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Abstract

Mast cells play a critical role in the innate immune response to bacterial infection. They internalize and kill a variety of
bacteria and process antigen for presentation to T cells via MHC molecules. Although mast cell phagocytosis appears to play
a significant role during bacterial infection, little is known about the proteins involved in its regulation. In this study, we
demonstrate that the SNARE protein SNAP29 is involved in mast cell phagocytosis. SNAP29 is localized in the endocytic
pathway and is transiently recruited to Escherichia coli (E. coli)-containing phagosomes. Interestingly, overexpression of
SNAP29 significantly increases the internalization and killing of E. coli, while it does not affect mast cell exocytosis of
inflammatory mediators. To our knowledge, these data are the first to demonstrate a novel function of SNAP29 in mast cell
phagocytosis and have implications in protection against bacterial infection.
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Introduction

Mast cells are well known for their key role in orchestrating the

allergic response through the release of pro-inflammatory medi-

ators following FceRI aggregation, a process called degranulation

[1]. However, evidence has also demonstrated a crucial role for

mast cells in the innate immune response. Mast cells express Toll-

like receptors 2 and 4, which allow them to recognize bacteria [2].

Stimulation through Toll-like receptors results in the secretion of

pro-inflammatory cytokines, which participate in neutrophil and

dendritic cell recruitment to the site of infection [3]. Furthermore,

mast cells are able to internalize bacteria, and present bacterial

antigen to CD8+T cells via MHC class I molecules [4]. Mast cells

are prominent in areas of the host-environment interface such as

the skin and mucosae [5]. As such, mast cells are situated at the

major entry points for pathogens, which makes them one of the

first phagocytic cells that bacteria may encounter.

Mast cells internalize bacteria using different mechanisms. For

example, they internalize E. coli via caveolae structures [6], and

Mycobacterium tuberculosis through cholesterol-rich microdomains

[7]. Following their internalization, the bacteria-containing

phagosomes undergo a maturation process whereby they ulti-

mately fuse with the lysosomal compartments [8]. Similar to

macrophages, the bactericidal activity of mast cells relies on

oxidative bursts and acidification of phagocytic vacuoles [9].

Surprisingly, although phagocytosis is important for controlling

bacterial infection, very little is known about the molecular

mechanisms that regulate this pathway in mast cells.

In professional phagocytic cells such as macrophages, the

process of phagocytosis is mediated by SNARE proteins (soluble

N-ethylmaleimide-sensitive factor attachment protein receptor),

which drive specific membrane fusion [8,10,11,12]. These

proteins, present on the surface of intracellular compartments,

interact to form a stable complex, bringing together apposing

membranes and triggering fusion [13,14,15]. SNAREs are

classified depending on their location, either on vesicles (v-

SNAREs) or target membranes (t-SNAREs). Whereas the v-

SNARE is a single protein, the t-SNARE is composed of three

subunits, one heavy chain and two light chains. In macrophages,

the SNARE proteins Syntaxin7, Syntaxin13, VAMP7 and

VAMP3 have been shown to control phagocytosis [11,12,16].

However, in mast cells no SNARE proteins have been implicated

in the phagocytic process.

Previous studies using different model systems have described

SNAP29, a member of the SNAP sub-family, as essential in a

number of pathways including endocytosis, exocytosis and

recycling [17,18,19,20]. Here, we investigated the role of SNAP29

in mast cells and demonstrate that SNAP29 is involved in

phagocytosis of E. coli. In particular, SNAP29 appears to play a

major role in the killing process, during which SNAP29-positive

endosomes relocate to E. coli phagosomes. Finally, we demonstrate

that SNAP29 functions specifically in phagocytosis and is not

involved in FceRI-induced degranulation.

Materials and Methods

Cells and E. coli Bacterial Strain
The rat basophilic leukemia (RBL-2H3) cell line [21] was

purchased from ATCC (CRL-2256). RBL-2H3 cells were

maintained in complete DMEM (DMEM supplemented with

10% fetal bovine serum, 100 units/ml penicillin and 100 mg/ml

streptomycin) as previously described [22]. Bone marrow-derived

mast cells (BMMCs) were differentiated as described [23]. Briefly,

bone marrow was obtained from C57BL/6 mice by flushing the
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femurs. The bone marrow cells were cultured for 4 weeks in RPMI

1640 supplemented with 10% fetal bovine serum, 4 mM

glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin,

100 mg/ml streptomycin, 1 mM nonessential amino acids (In-

vitrogen), 25 mM HEPES, 50 mM b-mercaptoethanol, and

30 mg/ml of recombinant mouse IL-3 (Shenandoah Biotechnol-

ogy). The mast cell population was greater than 90% pure as

determined by FceRI and c-kit expression using flow cytometry.

