves in the left column. Whereas the left-column tuning curves
were collected for a single gain (g~15), the right-column curves were collected for g~12 (blue), g~15 (green), and g~18 (red) (the same gain was
used for both populations, VIS and PROP). (B) Example hidden-unit tuning curves from the coordinate transformation model for body-centered hand
position (Tbody :~L cos(H); see text for details), for two different gaze positions (red and green curves). The dashed blue curves show where the red
tuning curves would lie for the second gaze position if they shifted completely with the eyes, as illustrated by the red arrows, i.e. if they were
retinotopic. Some cells (second column) are; some are body-centered (first column); some partially shift (third column); and some even shift in the
opposite direction of the gaze angle. (C) Coordinate-transforming cells can be tuned for any of the variables on the continuum from gaze angle (E), to
retinotopic hand position (Tret :~X~Tbody{E), to body-centered hand position (Tbody), to body-centered hand position plus gaze angle
(TbodyzE). The histogram shows the distributions of such tunings in the hidden layer, using the analysis of [31].
doi:10.1371/journal.pcbi.1003035.g008

Multisensory Integration via Density Estimation

PLOS Computational Biology | www.ploscompbiol.org 12 April 2013 | Volume 9 | Issue 4 | e1003035



The second central idea is that this information-retention

criterion will be satisfied by the hidden or ‘‘latent’’ variables, V, of

a generative model that has learned how to produce samples from

the distribution of its input data, R, a process called latent-variable

density estimation. The intuition connecting this learning problem

with the seemingly very different task of multisensory integration is

that being able to reproduce the input data (up to the noise)

requires encoding their ‘‘hidden causes’’—the features, like hand

location, that vary across trials, and thus should be transmitted

downstream—in the latent-variable activities. The density estima-

tor will likewise learn to represent the statistical features that do

not vary across trials, like prior information, in its weights. Since a

network that has learned to reproduce its inputs efficiently will

have implicitly learned the underlying relationship between their

hidden causes, density estimation also naturally solves other

computational problems that arise in multisensory processing: the

need to perform coordinate transformations (Fig. 7C), for

example, arises because a signal is available that correlates with

a transformed version of other variables—like retinotopic object

location with the combination of body-centered object location

and gaze angle. Efficiently encoding the distribution of the larger

set of variables requires learning the coordinate transformation.

With the network implementation of latent-variable density

estimation, we have demonstrated how all three of these learning

problems—optimal integration, the integration of prior informa-

tion, and coordinate transformations—can be solved by multisen-

sory neural circuits. We have previously argued that these three

operations are exactly those required for planning multisensory-

guided reaching movements [23]. There is considerable evidence

for multimodal, reaching-related signals across several brain areas

in the posterior parietal cortex, including Area 5d, MIP, VIP, V6,

and Area 7 [33–38]. We propose that density estimation, driven by

latent-variable learning, is the principle underlying computation

performed by these areas. The fact that our network can be

hierarchically composed is central to this hypothesis: these brain

areas receive overlapping but distinct sets of inputs and with a

rough hierarchical organization within them [39–43]. Density

estimation on these inputs, then, is expected to yield activity

patterns that are also highly overlapping but distinct, as observed,

for example, in [29,44]. We have previously argued that having a

collection of such representations allows for the flexible and

(nearly) optimal use of a wide range of sensory inputs [45].

Implications of the model
One example of a statistical feature that is constant across trials

is the prior distribution of the stimulus, which the network

therefore learns to encode in its weights. Whether prior distribu-

tions in the brain are encoded in synaptic weights [46,47], as a

separate neural population [2], or something else again, remains

an area of active research (see also Text S1).

