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Predicting optimum crop designs 
using crop models and seasonal 
climate forecasts
D. Rodriguez   1, P. de Voil1, D. Hudson   2, J. N. Brown3, P. Hayman4, H. Marrou5 & H. Meinke6

Expected increases in food demand and the need to limit the incorporation of new lands into agriculture 
to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and 
manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of 
genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected 
growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, 
those optimum crop designs should be known, while the main problem is to predict relevant attributes 
of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test 
our capacity to inform that “hindsight”, by linking a tested crop model (APSIM) with a skillful seasonal 
climate forecasting system, to answer “What is the value of the skill in seasonal climate forecasting, to 
inform crop designs?” Results showed that the GCM POAMA-2 was reliable and skillful, and that when 
linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful 
GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop 
designs, increase farmers profits and reduce risks.

Feeding the projected 9 billion people by 2050 will primarily depend on our capacity to increase food production 
per unit of land area, particularly in dryland cropping1, rather than incorporating new lands into agriculture2,3. 
Opportunities to increase yields in dryland cropping systems exist4,5, and are likely to contribute up to ca. 46% of 
the projected future food supply/demand gap1. Dryland cropping is typically characterized by varying levels of 
climate and soils variability that generate different frequencies, dynamics and intensities of water stress patterns 
and crop yields6,7. Amongst most broad acre dryland crops, sorghum is considered to present advantages in terms 
of heat and drought tolerance8, while recent progress in sorghum yield gains9 show potential for sorghum to con-
tribute significantly to bridge expected gaps between food production and demand.

Climate variability contributes to yield gaps in three interrelated ways. (i) directly through crop physiological 
impacts of water and heat stresses7; (ii) indirectly when risk averse farmers adopt conservative management strat-
egies that trade yield potential for reduced yield variability10; and (iii) through a ‘moving target effect’ where even 
risk neutral farmers generally opt for management options that suit an average season, but that are sub-optimal 
for either above or below average seasons11.

In dryland sorghum cropping, growing conditions are influenced by two major factors, namely soil conditions 
at the time of sowing (i.e. soil fertility and soil water availability) and in-crop rainfall and its distribution during 
the upcoming season. While soil conditions are usually known (or at least knowable) at the beginning of the 
season, information about future rainfall could be obtained via skillful probabilistic seasonal climate forecasts12. 
Since the early 1980s there has been a steady improvement in the skill of seasonal climate forecasts13. This has 
come in part from advances in the understanding of climate drivers and sources of predictability at a range of time 
scales14, but also observational and computing advances13. Improvements in skill have also been greatly assisted 
by satellite and computing technology and improvements in data assimilation and model parameterisation14. For 
example, a comparative assessment of accuracy and reliability of Australia’s Global Circulation Model (GCM) 
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operational dynamic forecasting model, versus the previous statistical seasonal forecasting system, showed that 
the GCM based system was more reliable, consistently more accurate over a larger spatial domain, and more 
useful than the previous Bureau of Meteorology statistical model15.

In agriculture, seasonal climate forecasts are particularly useful when linked with crop simulation models16,17. 
The significance of using seasonal climate forecasts linked with crop simulation tools7,18,19 resides in the capacity 
of dynamic crop models to capture the climate – soil – crop interactions and their emerging dynamics on water 
and nutrient supply and demand, stress patterns and interactions determining the final yield. Recent improve-
ments in the capacity of the APSIM (www.apsim.info) crop simulation model to model the physiology and genet-
ics of complex adaptive traits in sorghum20, provides opportunity to inform optimum combinations of genetics 
(G) and managements (M), known as ‘crop designs’ (GxM)7.

Both, gains in skill from the adoption of dynamic GCM forecasting systems, and improvements in crop sim-
ulation capacity20,21, provide opportunity to develop new and more valuable climate applications. This calls for 
revisiting the quantification of value in the skill of existing crop modelling and climate forecasting tools to sup-
port crop design decisions and to bridge productivity gaps by providing benefits to dryland farmers world-wide. 
Here, the research question “What is the value of the skill in seasonal climate forecasting, to inform crop designs?” 
was answered by

	 (i)	 identifying a reliable and skillful seasonal climate forecast;
	(ii)	 understanding our capacity to predict outcomes of alternative crop designs; and
	(iii)	 using a reliable and skillful seasonal climate forecast and a crop model to quantify, in principle, the mag-

nitude of potential changes in profits and risks from adapting crop designs to the ‘where and when’, i.e. 
location-specific and expected seasonal conditions.