This study was approved by the Thomas Jefferson University

Institutional Animal Care and Use Committee (IACUC). The

E. coli strain [BL21 (DE3)-Invitrogen] transformed with a

mCherry expression vector (kind gift from Dr. R. Tsien) was used

for all assays.

Antibodies
Anti-SNAP23, -SNAP29, -VAMP8, and -Actin rabbit poly-

clonal Abs were from Sigma-Aldrich. Anti-Rab4 and –Rab5

mouse monoclonal Abs were kind gifts from Dr. J. Keen

(Thomas Jefferson University). Anti-VAMP8 mouse monoclonal

Ab was from Santa Cruz Biotechnology. Anti-Syntaxin6 mouse

monoclonal Ab was purchased from AbCam and the anti-

GM130 monoclonal Ab was purchased from BD Transduction

Labs. Peroxidase-coupled anti-rabbit Ab was obtained from GE

Healthcare. AlexaFluor488 goat anti-rabbit Ab, AlexaFluor594

goat anti-mouse Ab and Hoechst was purchased from Invitro-

gen.

DNA Manipulation and Plasmid Constructs
Standard PCR and ligation techniques were performed

throughout. All PCR reactions were done with pfu turbo

polymerase (Fisher). All other DNA modifying enzymes were

from New England Biolabs. The E. coli strain DH5a (Invitrogen)

was used for standard cloning. Plasmids encoding SNAP23-GFP

and SNAP29-GFP were constructed by PCR amplification and

ligation into the pEGFP-N3 vector (Clontech). The oligonucleo-

tides used to clone SNAP23-GFP into the pEGFP-N3 vector

(Clontech) are FO171: CGGAATTCTGCCACCATGGAT-

GATCTATCACCAGAA (forward) and FO172: TTATG-

GATCCGCTGTCAATGAGTTTCTT (reverse). SNAP29-GFP

was cloned using the oligonucleotides FO169:

CGGAATTCTGCCACCATGTCAGCTTACCCTAAGAGG

(forward) and FO170: TATGGATCCGAGTTGTC-

GAACTTTTCT (reverse). The empty pEGFP-N3 vector was

used as a control.

RBL-2H3 Cell Transfection
AMAXA nucleofector technology (Germany) was used to

transfect RBL-2H3 cells. The procedure to establish stable

populations expressing SNAP23-GFP, SNAP29-GFP and GFP is

described in [22]. Briefly, 106 cells were nucleofected in solution V

(AMAXA) with 1 mg of either pEGFP-N3-SNAP23 vector,

pEGFP-N3-SNAP29 vector or the pEGFP-N3 vector (control),

using the program T-030. The transfected cells were then plated in

10 cm tissue culture plates for 3–5 days in complete DMEM

before selection in 1.5 mg/ml G418. The media was changed

every 5 days. As stable transfected populations survived, they were

expanded. Stable populations were analyzed for GFP expression

with a Nikon confocal microscope using a 606oil-immersion

objective, and frozen in freezing medium (10% FBS, 10% DMSO,

80% DMEM). Stably transfected populations were maintained

with 1 mg/ml G418 in DMEM.

Cell Fractionation
26106 cells/ml of RBL-2H3 mast cells or bone marrow-derived

mast cells were resuspended in fractionation buffer (250 mM

sucrose, 20 mM HEPES, 10 mM NaCl, 1.5 mM MgCl2, 1 mM

EDTA, 1 mM EGTA, 1 mM DTT pH 7.4) containing complete

EDTA-free protease inhibitor tablets (Roche). The cells were then

disrupted by sonication. The homogenate was obtained by

spinning the sonicated cells at 8,000 rpm for 5 min. To separate

the cytosol from the membrane, the homogenate was centrifuged

at 41,000 rpm for 1 h. The membrane pellet was washed in

fractionation buffer to remove all cytosolic contaminants and

centrifuged again at 41,000 rpm for 1 h. The membrane fraction

was resuspended in the same volume of fractionation buffer as the

cytosolic fraction. The homogenates and fractions were then

solubilized with SDS at a final concentration of 1%. Equal

volumes of the homogenate and the cytosolic and membrane

fractions were analyzed by Western blotting.

Gel Electrophoresis and Western Blotting
Proteins were separated on 10% Bis-Tris Gels (Invitrogen).

Samples were transferred to a PVDF membrane (BioExpress) at

180 mA for 80 min. The membranes were subsequently blocked

with 5% milk in wash buffer (25 mM Tris, 250 mM NaCl, 0.1%

Tween-20, pH 7.6) and probed with primary antibodies as

mentioned in Figure legends. The membranes were then washed

and incubated with anti-rabbit secondary antibody (GE Health-

care). After additional washes, the membranes were revealed with

ECL (GE Healthcare).