An interesting consequence of the present formulation is that it

renders the gains random variables (see e.g. Fig. 1A), no less than

the stimulus location; that is, they represent information that is not

constant across trials. This has testable implications for multisen-

sory populations. For an M-dimensional stimulus, the posterior

precision (inverse covariance) of the multisensory neurons is an

M|M symmetric matrix and therefore has M(Mz1)=2
independent entries. But if the precisions of the two input

populations are each functions only of a single parameter (their

respective gains, reflecting the confidence in each modality), then

the multisensory activities need only encode two, rather than

M(Mz1)=2, numbers on each trial. Conversely, in the case of a

one-dimensional stimulus, a population of multisensory neurons

ostensibly need only encode the single value of the posterior

variance, Var½SDr1,r2�, but the density-estimation approach

predicts that the hidden-unit activities on a given trial will

nevertheless encode both of that trial’s input-population gains—

and indeed they do in our model, albeit imperfectly (Fig. 3A).

Testing these predictions experimentally would be straightfor-

ward—try to decode unisensory covariances from a multisensory

population—but it has never been done.

The question of whether cortical circuits learn to encode any

posterior covariance information at all, as opposed to merely the

point estimate that psychophysical experiments elicit, is itself a

crucial, open one. Of course, in theory one can always compute a

posterior over the stimulus given some population activities [48];

but whether the posterior conditioned on activities deep in the

hierarchy matches that conditioned on the activity in early sensory

cortices, as in our model, is unknown. Our model also predicts that

such constancy would emerge during learning—which could be

tested, for instance, by training an animal on a novel multisensory

pairing (e.g., audition and touch).

That fewer units are used to represent the same information

(half as many in our simple integration model; see Multisensory
integration in the RBM), and that the maximum spike count of

each hidden neuron is bounded by the maximum mean spike

count of the inputs, constrains the amount of information that can

be transmitted. This forces the hidden units to represent the

information more efficiently—i.e., to ‘‘integrate’’ it. In fact,

without that constraint, no learning would be required to satisfy

the information-retention criterion: A random N|N weight

matrix has rank N almost surely, and the neuron nonlinearities are

likewise invertible, so any random set of synaptic connections

would suffice (since any invertible transformation is information-

preserving). We chose to constrain the multisensory representa-

tional capacity, so that the synaptic connections form an N=2|N
matrix, which will not in general preserve stimulus information.

One promising theoretical strategy would be to take ‘‘passing on

all the information’’ as a given, and then to seek the set of

constraints—fewest spikes [49], topography [50], fewest neurons,

least processing time, computational efficiency [51], etc. —that

yields the most biologically realistic activity patterns in the

multisensory units.

Relationship to other work
Multisensory integration was first considered from the stand-

point of information theory and unsupervised learning in [52], and

in a related work [50], and our approach is similar in spirit, but

with important differences. Crucially, a different objective function

was minimized: integration was achieved by maximizing mutual

information between the hidden/output units of two neural

networks, each representing a modality, forcing these units to

represent common information, the latter additionally constrain-

ing topography. In our model, contrariwise, integration is enforced

indirectly, by requiring a reduced number of (hidden) units to

represent the information in two populations. This allows for

greater generality since it does not require foreknowledge of which

populations should be forced to share information: if the infor-

mation in the input populations is redundant, it will be ‘‘integrated’’

in the hidden units, and conversely. More recently, the idea of

treating multisensory integration as a density estimation problem

has been proposed independently by [53], a complementary

report that explores both cognitive and neural implications of

this view, without proposing an explicit neural implementation.

As in [50,52], then, no attempt is made to employ biological

learning rules. Most significantly, none of these models invokes

the criterion for optimal integration that we have argued to be

central—the correct posterior distribution over the stimulus
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given hidden-unit activities (q(sDv)~p(sDr), in the notation of this

paper). This approach renders the combination of three signals of two

independent causes—coordinate transformation—a matter simply of

allowing another population to feed the hidden units; whereas the

other models would require something more sophisticated.

More recent models of multisensory integration or cross-modal

transformation neglect some combination of the desiderata listed

in the introduction. Basis-function networks with attractor

dynamics [27,30,54] ignore prior distributions but more signifi-

cantly require hand-wiring (no learning). The models of [46] and

[47] extend these attractor networks to include the learning of

priors, but even these must be hand wired and so are practical only

for simple representations. Other models of learning [24–26,55]

disregard variance information, so that what is learned is essen-

tially a mapping of means; nor, correspondingly, do they account

for the learning of priors. The probabilistic population coding

model [2] makes explicit the notion of encoding a posterior, but

includes no model of learning.