Results
Rainfall forecasts reliability and measures of skill.  The skill of two forecast systems – the SOI phase 
system and the GCM POAMA-2 (see Supp. Mat.) – were compared relative to climatology. Reliability plots of 
three-month rainfall forecast probabilities at a lead time = 0, for above median rainfall (Fig. 1a,b), and rainfall 
falling in the first (Fig. 1c,d) and third (Fig. 1e,f) terciles, showed that POAMA-2 had clear advantages over the 
statistical SOI phase system, in terms of reduced biases, higher reliability and sharpness. The reliability for above/
below median rainfall, tercile 1 and 3 rainfall were always higher for POAMA-2 i.e. in Fig. 1, b (slope) values were 
much closer to the unity, and root mean square error (RMSE) values were less than half of those for the SOI phase 
system. The frequency plots in the insets of Fig. 1, represent the relative fraction of grid points occurring for each 
forecast probability bin, and indicate a relatively sharper forecast (a greater range of probabilities issued) with 
POAMA-2, making it potentially more useful for decision making i.e. an improved capacity to predict extreme 
seasons.

Thirty-year-running percent-consistent forecasts and Brier skill score (BSS) values indicate the changing and 
lower skill level of the SOI phase system compared to the skill of POAMA-2 over the hindcast period 1981–2013 
(Fig. 2). We also present spatial (Figs 3, 4) and seasonal (Fig. 4) variations in BSS for above/below median rainfall 
forecasts. In contrast to the SOI phase system, Fig. 3 shows that overall and for all the sites, the forecasts from 
POAMA-2 were more skillful than using climatology. For the forecasts of different seasons, POAMA-2 showed 
consistently higher values of BSS for above/below median rainfall forecasts across most sites compared to the 
SOI phase system, particularly for forecasts initialized between March and September, when POAMA-2 has its 
highest skill (Fig. 4). We found similar results for forecasts of rainfall falling within terciles 1 and 3 of climatology 
(Figures S1 and S2).

Changes in shift and dispersion between climatology and the forecasted distributions for three monthly above/  
below median rainfall are shown in density plots, as the relationship between the variance ratio (VR) and the 
absolute mean deviations (AMD) (mm) (Fig. 5 all months and locations, and Fig. S3 for each monthly forecast 
of three-monthly rainfall). Figure 5 shows a larger frequency of lower VR and higher AMD values for POAMA-2 
than for the SOI phase system. Also, POAMA-2 consistently showed lower VR and higher AMD values for rain-
fall forecasts of each month of the year (Fig. S3).

Given the better performance of POAMA-2 with respect to the SOI phase system, GxExM effects and the 
value of the forecast skill to inform crop design was only tested using POAMA-2.

GxExM effects on forecasts of sorghum yield.  We used POAMA-2 ensemble seasonal forecasts down-
scaled to station level for the period 1981–2015 to drive multiple sets of APSIM simulations and produce sim-
ulated sorghum yields. The sets of APSIM simulations covered each possible combination of location; hybrid 
characteristics (i.e. maturity and tillering habit); management practices (i.e. sowing window, sowing density, row 
configuration, and level of nitrogen application); location (i.e. soil type); and prevailing conditions (i.e. soil water 
content at the time of sowing) (Table 2). The BSS and percent consistent values were calculated for sorghum yields 
and the distributions of BSS and percent consistent values for forecasts of above/below median, tercile 1 and 
tercile 3 sorghum yields are shown in Fig. 6a,b. The frequency distribution of positive (skillful) BSS values, and 
values of percent consistent higher than 50% varied across locations and forecasts. An analysis of variance on the 
values of BSS for the locations and factors in the GxExM factorial combination showed that the factor ‘Location’ 
had a highly significant (p < 0.0001) effect on the BSS (Table 3, and S1). The influence of the different factors in 
the GxM factorial was then tested within each location. Results showed that with the exception of soil type and 
sowing density at Dalby, and row configuration and nitrogen fertilization at Goondiwindi and Moree, most fac-
tors significantly affected the value of BSS (Table 3, and S1).

http://www.apsim.info
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We used regression trees to untangle the different GxExM effects on the value of BSS (Figs 7–10) and to 
answer what GxExM combinations show high or low skill values. The different G, E, and M factorial components 
had different importance in determining positive and high values of BSS i.e. high skill. For example, in Capella 
Queensland (Fig. 7) the highest values of BSS (high skill) were obtained for sorghum crops sown in October 
and November (Nodes 12 and 13), particularly on dry soils (Node 13). January and September sowings on high 
PAWC dry soils (Node 9) also showed high values of the BSS. The lowest values of BSS (no skill) were observed for 
December sowings (Node 2). In Dalby (Fig. 8) the highest values of BSS (high skill) were obtained for sorghum 
crops sown in early in September (Node 17), or with late sowings in January, of non-tillering hybrids sown at 
low plant densities (Node 10). In Dalby, the lowest values of BSS (no skill) were observed for December sowings 
(Nodes 4 and 5). In Goondiwindi (Fig. 9) the highest values of BSS (high skill) were obtained for medium and 