Immunofluorescence Microscopy
The immunofluorescence experiments were conducted as

described [22]. Briefly, RBL-2H3 cells were grown overnight on

glass coverslips at a density of 56104 cells per coverslip. To assess

protein localization during phagocytosis, E. coli was added at a

multiplicity of infection (MOI) of 1,200 to the coverslips and spun

at 1,000 rpm for 10 min. The coverslips were incubated at 4uC for

1 h to allow bacteria to adhere to the cells. They were then

transferred to 37uC for an additional 1 h, 2.5 h or 4 h. At each

time point, the cells were washed with cold PBS and fixed with 2%

paraformaldehyde (PFA) for 30 min at 4uC. Next, the coverslips

were washed with cold PBS and permeabilized in permeabilization

buffer (20% Goat serum, 5 mg/ml BSA, 0.1% saponin in PBS,

pH 7.4) for 30 min at 4uC. The cells were then blocked for 1 h at

4uC with blocking buffer (20% goat serum, 5 mg/ml BSA in PBS,

pH 7.4). Primary antibodies were incubated on coverslips for 1 h

at room temperature. Cells were labeled with the Abs as described

in Figure legends. The coverslips were washed thoroughly with

blocking buffer and incubated with AlexaFluor488 goat anti-rabbit

or AlexaFluor594 goat anti-mouse secondary Abs. The nucleus

was labeled with 1 mg/ml Hoechst (Invitrogen). The coverslips

were then washed and mounted on glass slides with ProLong Anti-

Fade reagent (Invitrogen). Bone marrow-derived mast cells were

infected and labeled in suspension at a concentration of 16106

cells/ml. The staining protocol is similar to RBL-2H3 except that

each step was followed by centrifugation at 5006g for 5 min

before resuspending the cell pellet. To assess the intracellular

localization of endogenous SNAP29, resting RBL-2H3 were fixed

with 2% PFA for 30 min at 4uC and stained as described above.

Confocal images were acquired using a Carl Zeiss LSM 510 UV

META inverted confocal microscope with a Plan-Apo 636oil

immersion lens at room temperature and Zeiss AIM 4.2 SP1

software. For TIRF, cells were fixed and labeled as described

above. TIRF microscopy was conducted using an Andor/Nikon

TiE inverted microscope with PFS for image stability control with

SNAP29 Is Involved in Mast Cell Phagocytosis
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a 1006oil immersion TIRF lens at room temperature and

MetaMorph v7.6.5 software. Image analysis, including 3D

reconstruction, was performed using ImageJ (NIH). Phagosomes

were reconstructed in 3D from 0.3 mm Z-sections taken on the

Zeiss confocal microscope.

Gentamicin Protection Assay
RBL-2H3 cells were seeded onto 6-well plates at a density of

56105 cells per well and incubated at 37uC overnight in complete

DMEM. BMMCs were seeded in 24-well plates at a density of

16106 cells per well in complete medium and incubated at 37uC.

E. coli was grown to an optical density of 0.5–1, washed and

resuspended in DMEM without antibiotics. Control cells were

fixed with 2% PFA. E. coli was added to the cells at a MOI of 250,

spun at 1,000 rpm for 10 min at 4uC and incubated at 37uC for an

additional 2 h to allow for internalization. After several washes,

100 mg/ml gentamicin for RBL-2H3 or 200 mg/ml for BMMCs

was added for 1 h to kill extracellular bacteria. The cells were

rinsed to remove gentamicin and replaced with DMEM without

antibiotics for the remainder of the assay (t = 0). The infected cells

were further incubated at 37uC for 1 h, 2 h, and 24 h to assess the

killing rate. To determine the number of extracellular bacteria, the

antibiotic-free cell culture medium was collected at different time

points, centrifuged, and plated on LB agar at 37uC. To quantify

intracellular bacteria, RBL-2H3 cells and BMMCs were collected

at different time points, lysed with 0.5% Triton X-100 and plated

on agar at 37uC. Colonies were enumerated 24 h after plating.

b-hexosaminidase Assay
The assay was conducted as described in [22]. Briefly, 56104

RBL-2H3 cells per well were plated in a 96-well plate. The cells

were then washed in Tyrode’s buffer (135 mM NaCl, 5 mM KCl,

5.61 mM D-glucose, 10 mM HEPES pH 7.3, 1.8 mM CaCl2,

1 mM MgCl2, 0.5 mg/ml BSA). For FceRI stimulation, the cells

were sensitized with 100 ng/ml of anti-DNP IgE (Sigma) for 2 h at

37uC. The cells were then stimulated with 200 ml of 1 ng/ml

DNP-BSA (Sigma) in Tyrode’s buffer for 15, 30 and 60 min at

37uC. The unstimulated and 100% wells received only Tyrode’s

buffer. At each time point, 25 ml of supernatant was collected for

analysis. The total intracellular b-hexosaminidase content was

determined by lysing the 100% wells with 7 ml of 20% Triton X-

100. To measure the level of b-hexosaminidase in the supernatant,

50 ml of 1.3 mg/ml poly-N-acetylglucosamine (Sigma) was added

to 25 ml of supernatant and incubated at 37uC for 90 min. The

enzymatic reaction was stopped with 150 ml of Glycine buffer

(0.2 mM Glycine, pH 10.7). The absorbance was read at 405 nm

using a BioTeck plate reader.