Finally, many authors have either anticipated [51,56,57] or

explicitly proposed [58–60] that learning to process early sensory

information might be viewed as forms of density estimation. Our

work shows that the range of computations that can be assimilated

to this statistical problem extends to the acquisition of two key

operations for motor planning and control: multisensory integra-

tion, even when the underlying stimulus is distributed non-

uniformly, and coordinate transformations; and further that these

computations can be combined hierarchically, as is observed in the

the neural circuits underlying these operations.

Methods

Notation is standard: capital letters for random variables,

lowercase for their realizations; boldfaced font for vectors, italic for

scalars.

Input-data generation
Throughout, we work with the example case of integrating two-

dimensional (2D) proprioceptive and visual signals of hand

location, but the model maps straightforwardly onto any pair of

co-varying sensory signals. These two signals report elbow and

shoulder joint angles (PROP, H), and fingertip position in Cartesian

space (VIS, X), respectively. Choosing the forward kinematics,

X~F (H), to be invertible renders the variables isomorphic, so

that we can refer generically to them as a ‘‘stimulus’’ (S), inde-

pendent of space. The kinematics model for most of the results has

joint ranges of ½{p=2,p=4� (shoulder) and ½p=4,3p=4� (elbow) and

limb lengths of 12 (upper arm) and 20 (forearm) cm; see inset of

Fig. 1A. The exception is Fig. 7C,D, in which a one-degree-of-

freedom (1D) arm was used for simplicity: X~L cos(H){E, with

link length L~12 cm and joint range ½p=6,5p=6�, and E the

position of the eye (EYE, gaze angle). Below, we describe data

generation from the 2D kinematics; the modifications for 1D are

straightforward.

Each training vector consists of a set spike counts, ½rh,rx�,
generated by choosing a random stimulus (s, i.e. h and x) and a

random global gain for each modality (gh,gx), and encoding them

in a populations of neurons with Gaussian tuning curves (fi) and

independent Poisson spike counts—a ‘‘probabilistic population

code’’ [2]:

p(rh,rxjs,gh,gx)~p(rhjh,gh)p(rxjx,gx)

~P
i

Pois½rijghfi(h)�P
i

Pois½rijgxfi(x)�,
ð2Þ

as illustrated in Fig. 1A. Each gain, gs, can be thought of as the

confidence in its respective modality, since the posterior covari-

ance of a single, sufficiently large population, Cov½SDrs�, is inver-

sely proportional to its gain [2]. The tuning curves fi of each

population are two-dimensional, isotropic, unnormalized Gaus-

sians, whose width (variance) is St, and whose centers form a

regular grid over their respective spaces.

To avoid clipping effects at the edges, the space spanned by this

grid of N|N neurons is larger than the joint space (or, for VIS,

than the reachable workspace). Thus the grid consists of a central

‘‘response area’’ whose neurons can be maximally stimulated, and

a ‘‘margin’’ surrounding it whose neurons cannot. The margin

width is four tuning-curve standard deviations (4S
1=2
t ), making

spiking of putative neurons outside the grid extremely unlikely

even for stimuli at the edge of the response area. In accordance

with the broad tuning curves found in higher sensory areas and

with previous models of population coding in multisensory areas

[2,27], tuning-curve widths were themselves chosen so that their

full width at half maximum embraced one-sixth of the response

area.

The prior over the stimulus is either uniform or Gaussian in the

space of joint angles. (Implementation of the Gaussian prior is

detailed in Learning non-flat priors.) Since both dimensions of

prop space are allotted the same number of neurons (N) and the

tuning curves are isotropic and evenly spaced, but the physical

ranges of these dimensions differ (3p=4 and p=2 for the shoulder

and elbow, resp.), the induced covariance Cov½HDrh� in the

population code is anisotropic, being more precise in elbow than

shoulder angle. The nonlinearity of the forward kinematics

likewise ensures anisotropy of Cov½HDrx�; see Fig. 1A. This makes

the problem more interesting, anisotropic covariances entailing,

for example, optimal estimates that are not on the straight-line

path between cue means (see e.g. Fig. 1 of [1]).