Figure 1.  Reliability plots of forecast probabilities for monthly rainfall i.e. lead time = 0, for POAMA2 (a,c, and e)  
and the SOI phase system (b,d, and f), for above and below long-term median (a and b), and rainfall falling in 
the first (c and d), and third (e and f) terciles, at Moree, Goondiwindi, Dalby and Emerald Australia. In each 
graph, the solid line is the 1:1 relationship; b is the slope of the relationship between the observed frequency and 
forecasted probability; and RMSE is the root mean square error for the regression.
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Figure 2.  Thirty year running percent consistent (a to c), and Brier Skill Score (d to f) (Murphy, 1986) for the 
SOI phase system from 1920 to 1983 for forecasts of above and below median rainfall (a and d), rainfall falling 
on tercile 1 (b and e), and rainfall falling tercile 3 (c and f). Forecasts are for September to November rainfall, all 
sites i.e. Moree, Goondiwindi, Dalby and Emerald Australia together. The red dot is the skill for POAMA-2 for 
the period 1981–2013.

Location
SILO 
station id. Longitude Latitude

Annual rainfall 
(mm) CV

Sep-Feb 
rainfall (mm) CV

Capella, Queensland 35016 148.0 −23.1 596.1 0.34 397.1 0.40

Dalby, Queensland 41023 151.3 −27.2 669.8 0.25 426.2 0.32

Goondiwindi, Queensland 41038 150.3 −28.6 614.0 0.27 366.9 0.35

Moree, New South Wales 53027 149.9 −29.5 584.3 0.28 339.1 0.38

Table 1.  Rainfall characteristics of the locations in the study region. CV is the coefficient of variability for 
annual rainfall and September to February rainfall.
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Figure 3.  Brier Skill Score for above and below median, tercile 1 and tercile 3 three monthly rainfall (lead 
time = 0) from January to December, using POAMA-2 and the SOI phase system, at all three locations (All), 
Capella (Cap), Dalby (Dalb), Goondiwindi (Gnd), and Moree (Mre) Australia.

Figure 4.  Brier Skill Scores for forecasts of above/below median three-monthly rainfall forecasted using 
POAMA2 and the SOI phase system for: all three locations (All), and for Capella (Cap), Dalby (Dalb), 
Goondiwindi (Gnd), and Moree (Mre) Australia. The month indicated on the figure corresponds to the first 
month of the forecast (i.e. for “Oct” the forecast is initialized on the 1st Oct and is assessed for the OND season).

Figure 5.  Relationship between the variance ratio i.e. a measure of dispersion, and the absolute mean deviation 
(mm) i.e. a measure of shift, for forecasts of above median three-monthly rainfall using POAMA2 and the SOI 
phase system. The figure is for all months and locations in the study i.e. Capella, Dalby, and Goondiwindi, and 
Moree Australia.
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late sorghum crops sown in October and November (Node 11) or early hybrids sown in November (Node 10). 
In Goondiwindi, the lowest values of BSS (no skill) were observed for December sowings (Nodes 3). In Moree 
(Fig. 10) the highest values of BSS (high skill) were obtained for sowings in October and high sowing densities 
(Node 13), or low sow densities of high tillering hybrids (Node 12). In Moree, the lowest values of BSS (no skill) 
were observed for December sowings particularly on dry soils (Nodes 3), or October sowings of no tillering late 
hybrids.

In general, the results from the regression trees across all locations followed a similar pattern: higher values 
of BSS (high skill) were observed when the GxExM factor combination resulted in crop designs that were highly 
dependent on seasonal conditions, i.e. in-crop rainfall.

Value of APSIM and POAMA-2 to inform crop designs (GxM).  The value of linking APSIM and a 
GCM (POAMA-2) to optimize crop designs for each individual year in the hindcast series requires time series 
of simulated sorghum yields for three distinct different crop design (GxM) strategies. Reflecting current farmer 
management (GxMf) we used a single and static hybrid by management combination optimized for most years 
(GxMoptS); and a dynamic GxM choice optimized for each individual year in response to the seasonal climate 
forecast (GxMoptSCF). The farmer GxMf and optimum GxMoptS managements do not change during the hindcast 
period 1981 to 2015. In contrast, GxMoptSCF is adjusted each year in response to the climate forecast, equations (1) 
and (2). At each location, the three-time series of simulated yields were converted to an economic time series of 
profit ($/ha) by multiplying the yield (t/ha) by a price ($/t) to calculate annual income ($/ha) and subtracting a 

Figure 6.  Brier Skill Scores (a) and Percent consistent values (b) for forecasts of above or below median, 
tercile 1, and tercile 3 sorghum yields simulated using a factorial combination of genetic, management and site 
conditions, using POAMA- at Capella, Dalby, and Goondiwindi, and Moree Australia.

