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Atom-economic catalytic amide synthesis
from amines and carboxylic acids activated
in situ with acetylenes
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Amide bond-forming reactions are of tremendous significance in synthetic chemistry.

Methodological research has, in the past, focused on efficiency and selectivity, and these have

reached impressive levels. However, the unacceptable amounts of waste produced have led the

ACS GCI Roundtable to label ‘amide bond formation avoiding poor atom economy’ as the most

pressing target for sustainable synthetic method development. In response to this acute

demand, we herein disclose an efficient one-pot amide coupling protocol that is based on

simple alkynes as coupling reagents: in the presence of a dichloro[(2,6,10-dodecatriene)-1,12-

diyl]ruthenium catalyst, carboxylate salts of primary or secondary amines react with

acetylene or ethoxyacetylene to vinyl ester intermediates, which undergo aminolysis to give

the corresponding amides along only with volatile acetaldehyde or ethyl acetate, respectively.

The new amide synthesis is broadly applicable to the synthesis of structurally diverse amides,

including dipeptides.
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A
mide bond formation is one of the most frequently
used transformations in organic chemistry1–4. The most
desirable amide synthesis, a direct condensation of

carboxylic acids with amines, is hindered by the intrinsic
acid–base reactivity of the starting materials. The thermal amide
bond formation from the ammonium carboxylate salts requires
high temperatures5–7, which can be lowered by Lewis acids or
boronic acid derivatives. However, even the best known systems
are limited to a narrow range of amines and require scavenging the
reaction water, for example, by large amounts of molecular sieves.
(Fig. 1, left)8–13. Therefore, amides are usually synthesized by
aminolysis of activated carboxylic acid derivatives, such as halides,
anhydrides, azides, or activated esters, that are mostly generated in
an extra step with aggressive, expensive or waste-intensive
reagents14–20. The other main strategy for amide bond formation
involves the in situ activation of carboxylic acids by peptide
coupling reagents, such as carbodiimides or phosphonium
salts21–31. Such amide syntheses are highly optimized and
provide access to almost any amide structure in near quantitative
yields. In modern protein synthesis, they are complemented by
efficient chemical and enzymatic peptide ligation methods32–37.
However, the atom economy of all these processes is low, and the
cumulative waste generated during amide synthesis is
unacceptable. As a result, the ACS GCI Roundtable has
identified ‘amide bond formation avoiding poor atom economy’
as the most pressing target for sustainable synthetic method
development38.

Over the last years, some elegant strategies for waste-minimized
amide synthesis have been devised (Fig. 1), for example,
dehydrogenative couplings of alcohols, aldehydes or alkynes
with amines, or additions of alcohols to nitriles39–51. However,
for most synthetic organic chemists, carboxylic acids and amines
are still the optimal substrate base for amide synthesis.

To address the central issue of atom economy in the synthesis
of amides from ammonium carboxylates, we looked for an
activator with minimal molecular weight and low intrinsic
reactivity that would scavenge the reaction water in a catalytic
condensation process. We envisioned that a hydroacyloxylation
catalyst with unprecedented activity might enable the generation
of vinyl esters from ammonium carboxylates and gaseous
acetylene. Aminolysis of these intermediates would furnish the
desired amides along with volatile acetaldehyde.

RuII, AgI and AuI complexes efficiently promote the addition
of carboxylic acids to alkynes under mild conditions, as reported
by Mitsudo, Dixneuf, Bruneau and others52–59. The aminolysis of
enol esters takes place under similarly mild conditions60–63.
However, for all known catalysts, the two reaction steps are
incompatible. As a result, this technology appeared limited to

two-step procedures with isolation of sensitive enol esters. For
example, Kita et al. reported an amide synthesis via isolated
ketene acetal intermediates64, and Breinbauer et al. synthesized
polypeptides via a Ru-catalysed hydroacyloxylation of alkynes
followed by enzymatic aminolysis65. These reactions demonstrate
the potential of this concept, giving access to amides in high
yields under mild conditions, as demanded especially by peptide
chemists. However, this approach can reach synthetic maturity
only through a catalytic one-pot process that overcomes all its
associated problems, for example, carboxylate salt formation
with basic amines which hinders catalytic hydroacyloxylation, the
control of hydroamination as a side reaction, and the challenging
activation of gaseous acetylene, which state-of-the-art catalysts
have not been extending to66.

