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The ability of microorganisms to sense and adapt to changes in the environment is essential to

their survival. This is particularly important for species with an intimate association with host

organisms, such as pathogens, symbionts, and commensals. Host environments vary greatly in

pH, ranging from highly acidic in the stomach (pH< 2) to mildly acidic on the skin and plant

surfaces (6.5 < pH < 4.5), neutral in the blood (pH 7.4), and basic in parts of the intestine

(pH< 8.5) [1–4], and fungi have developed multiple mechanisms to adapt to pH variations.

This Pearl will focus on the ability of pathogenic fungi to respond to and actively modulate the

host’s pH.

Fungal adaptation to changes in ambient pH

In fungi, the adaptive responses induced by changes in ambient pH have been extensively stud-

ied in model organisms. For example, the response to weak acid stress has been characterized

in Saccharomyces cerevisiae [5], while the role of the Pal/Rim alkaline response pathway, one of

the most specialized and conserved signaling cascades in fungi, has been delineated in S. cerevi-
siae, Aspergillus nidulans, Yarrowia lipolytica, and several fungal pathogens [6–8]. The mecha-

nisms of pH sensing and adaptation in fungi have been reviewed elsewhere [9–11].

Fungal pathogens can modulate the pH of their host

Another aspect of pH regulation is the ability of microorganisms to actively modify the pH of

their environment. Fungi can achieve this by secreting acids or alkali. The ability of fungi to

secrete natural organic acids (such as butyrate, oxalate, malate, citrate, gluconate, and succi-

nate) is well utilized in the industry, particularly with nonpathogenic Aspergillus sp. and Rhizo-
pus sp. The magnitude of pH change depends on the nutrient availability, the organic acids

being produced, and on the ability of the fungus to remove ammonium ions from ammonium

sulfate salt or to excrete H+-ions as a byproduct of NH4
+ assimilation [12, 13]. Acidifying fungi

can also raise extremely low pH levels to a favorable level.

Certain pathogenic fungi acidify the environment as a strategy to damage host tissues.

Many plant-necrotizing fungi secrete significant amounts of acid: Sclerotinia sclerotiorum and

Butrytis sp. produce oxalic acid [14], while Pennicilium sp. and Aspergillus sp. secrete mainly

gluconic and citric acids [15, 16]. The produced acids not only acidify the tissues but can also

lower the activity of reactive oxygen species produced by the host [17]. Fusaric acid produced

by Fusarium oxysporum acidifies plant surfaces and activates the membrane H+-ATPase, a

pH-regulated process that leads to the expression of proteases and subsequent tissue invasion

[18]. Similarly, the human pathogen Candida albicans acidifies the environment in a carbohy-

drate-dependent fashion, allowing production of aspartyl proteases, which are potent virulence

factors [19].
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Ammonia as a key player in environmental alkalinization

Environmental alkalinization in fungi is common yet not a well-understood phenomenon.

Often, this process is mediated by ammonia, a multifunctional biological molecule with diverse

roles in eukaryotes. In fungi, it supports communication between colonies in S. cerevisiae [20],

aging of surface-ripened cheeses by Y. lipolytica andDebaryomyces hansenii [21], and expression

of pectin lyase, a key virulence factor in Colletotrichum sp. [22], among other functions.

Ammonia is generated either extracellularly or within the fungal cell as a byproduct of pro-

tein and amino acid catabolism, common nutrients in many host niches [23, 24]. Excess intra-

cellular ammonia is secreted or exported from the cell or exported as urea and subsequently

converted to NH4
+ by secreted ureases. Accumulation of this highly basic compound in the

immediate environment raises the pH. An excellent example of this process is found in the

phytopathogen Colletotrichum gloeosporioides, a cause of anthracnose fruit rot. The fungus uti-

lizes L-glutamate or glutamine to produce ammonia, which elevates the environmental pH of

healthy fruit from 5.6 to 8.5. This results in the activation of fungal pathogenicity factors, such

as production of pectate lyase, induction of appressorium formation during host penetration,

and stimulation of host cell death mechanisms [22] (Fig 1). In other fungal species, the

Fig 1. Modulation of host pH by the phytopathogen Colletotrichum gloeosporioides increases fungal

virulence. C. gloeosporioides infects the tomato fruit in a process initiated upon attachment of the fungal

conidia to the plant surface. During the quiescent stage of infection, fruit physiological factors such as nutrient

availability, acidic pH, and surface waxes determine the rate of fungal growth and germination. As the fruit

ripens, conidia germinate into a specialized structure, named appressorium, which eventually becomes

melanized. Melanin alters the permeability of the plant cell wall, creating a hypertonic environment that allows

the fungus to penetrate the host epidermis using turgor pressure. This process is accompanied by active

metabolism of amino acids, such as glutamate and glutamine, and gradual environmental alkalization. The

fungus transitions into the necrotrophic stage, characterized by a dramatic shift in fungal metabolism and

activation of pathogenicity factors, such as proteases and lyases, resulting in anthracnose fruit rot.

doi:10.1371/journal.ppat.1006149.g001
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alkalinized environment also activates the expression of virulence traits: production of asexual

spores and secretion of lytic enzymes inMagnaporthe oryzae, melanin formation and capsule

production in Cryptococcus neoformans, and hyphal morphogenesis, adhesion, and invasion in

C. albicans, among others [25–29].

Typically, fungi increase the environmental pH at a steady but slow pace. A clear exception is

C. albicans, which is capable of ammonia-driven alkalinization at a remarkable rate. Upon growth

on amino acids as the sole carbon source, this human pathogen can modulate the environmental

pH from 4 to ~7.5 within few hours, a process also driven (albeit more slowly) by other Candida
sp. [23, 30] The alkalinization mechanism has been studied extensively and includes sensing of

amino acids from the extracellular milieu via the SPS (Ssy1, Ptr3, and Ssy5) sensor system, fol-

lowed by activation of the transcription factor Stp2p in an SPS-dependent manner and induction

of amino acid influx [31]. As a result, ammonia is generated and exported via ammonium trans-

porters to raise the environmental pH and allow fungal transition to the more virulent hyphal

form [32, 33]. Deletion of genes involved in any step of this mechanism leads to impaired genera-

tion of ammonia and neutralization of the medium in response to these nutrients. Thus, metabo-

lism of amino acids is critical for pH modulation by this fungus.