Location Soil type PAW (mm) PAWC (mm)

Capella, high Black clay Vertosol 287 415

Capella, medium Grey medium clay Vertosol 189 274

Capella, low Black light clay Vertosol 146 146

Dalby, high Black clay Vertosol 308 400

Dalby, medium Black medium clay Vertosol 253 344

Dalby, low Grey light clay Vertosol 175 274

Goondiwindi, high Grey clay Vertosol 283 313

Goondiwindi, medium Grey medium clay Vertosol 214 361

Goondiwindi, low Grey light clay Vertosol 179 310

Moree, high Black clay Vertosol 299 254

Moree, medium Grey medium clay Vertosol 220 304

Moree, low Black light clay Vertosol 106 124

Table 2.  Location and soil denominator, soil type, and soil water characteristics at the locations in the study 
region. Plant available water (PAW) is the difference between the drainage upper limit and the crop lower limit; 
Plant available water capacity (PAWC) is the difference between the drainage upper limit and wilting point.
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Figure 7.  Regression tree on the Brier Skill Scores for forecasts of above median sorghum yields simulated 
using a factorial combination of genetic, management and site conditions, using POAMA-2 at Capella Australia. 
References: Window indicates the sowing month; Soil refers to the soil high (h), medium (m) or low (l) plant 
available water capacity; ISW refers to the soil plant available water content (v v−1) at the time of sowing; and N 
to kg N ha−1 applied at sowing. In the boxplots n refers to the number of node simulations and the red dashed 
line indicates a Brier Skill Score value of 0.

Figure 8.  Regression tree on the Brier Skill Scores for forecasts of above or below median sorghum yields 
simulated using a factorial combination of genetic, management and site conditions, using POAMA2 at Dalby 
Australia. References: Window indicates the sowing month; Tillers refers to the tillering type of the hybrid 
where 0 is no tillering and 4 is high tillering; ISW refers to the soil plant available water content (v v−1) at the 
time of sowing; Density to the number of plants sown m−2; Cultivar is the maturity type of the hybrid, i.e. 
early, medium, or late; and N to kg N ha−1 applied at sowing. In the boxplots n refers to the number of node 
simulations and the red dashed line indicates a Brier Skill Score value of 0.

All sites Capella Dalby Goondiwindi Moore

Location *** na na na na

Sowing window *** *** *** *** ***

Soil type *** *** ns *** ***

Plant available water *** *** *** *** ***

Hybrid maturity *** *** *** *** ***

Tillering type *** *** ** * *

Density *** *** ns *** ***

Row configuration *** ** *** ns ns

Nitrogen fertilization *** *** *** ns ns

Table 3.  Levels of significance from ANOVA for variables related to genotype characteristics (G), management 
practices (M) and location (E), for all the locations together (All sites); and Capella, Dalby, Goondiwindi, and 
Moree individually, for the GxMxE combinations showing Brier Skill Scores in the upper 75% of the values. 
Significance codes: ***0; **0.001; **0.01; and *0.05; ns = not significant. na = not applicable.



www.nature.com/scientificreports/

8ScIenTIfIc REPOrtS |  (2018) 8:2231  | DOI:10.1038/s41598-018-20628-2

growing cost ($/ha). The current farmer management (GxMf) was used as the base line to calculate the benefit of 
optimizing the hybrid and management in all years (Tables 4 and S2).

= −Value Profit Profit (1)optS GxM GxMoptS f

= −Value Profit Profit (2)optSCF GxM GxMoptSCF optS

Irrespective of the calculation method, the value of linking APSIM and POAMA-2 was different across locations 
and soil types. Within each location ValueoptS was largest for crops grown on deeper soils, both in terms of higher 
profits and reductions in down side risk. On average, ValueoptS showed increases in average profits from 10.2 to 
26.1% i.e. 56 to 226 AU$ ha−1, and average reductions in down side risk of up to 100% i.e. no risk. Table S2 shows 
the static, most frequent GxM combinations that resulted in the largest increases in profit and the largest reduc-
tions in downside risk. For instance, at Dalby common practice is to sow sorghum in October, on at least 60% 
ISW (i.e. more than 100 mm of stored soil water), using medium maturities and medium tillering hybrids, sown 
at 5 plants m−2 and using medium levels of ca. 50 kg N ha−1. However, using APSIM combined with POAMA-2 
we can device a more profitable and less risky static GxM combination: the simulations show that on high PAWC 
soils, increasing plant populations and nitrogen supply would increase profits by up to 16% in 26% of the hindcast 
years. On medium PAWC soils, gains in profit were 29% in 26% of the years; while on low PAWC soils, gains in 

Figure 9.  Regression tree on the Brier Skill Scores for forecasts of above or below median sorghum yields 
simulated using a factorial combination of genetic, management and site conditions, using POAMA2 at 
Goondiwindi Australia. References: Window indicates the sowing month; and Cultivar is the maturity type 
of the hybrid i.e. early, medium or late. In the boxplots n refers to the number of node simulations and the red 
dashed line indicates a Brier Skill Score value of 0.