We disclose herein an amidation protocol which allows the use
of low-molecular acetylene and its more activated homologue
ethoxyacetylene as a sustainable alternative for state-of-the-art
coupling agents. These procedures are convincing in terms of the
amount, toxicity and separation of the formed byproducts, yet,
broadly applicable, convenient and comparable cheap.

Results
Development of a one-pot amide synthesis. Evaluation of
state-of-the-art catalysts, for example, [Ru(methallyl)2dppb] or
[RuCl2(PPh3)(p-cymene)]58,67–69, in the reaction between
benzoic acid (1a) and 1-hexyne confirmed that they give high
yields only in the absence of benzylamine. None of them catalysed
the reaction of 1a with acetylene to give vinyl benzoate
(3a; Supplementary Tables 4 and 5).

However, we were pleased to find that simple RuCl3 catalyses
the conversion of benzylammonium benzoate (6aa) to the desired
N-benzyl benzamide in up to 75% yield at 80 �C under acetylene
at 1.7 bar, which is its usual tank pressure (Table 1, entry 1).
Systematic evaluation of RuIII and RuIV precursors revealed that
Ru-1 was most effective (entries 2 and 3). Phosphine and
nitrogen ligands adversely affected the yield (Supplementary
Tables 1 and 2). This is surprising, because the only known RuIV

hydroacyloxylation catalyst is the triphenylphosphine complex
reported by Cadierno et al.70

Dioxane was found to be the best solvent, but the reaction also
works well in toluene, THF and ethyl acetate (entries 4� 8). The
reaction is surprisingly tolerant to oxygen and water up to a
certain threshold (Supplementary Table 1).

Under optimal conditions, that is, 2 mol% Ru-1 or RuCl3 in
dioxane at 80 �C, the amide forms in near quantitative yield
within 6 h with acetylene as the carboxylate activator
(Table 1, entry 9, Supplementary Table 1). Higher alkynes are
inactive as activators, but with ethoxyacetylene and Ru-1 as
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Figure 1 | Atom-efficient approaches to amide bond formation. (a) Thermal or Lewis acid-mediated dehydration of ammonium carboxylates. (b) Catalytic

addition of alcohols to nitriles. (c) Dehydrogenative coupling of alcohols with amines. (d) Oxidative coupling of aldehydes and amines. (e) Oxidative

coupling of alkynes and amines.
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catalyst, full conversion was observed already at 40 �C within 4 h
(entries 13� 15). Under identical conditions, RuCl3 gives only
unsatisfactory yields for this activator (Supplementary Table 2).
The advantages of the somewhat less atom-economic
ethoxyacetylene are that it is more easily handled on small scales
than gaseous acetylene, and that inert ethyl acetate rather than
acetaldehyde is released.

Both new protocols were compared with two-step procedures
using established catalysts64, in which the enol esters are
formed in a separate step, with consecutive addition of the
amine either in the same solvent or after solvent exchange. With
acetylene as the activator, no conversion could be achieved, and
with ethoxyacetylene, the yields obtained in these two-step
syntheses were much lower than those obtained with our
convenient one-step protocols (Supplementary Tables 1 and 2).

Applicability of the developed processes. The scope of the
ecologically and economically beneficial acetylene protocol is
illustrated in Table 2. Aliphatic, aromatic and heteroaromatic
carboxylates were successfully coupled with primary amines.
Unfortunately, the substrate scope of this protocol is limited by
the solubility of the alkylammonium carboxylates in dioxane, the
optimal solvent for acetylene gas.

Such restrictions do not apply to the ethoxyacetylene protocol
in the solvent N-methyl-2-pyrrolidone, which is applicable to a
remarkably wide range of substrates (Table 3). Aromatic,
heteroaromatic and aliphatic carboxylic acids reacted with
benzylamine to give high yields of the corresponding amides.
Diverse functionalities including halo, ether, amide, aldehyde,
ester and even-free OH groups were tolerated. Other primary
and secondary amines were successfully converted to the

Table 1 | One-pot activation and amidation of carboxylic acids with acetylene*.
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N
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O

PhPh

5aa
Solvent

2a

[Ru]

Ru-2Ru-1

Entry Solvent [Ru] (mol%) Yield (%)