C. albicans is closely associated with the host and has evolved to utilize a variety of nonpre-

ferred carbon sources available in different anatomical sites. Metabolism of organic acids and

N-acetylglucosamine also results in environmental alkalinization [23, 34, 35]. However, genes

required for alkalinization on amino acids do not affect growth or pH changes on these nutri-

ents, suggesting different mechanisms for pH modulation [35]. Most importantly, C. albicans
cells grown on organic acids do not generate ammonia. How C. albicans generates a basic

extracellular environment under these conditions is currently unknown. It is also not clear if

other fungal species share the ability to neutralize the environment upon utilization of these

nutrients.

Regulation of ammonia production

Fungi regulate the production of ammonia depending on environmental cues. Ammonia pro-

duction byM. anisopliae is tightly regulated by amino acids, a signal for the presence of pro-

teinaceous nutrients in the environment.M. anisopliae grown in media containing low levels

of single amino acids yields higher levels of ammonia than when amino acids are abundant,

implying either induction of catabolite repressible enzyme(s) or regulation of enzyme activity

via substrate inhibition [28]. Generation of ammonia by N. crassa and A. fumigatus is a loosely

regulated process triggered by nutrient deprivation [36]. Presence of glucose in the environ-

ment represses the process, presumably due to the metabolic switch from gluconeogenesis to

glycolysis or repression of deaminases and ammonia transporters. It is also possible that the

higher growth rate in the presence of glucose allows for complete utilization of ammonia

released from amino acid catabolism.

Environmental alkalinization as a virulence factor

Many fungal pathogens modulate environmental pH as a means to escape host immune

responses, facilitate destruction of the host tissues, and/or stimulate reproduction. Most fungi

inhabit mildly acidic environments, such as soil, plant, and animal surfaces. On the other

hand, for some fungi, such as the phytopathogens C. gloeosporioides andM. oryzae, acidic pH

favors fungal colonization and invasion [12, 28]. The mildly acidic pH of the plant surface

favors both germination of attached conidia and rapid differentiation of the germ tube into a

specialized cell named appressorium. Once the appressorium penetrates the plant tissues, the

fungus switches to necrotrophic development, associated with rapid ammonia release and
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increase in environmental pH, which triggers the expression of virulence factors [13, 22, 28,

37]. Thus, the acidic environment serves as a signal in this fungus to switch from saprotrophic

to necrotrophic growth and damage the host (Fig 1).

Neutralization of acidic niches is a very common microbial strategy to evade host immune

responses. For example, C. albicans neutralizes the macrophage phagosome, a process essential

for germination and escape from the immune cell [31–33]. C. albicans genes essential for pH

modulation in vitro fail to induce macrophage damage, highlighting the importance of this pro-

cess in immune evasion (Fig 2) [31–33]. Similarly, Candida glabrata mutants with alkalinization

defect in vitro, such as cells lacking functional mannosyltransferases, fail to effectively modify

phagosomal pH and damage the macrophage [38]. The spherules of Coccidioides spp., causative

agents of coccidioidomycosis, release enzymatically active urease and ammonia to raise the

environmental pH and destroy the host tissue [39, 40]. Disruption of the urea degradation path-

way in this organism significantly attenuates fungal virulence and survival in mice [39]. Thus,

fungal pathogens can alkalinize the host environment to modulate their virulence, underlining

the importance of this process on microbial and human physiology.

In summary, adaptation of fungi to pH variations in the host is critical for their survival,

and fungal pathogens are capable of actively modulating the environmental pH. Acidification

of the host tissues promotes expression and activity of fungal proteases. Many fungi utilize

nitrogen or carbon metabolism pathways to generate ammonia, which is released from the cell

to raise the extracellular pH. Generation of alkaline pH favors morphogenetic and reproduc-

tive processes in fungi, such as germination, hyphal growth, and formation of fruiting bodies,

all critical for disease progression. The alkaline pH increases fungal virulence by facilitating

penetration into host surfaces and hindering or evasion of immune responses. Thus, the ability

Fig 2. Neutralization of the macrophage phagosome by the fungal pathogen C. albicans is essential

for host damage. Upon phagocytosis by the macrophages, C. albicans responds to the presence of amino

acids and other alternative carbon sources abundant in the phagosomal milieu. Amino acids (AA) in particular

are sensed via the SPS sensor system (orange), leading to activation of the transcription factor Stp2p, which

induces the expression of genes encoding for amino acid permeases (green rectangles) and ammonium

transporters (purple rectangles). This results in uptake of amino acids into and release of NH4
+ from the fungal

cell and increase of phagosomal pH. Hyphal growth causes physical damage to the macrophage membranes,

leading to leakage of cellular content and death. C. albicans cells defective in utilization of amino acids and/or

extrusion of NH4
+, such as the stp2Δmutant, fail to modulate the pH of the phagosome and are readily

cleared by the immune cells.

doi:10.1371/journal.ppat.1006149.g002
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to control extracellular pH is an important aspect of fungal physiology that contributes to fit-

ness within the host.
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