Figure 10.  Regression tree on the Brier Skill Scores for forecasts of above or below median sorghum yields 
simulated using a factorial combination of genetic, management and site conditions, using POAMA2 at Moree 
Australia. References: Window indicates the sowing month; Tillers refers to the tillering type of the hybrid 
where 0 is no tillering and 4 is high tillering; ISW refers to the soil plant available water content (v v−1) at the 
time of sowing; Density to the number of plants sown m−2; and Cultivar is the maturity type of the hybrid, 
i.e. early, medium, or late. In the boxplots n refers to the number of node simulations and the red dashed line 
indicates a Brier Skill Score value of 0.
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profits were 21% in also 26% of the years (Table S2). When we calculated the value of skill in seasonal climate fore-
casting relative to an improved static management involving higher levels of investment in nitrogen fertilizers, the 
additional value of the new climate information was smaller, on average 17 AU$ ha−1, i.e. ValueoptSCF in Table 4. In 
Table 4 we also show the value of perfect knowledge (ValuePK), this is, the difference between an optimized crop 
design and the static farmers’ management, calculated using observed climatology. From comparing ValuePK, and 
ValueoptS (Table 4) we can conclude that present value in the skill of seasonal climate forecasting falls approxi-
mately mid-way between ‘no skill’ and perfect knowledge of the future climate.

Discussion
Inherent to dryland cropping is a high level of season-to-season and within-season climate variability14,22. This, 
together with different G and M combinations results in highly contrasting stress environments and crop yields6,7. 
Australia has a long track record of valuable developments in climate sciences and applications23, such as the 
development and use of seasonal climate forecasts to inform likely seasonal conditions and practice change15,23, 
see also Climate Kelpie at http://www.climatekelpie.com.au. However, adoption remains low due to, (i) the per-
ceived low value of the existing skill in the information of seasonal climate forecasts24; (ii) the complexities associ-
ated with the multiple interactions between factors when managing biological systems (i.e. climate, soil and crop 
interactions, and their effect on the skill and value of crop yield forecasts)23; and (iii) the challenge of understand-
ing and communicating probabilistic information24, especially by risk averse farm managers and consultants10.

Here we used measures of forecast reliability, skill, shift and dispersion to identify a reliable and skillful sea-
sonal climate forecast for rainfall. We then used the most reliable and skillful forecast in combination with a 
validated crop simulation model to capture the multiple interactions between sorghum hybrid, management 
and environmental conditions. Finally, we calculated the value of skill in seasonal climate forecasting to inform 
optimum crop designs for sorghum in Australia.

Results showed that the forecasts produced by Australia’s operational forecasting system POAMA-225 proved 
to be more reliable, sharper and consistently more accurate than the SOI phase system26. The extent of the dif-
ference between both systems was substantial; we know of no previous attempts to compare them. Results show 
that the dynamic climate model outperformed the statistical climate model across all tested indices (Figs 1 and 2). 
In general, the SOI phase system was worse than climatology at predicting rainfall. This is likely a consequence 
of progressive skill degradation over time since the system was first developed in the mid 1990s26. Being a static, 
statistical system based on historical relations between the SOI and future rainfall, it is likely to have suffered 
from degradation due to climate change and low frequency climate fluctuations that have affected the historical 
climate record since27. Significant improvements in sharpness, reliability and accuracy from the previous Bureau 
of Meteorology (BOM) statistical28 to the current BOM’s dynamic models25 were reported before15. Once chal-
lenges such as data initialization and resolution are addressed, dynamical models are logically able to outperform 

Soil type 
(PAWC)

Mean value to inform GxM with respect to a static management

Profit ($ ha−1) DSR (%)

Farmers Optimized ValueoptS ValueoptSCF ValuePK Farmers Optimized ValueoptS

Capella

High 1108 1260 152 3 335 0 0 No risk

Medium 748 824 77 3 224 12 0 −100

Low 544 600 56 4 219 68 62 −9

Dalby

High 1127 1337 210 13 353 0 0 No risk

Medium 1048 1241 194 17 351 0 0 No risk

Low 795 913 118 12 288 6 3 −50

Goondiwindi

High 866 1092 226 16 432 6 0 −100

Medium 841 1011 170 63 345 3 0 −100

Low 678 793 115 6 312 34 6 −82

Moree

High 1025 1226 202 23 406 0 0 No risk

Medium 814 962 148 32 370 9 0 −100

Low 373 427 54 19 210 89 86 −3.3

Table 4.  Mean profits from a simulation using farmers current practice and climatology (Farmers), perfect 
knowledge (PK) i.e. optimized crop designs using climatology, optimized crop design using POAMA-2 
(Optimised); and value i.e. mean changes in profit and down side risk i.e. likelihood of a profit lower than 
$600 ha−1 for, farmers current practice (Valuef). Optimized crop design using climatology 1981–2015 and 
(ValueoptS) and a POAMA-2 seasonal climate forecast (ValueoptSCF)). ValueoptS = difference in profit ($ ha−1) and 
down side risk (DSR), between simulation of current farmers’ hybrid by management combination (Valuef) 
and a static (every year the same) optimized hybrid by management combination. ValueoptSCF = difference in 
profit ($ ha−1), between ValueoptS and the dynamically (every year different) optimized hybrid by management 
combination informed by the POAMA-2 seasonal climate forecasts. ValuePK = Value of having perfect 
knowledge i.e. optimum crop design using observed climatology.