1 1,4-dioxane RuCl3�3H2O (1) 75
2 1,4-dioxane Ru-2 (0.5) 73
3 1,4-dioxane Ru-1 (1) 81
4 Ethyl acetate Ru-1 (1) 66
5 Toluene Ru-1 (1) 64
6 Tetrahydrofuran Ru-1 (1) 62
7 Acetonitrile Ru-1 (1) 25
8 Water Ru-1 (1) 0
9 1,4-dioxane Ru-1 (2) 94 (93)
10 1,4-dioxane Ru-1 (3) 84
11 1,4-dioxane Ru-1 (5) 71
12w 1,4-dioxane – 0
13z 1,4-dioxane Ru-1 (2) 87
14y 1,4-dioxane Ru-1 (2) 1
15z,|| NMP Ru-1 (1.5) 99 (99)

NMP, N-methyl-2-pyrrolidone; Ru-1, dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium.
*Reaction conditions: 0.5 mmol 6aa, 0.25 mmol 4a, 1.7 bar acetylene, Ru-catalyst, 0.5 ml solvent, 80 �C, 6 h. Yields were determined by GC analysis using n-tetradecane as internal standard; isolated
yields in parentheses.
wwithout Ru-catalyst.
z1.5 mmol 2b instead of 2a.
y1.5 mmol 1-hexyne instead of 2a.
||1 ml solvent, 40 �C, 4 h.

Table 2 | Scope of the amidation with acetylene as the activating agent*.
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*Reaction conditions: 1.0 mmol 6, 0.5 mmol 4, 1.7 bar acetylene, 2 mol% Ru-1, 1 ml 1,4-dioxane, 80 �C, 6 h. Isolated yields.
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Table 3 | Scope of the amidation with ethoxyacetylene as activating agent*.
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*Reaction conditions: 1.0 mmol 1, 1.5 mmol 4, 1.5 mmol 2b, 1.5 mol% Ru-1, 2 ml NMP, 40 �C, 4 h. Isolated yields.
w80 �C, 6 h.
z2 ml of toluene instead of NMP.
y3 mmol 2b and 4a.
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corresponding benzamides in good to excellent yields when
increasing the temperature to 80 �C to ensure full conversion
(Supplementary Table 3). Remarkably, the coupling of less
nucleophilic compounds such as amides, aniline and
diethylamine with benzoic acid also gave the desired products,
albeit in low yields. Other oxygen- or sulfur-based nucleophiles
could not be converted.

The synthetic concept may also be used for peptide couplings.
Various N-protected amino acids were successfully coupled with
amino acid esters. Without additives, racemization could not fully
be suppressed but remained below 10%, which is a good basis for
dedicated optimization.

Mechanistic considerations. The reaction mechanism was
investigated by in situ nuclear magnetic resonance spectroscopy.
The experiments confirmed the intermediacy of enol esters,
which formed within minutes and were consumed in the course
of the reaction (see Supplementary Table 6 and Supplementary
Fig. 1 respectively). We thus conclude that as outlined in Fig. 2,
the reaction proceeds via a Ru-catalysed hydroacyloxylation
via a standard catalytic cycle67,71 followed by aminolysis.
In ESI MS investigations of the reaction mixture, species with
m/z values of 754 and 647 were dominant. These were
identified as [RuCl2(benzyl amine)3(ethoxyacetylene)2

(benzoate)]þ and [RuCl2(benzyl amine)2(ethoxyacetylene)2

(benzoate)]þ . In tandem mass spectrometry (MS) experiments,
these adducts fragmented with loss of benzyl amine ligands
and formation of the six-coordinate [RuCl2(benzyl amine)1

(ethoxyacetylene)2(benzoate)]þ complex, which we believe to
be the catalyst resting state. It is reasonable to assume that it is a
Ru(IV)-complex, since it bears three anions and is still positively
charged. These investigations suggest the intermediacy of
high-valent Ru-species, which explains why RuIV pecursors
have a higher activity than the RuII and Ru0 precursors
employed in other catalytic additions. For the details of the
spectroscopic investigation, see Supplementary Figs 2–5.
In-depth, studies are required to clarify whether the carboxylate
addition proceeds via Ru-complexes with Z2-coordinated alkynes
or via Ru-alkylidene complexes.

In conclusion, the feasibility of catalytic amidation reactions
with minimal waste production has been demonstrated. Even
though extensive optimization is still required, this reaction
concept could become an important factor in meeting one of the
key challenges of Green Chemistry.

Methods
For analytical data and preparation methods of the compounds in this article, see
Supplementary Figs 6–111 and Supplementary Methods.