The priors over the gains, Gh and Gx, which set the maximum

mean spike counts, are independent and uniform between 12 and

18 spikes. Unless otherwise noted, gains in the testing data were

drawn from the same distribution as the training-data gains.

The optimal posterior distribution over the stimulus
To show that the model works, we must compare two posterior

distributions over the stimulus: the posterior conditioned on the

input data, p(sDrh,rx)—i.e. the ‘‘true’’ or ‘‘optimal’’ posterior—and

the posterior conditioned on the downstream/integrating units,

q(sDv) (see The RBM, below). That comparison is easiest to make,

and to exhibit, when the optimal posterior is as simple as

possible—ideally, a Gaussian, which has only two nonzero cumu-

lants, mean and covariance. With a flat or Gaussian prior over the

stimulus, the probabilistic population code that we are using does

indeed have an approximately normal posterior for a unimodal

population [2]; but to guarantee this for two populations that are

encoding the stimulus in different (i.e., nonlinearly related) spaces,

the unimodal posterior covariances (Cov½XDrx� and Cov½HDrh�)
also must be small enough that typical errors lie within the linear

regime of the arm kinematics (see Text S1). Given the gain (G)

regime and the tuning-curve widths (St), choosing N~30 neurons

in the N|N grid yields variances between 2 and 9 mm2 for the

two populations, satisfying the requirement. These values are also

comparable to empirical values for visual and proprioceptive

localization variances from human psychophysics, 5 mm2 and

50 mm2, resp. [1]. These latter are in fact an upper bound, since

they are with respect to behavior, the furthest downstream assay of

certainty. In any case, we stress that this and other compromises of

the population code with biological realism (uniform tiling of the
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stimulus space, identical tuning curves, etc.) serve to simplify the

analyses and interpretation rather than reflecting any limitation of

the neural-network model.

Now, whereas a Gaussian posterior requires a flat or Gaussian

prior, such a prior in prop space will induce an irregular prior in

VIS space (and vice versa; see again Fig. 1A) —so there can be a

Gaussian posterior only in one space. Results are therefore com-

puted in the space of the flat or Gaussian prior. Observing these

constraints, the posterior cumulants can be written:

Cov½HDr�{1&S{1
0 zghS{1

t zgx(JTS{1
t J) ð3aÞ

E½Hjr�&Cov½Hjr�½S{1
0 m0zghS{1

t y(rh)

zgx(JTS{1
t J)F{1½y(rx)��:

ð3bÞ

(See Text S1 for a derivation.) Intuitively, the posterior precision

(inverse covariance, Eq. 3) is a sum of three precisions: the prior

precision, S{1
0 ; the weighted PROP (h) tuning-curve precision,

St
{1; and the weighted VIS (x) tuning-curve precision, JTS{1

t J.

(Since the posterior is expressed over H rather than X, the latter’s

precision must be warped into h-space by the Jacobian,

J~LF=Lx, of the forward kinematics, which is evaluated at the

center of mass of the proprioceptive population.) The weights are

the total spike counts for each population, gs :~
P

j rs
j , s~h,x.

The posterior mean (Eq. 3b) is a normalized, weighted sum of

three estimates: the prior mean, m0; the center of mass of the h

population, y(rh); and the (transformed) center of mass of the x

population, F{1½y(rx)�. The weights are the three precisions. The

center of mass y(rs) :~
P

j s�jr
s
j=
P

j rs
j , with s�j the jth preferred

stimulus, is likewise intuitive, being the maximum-likelihood

estimate of the stimulus for a single population [61].

The nonlinearity (cosine) in the 1D ‘‘coordinate-transformation

model’’ (Fig. 7C,D), X~L cos(H){E, likewise allows the posterior

to be normal in only one space. Since two of the variables live in

Cartesian space—X (VIS) and E (EYE) —and only H (PROP) lives in

joint-angle coordinates, we chose uniform priors over the former,

sampling them between L cos(5p=6)=2 and L cos(p=6)=2, so that

their sum never exceeded the bounds of the joint range (see above,

Input-data generation). Zero in this space corresponds to hand

position at the center of fixation for x, and to central fixation for E.