http://www.climatekelpie.com.au
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their simpler statistical counterparts for a number of reasons. Firstly, dynamic models can incorporate a number 
of climate drivers beyond ENSO such as the Indian Ocean Dipole and monsoon variability and their complex 
interrelationships. Secondly, climate change and its effect on climate drivers are incorporated into dynamical 
models whereas statistical approaches are limited to analogues from the past29. Also, decadal variations in climate 
interactions require a long historical record for differing phases to be accounted for30, particularly the variations 
in predictive skill across decades27. BSS values for above/below median rainfall, and rainfall falling within tercile 
1 or 3, varied across sites (Fig. 3) and within sites during the year (Fig. 4). This is consistent with observations of 
spatial and temporal variations in the influence of ENSO across eastern Australia14. An important observation 
was the significantly higher level of skill in POAMA-2 between March and September across all tested locations. 
Although the locations in this study are mostly summer rainfall dominant, this is at a time of the year when some 
of the most profitable crops are grown in the region e.g. wheat and chickpeas.

When we calculated BSS values for a simulated factorial combination of GxM factors on sorghum yields, we 
observed a large variation in BSS and percent consistent values for forecasts of above/below median, tercile 1 and 
tercile 3 sorghum yields (Fig. 6a,b). The large variability in BSS values from the GxMxE factorial combination was 
expected, as the influence of seasonal climate forecasts on sorghum yield is likely to vary with the reliance of the 
crop design on in-crop rainfall and seasonal conditions31. This is consistent with others32, who found that sam-
pling variances increase with increasing forecast accuracy, and with decreasing climatological event probability. 
Our results showed that location, site, hybrid and management practices all significantly affected the value of BSS, 
and that as indicated above, the highest values of BSS were observed for crop designs that were highly reliant on 
in-crop rainfall. The capacity of soils to buffer impacts climate variability and to modify the skill and value of a 
forecast was shown before31. The influence of site, hybrid, and management combinations on the economic value 
of using a crop model and GCM forecasts is discussed below.

Reliability and skill in a seasonal climate forecast is essential, although it does not guarantee that the informa-
tion has value, or is of sufficient importance to change the behavior of mostly risk averse decision makers such as 
dryland farmers10,33. Previous analyses showed that up to 20% increases in profit and or up to 35% reductions in 
risk were possible when tactical adjustments to crop nitrogen management were informed using the SOI phase 
system17. More recently, in silico estimates of benefits from environment specific crop designs e.g. associated with 
increasing plant densities and sowing low tillering sorghum hybrids, ranged between 0.22 and 0.41 t ha−1 ca. 
56–104 AU$ ha−1 at average sorghum prices (254 AU$ t−1), together with slight reductions in down side risk7. 
Here we showed that the value, in terms of increases in profits and reductions in downside risks, from identifying 
optimum GxM combinations using a crop simulation model and a seasonal climate forecast was significant across 
all tested locations and soil conditions i.e. soil PAWC values (Table 4). The value in skill depended on the baseline 
for the comparison: When current farmers’ practice was used as the baseline, linking APSIM sorghum and 
POAMA-2 increased average profits by 143 AU$ ha−1 and reduced or even eliminated down side risk. When the 
baseline for the comparison was the highest yielding, static hybrid-by-management combination (Table 4 and S2), 
the actual value of the additional climate information was on average 17 AU$ ha−1, which compares to the benefits 
derived from Australia’s sorghum breeding over the last thirty years9 i.e. 2.1% per year, or 44 kg ha−1 year−1. These 
results indicate that even though the value of the additional climate information might seem small (ValueoptSCF), 
its magnitude compares well with that derived from much larger and better funded breeding programs. Much 
larger benefits (ValueoptS) might be realized when using such insights in discussions with farmers on benefits and 
risk from increasing investments in dryland cropping10 to sustainably bridge productivity and profit gaps in dry-
land cropping i.e. the difference between ProfitGxMf

 and ProfitGxMoptS
 or ProfitGxMoptSCF

 (Table 4).
Given the chaotic nature of the atmosphere it is impossible to know exactly how it will evolve beyond a few 