General techniques. All reactions were performed in oven-dried glassware
containing a Teflon-coated stirring bar and dry septum under a nitrogen
atmosphere. For the exclusion of atmospheric oxygen from the reaction media,
solvents were degassed by argon sparge and purified by standard procedures before
use. Non-aqueous amines were distilled before use. All reactions were monitored
by gas chromatography (GC) using n-tetradecane as an internal standard or by
high-performance liquid chromatography using anisole as an internal standard.
Response factors of the products with regard to n-tetradecane/anisole were
obtained experimentally by analysing known quantities of the substances. GC
analyses were carried out using an HP-5 capillary column (Phenyl Methyl Siloxane
30 m� 320� 0.25, 100/2.3-30-300/3) and a temperature programme beginning
with 2 min at 60 �C followed by 30 �C/min ramp to 300 �C, then 3 min at this temp.
High-performance liquid chromatography analyses were carried out using a
Shimadzu LC-2010A. The stationary phase was a reversed phase column
LiChroCart PAH C-18 from Merck KGaA with acetonitrile and water as eluents
at 60 �C and the following solvent programme: starting from 10 vol% acetonitrile
for 1 min, followed by increasing acetonitrile to 70 vol% during 23 min, then
decreasing again to 10 vol% rapidly and maintaining this value for the next
2 min. Column chromatography was performed using a Combi Flash
Companion-Chromatography-System (Isco-Systems) and RediSep packed columns
(12 g). nuclear magnetic resonance spectra were obtained on Bruker AMX 400 or
on Bruker Avance 600 systems using DMSO-d6, Chloroform-d3 or Toluene-d8 as
solvent, with proton and carbon resonances at 400/600 MHz and 101/151 MHz,
respectively. Mass spectral data were acquired on a GC-MS Saturn 2,100 T
(Varian). Infrared spectra were recorded on Perkin Elmer Spectrum 100 FT-IR
Spectrometer with Universal ATR Sampling Accessory. Melting points are
uncorrected and were measured on a Mettler FP 61. ESI MS data were acquired on
a Bruker Esquire 6,000 and evaluated with mMass software. Sample solutions at
concentrations of B1� 10� 4 M were continuously infused into the ESI chamber
at a flow rate of 2 ml min� 1 using a syringe pump. We use nitrogen as drying gas at
a flow rate of 3.0–4.0 l min� 1 at 300 �C and spray the solutions at a nebulizer
pressure of 4 psi with the electrospray needle held at 4.5 kV. CHN-elemental
analyses were performed with a Hanau Elemental Analyzer vario Micro cube and
HRMS with a Waters GCT Premier.

Synthesis of amides using acetylene as activator. An oven-dried headspace vial
with Teflon-coated stirring bar was charged with the corresponding ammonium
carboxylate (1 mmol) and dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium
(5.06 mg, 20mmol). The atmosphere was changed three times with nitrogen, then
N-methylpyrrolidone (1 ml) and the corresponding amine (0.5 mmol) were added.
The vial was placed in an autoclave reactor, the atmosphere was changed twice with
acetylene, and a pressure of 1.7 bar was set. The mixture was then heated to 80 �C
for 6 h. After cooling down to room temperature, the mixture was diluted with
20 ml of ethyl acetate and washed with each 20 ml of saturated NaHCO3 solution,
water and brine. The organic layer was dried with MgSO4, the solvent removed
under reduced pressure and the residue purified by column chromatography
(SiOH, ethyl acetate/cyclohexane gradient).

Synthesis of amides using ethoxyacetylene as activator. An oven-dried
headspace vial with Teflon-coated stirring bar was charged with the corresponding
carboxylic acid (1 mmol) and dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium
(5.06 mg, 15.0 mmol). The atmosphere was changed three times with
nitrogen, then N-methylpyrrolidone (2 ml), benzyl amine (164 mg, 167ml,
1.5 mmol) and ethoxyacetylene (40 wt%-solution in hexane; 210 mg, 299 ml and
1.5 mmol) were added in this order. The mixture was then heated to 40 �C for 4 h.
After cooling down to room temperature, the mixture was diluted with 20 ml of
ethyl acetate and washed with each 20 ml of sat. NaHCO3 solution, water and
brine. The organic layer was dried with MgSO4, the solvent removed under reduced
pressure and the residue purified by column chromatography (SiOH, ethyl acetate/
cyclohexane gradient).

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its supplementary information files.
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