The addition of a non-flat prior (Fig. 6) will only have an appre-

ciable effect on the posterior if the width of the prior distribution is

comparable to that of the likelihoods, i.e. the single-modality

localization covariances. The covariance of the prior was therefore

constructed so that, along both dimensions, the extreme angles

were 150 standard deviations apart—a reasonable prior distribu-

tion, perhaps, after extensive training on a reaching task to a single

target location [47]. Using more realistic, broader priors would

require relaxing the constraint that the optimal posterior

distribution over the stimulus be Gaussian—which again we insist

upon only for ease of analysis.

The RBM
The neural circuit for sensory integration was modeled as a

restricted Boltzmann machine, a two-layer, undirected, generative

model with no intralayer connections and full interlayer connec-

tions (Fig. 1A, bottom right) [17,62]. The input layer (R) consists of

Poisson random variables, whose observed values are the

population codes just described. The hidden-layer units (V) are

binary, indicating whether or not a unit spiked on a given trial,

making them Bernoulli random variables. Unless otherwise noted

in the results, the number of hidden units in the model is equal to

half the number of input units, i.e. the number of units in a single

input population—thus forcing the model to represent the same

information in half the number of neurons.

During RBM training [17,62], input and hidden units recipro-

cally drive each other through the same weight matrix:

V*q(vDr)~P
i

Bern½vi Ds(fWrzbvgi)� ð4aÞ

R*q(rDv)~P
j

Pois½rj Dexp(fW Tvzbrgj)�, ð4bÞ

which corresponds to Gibbs sampling from the joint distribution

represented by the machine. Here fzgi is the ith entry of the vector z;

bv and br are, respectively, the vectors of biases for the hidden and

observed units; W is the matrix of synaptic strengths; and

s(x) :~1=(1ze{x) is the logistic (sigmoid) function. (The lack of

intralayer connections is what allows the entire joint to be sampled in

just two steps.) As in a standard stochastic neural network, each unit’s

mean activity is a nonlinear transformation of a weighted sum of its

inputs. To ensure that this mean is in the support of its associated

exponential-family distribution, the nonlinearities are chosen to be the

inverse ‘‘canonical links’’ [63]: the logistic function for the Bernoulli

hidden units, and the exponential function for the Poisson input units.

(Technically, the use of Poisson input units makes the model an

‘‘exponential family harmonium’’ [62] rather than a restricted

Boltzmann machine, which would have all Bernoulli units.) The unit’s

activity (presence of a spike, or spike count) is sampled from this mean.

Training
Weights and biases were initialized randomly, after which the

networks were trained on batches of 40,000 vectors, with weight

changes made after computing statistics on mini-batches of 40

vectors apiece. One cycle through all 1000 mini-batches consti-

tutes an ‘‘epoch,’’ and learning was repeated on a batch for 15

epochs, after which the learning rates were lowered by a factor offfiffiffiffiffi
10
p

. This process was repeated a total of seven times, i.e. 90

epochs, after which learning was terminated. (The number of

epochs and the learning-rate annealing schedule were determined

empirically.) Weight and bias changes were made according to

one-step contrastive divergence [16,17]:

DW !SrvT{Sr̂rv̂vTTq(̂rrDv)q(v̂vD̂rr)Tp(r)q(vDr)

Dbr !Sr{Sr̂rTq(̂rrDv)Tp(r)q(vDr)

Dbv !Sv{Sv̂vTq(̂rrDv)q(v̂vD̂rr)Tp(r)q(vDr)
,

ð5Þ

where the circumflexes differentiate the zeroth (no hat) and first

(hat) steps of Gibbs sampling. That is, the input data (r) are

propagated up into the multisensory (hidden) layer (v), back down

into the input units (̂rr), then back up into the multisensory neurons

(v̂v); see Fig. 1B. This is repeated for all the data (that is, for each

rh,rx drawn from Eq. 2, for each stimulus and set of gains drawn

from p(s) and p(g)). The change in the weight connecting neuron i
to neuron j is thus proportional to the difference between the first

and second pair of correlations between them—a Hebbian and an

anti-Hebbian term. This rule approximates gradient descent on an

objective function for density estimation (Hinton’s ‘‘contrastive

divergence’’ [17], or alternatively ‘‘probability flow’’ [64]).