days34, requiring the use of probabilistic forecasts and analyses of changes in probability distribution functions, 
with respect to climatology12,18,34. However, given the hypothetical case that we would have perfect knowledge 
about the future, we also estimated that the present value in seasonal climate forecasting falls mid-way from hav-
ing perfect knowledge (ValuePK in Table 4). Clearly, communicating probabilistic information requires represent-
ing the complete distribution of likely outcomes from a change in practice against the counterfactual of ‘no action’, 
and accepting that pay-offs will be realized long term, rather than every single occasion the forecast is used. This is 
important, given that the wide range of individual circumstances affects farmers’ levels of risk aversion and invest-
ment capacity. The results presented here indicate that improved agronomic practice and increased investments 
in fertilizers can lift average profits by up to 82%, while climate forecasts information can contribute up to 12%, a 
value that is on par with plant breeding.

Conclusions
We conclude that reliable and skillful dynamic GCM models, interfaced with validated crop simulation mod-
els, can now be used to inform optimum crop designs to increase farmers’ profits and reduce risks. Australia’s 
Bureau of Meteorology current POAMA-2 model outperformed the statistical SOI phase system across all tested 
measures of reliability, skill, shift and dispersion, particularly during autumn and winter. The expected release of 
BOM’s new higher resolution and more sophisticated ACCESS-S1 seasonal climate forecast system early during 
2018 is likely to increase further the value of climate information when linked with crop simulation models like 
APSIM. To achieve those gains, improvements in downscaling techniques and real-time access to outputs from 
BOM’s seasonal climate forecasts will be required. Further, efforts need to continue that makes such information 
available to decision makers in a form that is understandable and useable.

Methods
Climate data and seasonal climate forecasting tools.  Long term climate records, the SOI phase sys-
tem26 and a hindcast from the operational Australian seasonal climate forecasting system (POAMA-2)25 were 
assembled for four sites in Australia’s northern grains region i.e. Capella, Dalby and Goondiwindi in Queensland, 
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and Moree in New South Wales (Table 1). Weather data included both station data from SILO (1889–2016) 
(https://www.longpaddock.qld.gov.au/silo/), and gridded (2.5 degree) data (1901–2013) from GPCC (https://
www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html). At each location, “0-lead” rainfall forecasts for the next 
ninety days were made at the beginning of each month using both POAMA-2 and the SOI phase system for the 
common hindcast period of 1981–2015.

The SOI phase system26 was used to develop forecast distributions from analogue years of observed data, a 
cross validated probability of falling into each category was calculated as in17. The SOI phase system uses five 
fixed phases derived from consecutive monthly values of the SOI normalized with respect to the base period 
1887–1989. The five phases of the SOI are rapidly rising, consistently positive, neutral or near zero, rapidly falling 
and consistently negative. Analog years corresponding to each of the SOI phases were obtained from the Long 
Paddock website (www.longpaddock.qld.gov.au). The analogue sets used to create the SOI phase distributions 
were taken from the period 1901–2013.

POAMA-2 is a global ensemble seasonal forecast system, comprising a coupled ocean-atmosphere model and 
data assimilation systems for the initialization of the ocean, land and atmosphere25. The forecasts are initialized 
with observational data available at the start of the forecast (to provide the best representation of the current state 
of the climate system) and are then run forward in forecast mode for nine months. Multiple forecasts are run for a 
given start time, called an ensemble, in order to provide an indication of the uncertainty of the future evolution of 
the climate system i.e. the likelihood of future conditions is presented as a forecast distribution. The ensemble for 
a given start time consists of thirty-three forecasts that differ only in their initial conditions. POAMA-2 forecasts 
are made every 5 days and in order to expand the number of ensemble members, the outputs from three consecu-
tive runs were used to create a 99-member ensemble (this approach is also taken by the Bureau of Meteorology for 
their climate outlooks). POAMA-2 forecasts were made for four locations each falling into a separate 2.5-degree 
grid cell. To assess the value of using POAMA-2 seasonal forecasts, we use a set of forecasts that have been run ret-
rospectively over a period in the past, called a hindcast set. The hindcast period is 1981–2015 and the 99-member 
ensemble forecasts issued on the first day of every month in that period were used in this study. POAMA-2 fore-
casts were assembled in two forms, (i) a 3-month total rainfall forecast made on the first day of every month; and 
(ii) a downscaled daily time series of rainfall, maximum and minimum temperatures and solar radiation, suitable 
to be used with a crop simulation model35.

APSIM modelling.  The open source code validated APSIM sorghum model20 was used to simulate a compre-
hensive factorial combination of hybrid characteristics (G), management factors and site-soil conditions across 
four locations in Queensland and New South Wales, Australia. APSIM sorghum was developed and parameter-
ized using local field experimentation and cultivars, details on model equations and validation results are pro-
vided with the supplementary material, and can be also accessed at http://www.apsim.info/APSIM.Validation/
Main.aspx

Simulations for the period 1981–2015 using observed station data (n = 1) and the downscaled daily time series 
forecast (n = 99) from POAMA were conducted for monthly sowing windows between September and January; 
on three different soil types per location (Table 2); and four values of initial soil water (ISW) at the time of sowing 
(0.2, 0.4, 0.6, and 0.8 v/v). Agronomic management factors included two row configurations (solid 1 m rows, and 
single skip)36, four levels of plant density (3.5, 5, 6.5, 8 pl m−2), and three levels of nitrogen fertilization (50, 100 
and 150 kg N ha−1). Genotype characteristics included three levels of maturity (early, medium and late), and three 
levels of tillering (no tillering, medium and high tillering) as in7. The model was run over the 1981–2015 (34 
years) hindcast series, resulting in a total number of GxExM combinations of 176,256,000 crop year simulations.

Measures of skill.  The skill of both forecasting systems was calculated on both 3-month gridded rainfall 
(GPCC) and simulated sorghum yields. From the rainfall forecast distributions, probabilities of above median, 
tercile 1 and 3 rainfall, and a binary outcome i.e. correct or incorrect, for each forecast were calculated. Measures 
of skill included the reliability diagram37, the Brier Skill Score (BSS, equations (S3 and S4))38, percent consistent 
rates, and measures of shift in the mean i.e. absolute mean deviation (AMD, equation (S5)), and dispersion i.e. the 
variance ratio (VR, equation (S6)) of the sample variances18,39.

Percent consistent compares how often the forecast favored a particular outcome and how often that outcome 
was realized15. Reliability diagrams indicate errors associated with the issued probabilities. In the reliability plots 
the y-axis is the relative observed frequency and the x-axis is the forecast probability. The solid line in the reli-
ability plots indicates perfect reliability. The reliability diagram is accompanied by a histogram which indicates 
the sample size in each forecast probability bin. The histogram can be used to indicate possible sampling issues 
associated with each bin (e.g. too few samples for a robust result), as well as the sharpness of the forecast system. 
If all the forecasts fell in the model climatology probability bin, then the system would have no sharpness (sharp-
ness is the tendency to forecast extreme values). Sharp forecasts are useful for decision making, assuming they are 
reliable. The Brier Skill Score indicates the proportional improvement of the probabilistic forecasts from a given 
system over using climatological forecasts. All statistical analyses were calculated using the R software38.

Value of linking APSIM and POAMA-2 to inform crop designs (GxM).  The value of using POAMA-2 
to inform more profitable and resilient crop designs was derived for the subset of GxExM combinations produc-
ing positive BSS values for forecasts of above/below median sorghum yields. A search algorithm was developed 
that included the following steps (i) a matrix of average profits and down side risk for best farmers’ practice and 
for a factorial combination of GxM (hybrid maturity and tillering type, plant density, row configuration and 
fertilization rate) was created; (ii) GxM combinations having values of BSS higher than zero (skill) for predicted 
profits were kept; (iii) For each year in the hindcast the GxM alternative showing the highest profit were then 

https://www.longpaddock.qld.gov.au/silo/
https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html
https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html
http://www.longpaddock.qld.gov.au
http://www.apsim.info/APSIM.Validation/Main.aspx
http://www.apsim.info/APSIM.Validation/Main.aspx
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selected; (iv) Value was then calculated in terms of changes in average profits and down side risk i.e. likelihood of 
a profit lower than 600 AU$ ha−1, between best farmers’ practice, i.e. a static though locally recommended best 
agronomic management, and the selected GxM combination predicted using the POAMA-2 forecast for each 
year in the hindcast series, 1981–2015 (ValueoptS); and relative to the simulated most frequent optimum static 
GxM strategy (ValueoptSCF) (Table S2). In this analysis ValueoptS represents both gains from improved crop design 
and the use of climate information, while ValueoptSCF represents the actual value of the new climate information. 
As a reference point, value was also calculated for the hypothetical situation that the future climate was known 
i.e. perfect knowledge (ValuePK). ValuePK was calculated as the difference in profit between the optimized crop 
design and farmers’ practice using observed climatology. To account for opportunity and fixed costs, a threshold 
value of 600 AU$ ha−1 to calculate down side risk was chosen after consultation with farmers across the locations 
in the study. Profits were calculated for median sorghum prices over the last 10 years (2007 to 2016) i.e. 254 AU$ 
t−1. Variable costs included insurance i.e. 1% of the gross income, while the fertilizer cost was 30 cents kg−1 urea 
(http://agmargins.net.au). Variable costs for failed crops were then 161 AU$ ha−1 (excluding harvest costs), and 
211 AU$ ha−1 for harvested crops.

Data and model availability.  APSIM is an open source cropping systems model available at www.apsim.info.
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