Although this specific learning rule has not been documented in
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vivo, it is constructed entirely of components that have been:

change in firing rate based on (local) correlations between pre- and

postsynaptic spike counts. Anti-Hebbian learning has been

observed in a neural circuit [65], albeit not in mammalian cortex,

and plausible cellular mechanisms for it have been described [66].

Testing
After training, learning was turned off, and the network was

tested on a fresh batch of 40,000 data vectors (Fig. 1B): stimuli

were again drawn uniformly from the grid of joint angles, and the

corresponding spike counts simulated by drawing from the two

populations of Gaussian-tuned, Poisson neurons. For each input

vector, hidden-layer activities were computed by drawing 15

sample vectors (from p(vDr)) and averaging them. Since the input

gains are between 12 and 18, and assuming that hidden and input

units integrate information over the same-sized time window from

the past, this implies that hidden neurons fire no faster than input

neurons—which would otherwise constitute a violation of the

information bottleneck. This is essential for our task, since we

require an efficient coding, not merely a different one.

For each trial, decoding the hidden vector consists of estimating

from it the mean and covariance of the optimal posterior p(sDr)—
that is, all the information in the network about the stimulus.

Generally, finding a good decoder can be hard; but because the

network is a generative model, we can use its generative (hidden-

to-input) weights to turn the hidden vector back into expected

input spike counts (E½Rh,RxDv�)—which we know how to decode:

Eq. 3. In practice, it often turns out that the weighted sum in Eq.

3b is unnecessary: the center of mass from a single (updated)

population suffices. When showing results in joint angles, we take

the center of mass of the prop population; likewise for Cartesian

space and vis. Also, reconstruction of the total spike counts was

mildly improved by first mapping them to the true (input) total

spike counts via a standard neural network; in cases where this

final step was applied (Fig. 3A), training and testing used different

data. The posterior covariances used in Fig. 3B–D, however, did

not use any such trained decoder; they were reconstructed just as

the posterior means were, i.e. by using the generative weights and

then applying equation Eq. 3a.

Supporting Information

Figure S1 Probabilistic graphical models. The neural

populations have been collapsed to single nodes. (A) A directed

model for the data for multisensory integration. (B) A model that

captures the independence statements characterizing coordinate

transformations. (C) A model that captures the case where one

population (R2) sometimes reports one stimulus, sometimes the

other, as determined by T .

(EPS)

Figure S2 Coordinate transformation tuning curves
under different sampling schemes. (A) The scattered black

dots are sample pairs of body-centered hand position

(Tbody :~L cos(h)) and gaze angle (E) that were generated from

the graphical model at the bottom of Fig. 7C. Since E and

X~Tbody{E were sampled from uniform distributions on lines,

the resulting space is a parallelogram. Depending on which

rectangular subregion is selected (red, green, blue), different

histograms of tunings result— (B), (C), and (D), respectively. See

text for details of the analysis.

(EPS)

Text S1 Derivation of the optimal posterior for multi-
sensory integration, coordinate transformation, and
sometimes-decoupled inputs; notes on the fractional
information loss; a rationale for the number of hidden
units; and a note on the tuning of coordinate-transform-
ing neurons.
(PDF)
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27. Denève S, Latham PE, Pouget A (2001) Efficient computation and cue

integration with noisy population codes. Nature Neuroscience 4: 826–831.

28. Duhamel JR, Bremmer F, Ben Hamed S, GrafW (1997) Spatial invariance of

visual receptive fields in parietal cortex neurons. Nature 389: 845–8.

29. McGuire LMM, Sabes PN (2011) Heterogeneous representations in the superior

parietal lobule are common across reaches to visual and proprioceptive targets.

Journal of Neuroscience 31: 6661–73.
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