Statistical Evaluation
The Mann-Whitney U test was used to compare the mean

values of maximal release between the control and the different

transfectants. Significance was assumed at p values,0.05.

Results

Mast Cells Express SNAP29
SNAP29 is a member of the SNAP25 family of SNARE proteins

and contains two SNARE motifs separated by a linker region

(Figure 1A). Unlike SNAP23, SNAP29 does not possess a lipidic

anchor (Figure 1A asterisks for SNAP23) in its linker region, which

suggests that SNAP29 can only associate with membranes by

interacting with membrane-bound proteins. Although SNAP29

has been shown to be expressed in numerous cell types, it has

never been identified in innate immune cells [17,18,19,20]. Here,

we investigated the expression of SNAP29 in mast cells, which play

a critical role in orchestrating the immune response against

pathogens. To do so, bone marrow-derived mast cells (BMMCs) as

well as RBL-2H3 mast cells were used. RBL-2H3 is a well-

characterized rat mast cell line that expresses the high affinity IgE

receptor FceRI, and can be stimulated with IgE/allergen

complexes [21]. Importantly, RBL-2H3 and BMMCs have also

been shown to internalize and kill bacteria [7].

First, the expression of SNAP29 in mast cells was determined

using western blot. As illustrated in Figure 1B and 1E, both

BMMCs and RBL-2H3 express SNAP29 as a single species of

,30 kDa that migrates at a higher molecular weight than its

SNAP23 homologue.

The localization of SNAP29 in resting mast cells was

investigated using immunofluorescence microscopy. To this end,

permeabilized BMMCs and RBL-2H3 were stained with an anti-

SNAP29 Ab and counter-stained with a nuclear marker.

Endogenous SNAP29 was then analyzed by confocal microscopy.

As shown in Figure 1D and 1G, SNAP29 appears to be both

cytosolic and membrane-bound. In particular, SNAP29 seems to

be associated with the plasma membrane and small vesicles. The

distribution of SNAP29 (cytosol versus membrane) in resting mast

cells was further investigated using cell fractionation in both

BMMCs and RBL-2H3. As illustrated in Figure 1C and 1F (upper

panels), SNAP29 was indeed found in both the cytosolic and

membrane fractions. This distribution is in agreement with

previous reports that showed a similar partitioning of SNAP29

in COS and NRK cells [24,25]. As mentioned previously,

SNAP29 has neither a transmembrane domain nor a lipid anchor

(Figure 1A) [24], supporting the cytosolic localization of the

protein. SNAP29 membrane staining however is likely due to its

ability to bind one or multiple membrane proteins that remain to

be identified.

SNAP29 is Located on the Plasma Membrane and
Endocytic Compartments

Initial confocal microscopy analysis showed that SNAP29

labeled both the plasma membrane and small intracellular vesicles

(Figure 1D and 1G). We then decided to identify the intracellular

compartments on which SNAP29 resides using immunofluores-

cence TIRF and confocal microscopy. SNAP23 was used as a

marker for the plasma membrane [22,26]. SNAP29 localization

on the plasma membrane was first assessed using TIRF

microscopy (Figure 2A, top panels). TIRF microscopy allows for

the visualization of events at the interface between the plasma

membrane and the coverslip with a penetration depth of 100 nm.

RBL-2H3 cells were fixed, permeabilized and co-labeled with anti-

SNAP29 and anti-SNAP23 Abs. The cells were then focused in

TIRF using SNAP23 to locate the plasma membrane, followed by

analysis of SNAP29 labeling. As shown in Figure 2A (top panels),

SNAP29 and SNAP23 both stained RBL-2H3 cells in the same

focal plane suggesting that SNAP29 is located on the plasma

membrane. To validate this result, RBL-2H3 cells co-labeled for

SNAP29 and SNAP23 were then analyzed by confocal microsco-

py. As shown in Figure 2A (lower panels), SNAP29 staining is

similar to SNAP23 labeling. Collectively, these microscopy data

demonstrate that SNAP29 is localized on the plasma membrane.

Next, we investigated the identity of the vesicular pool of

SNAP29. To do so, SNAP29 was co-stained with different markers

of intracellular compartments in resting RBL-2H3 cells before

being analyzed using confocal microscopy. As shown in Figure 2B,

SNAP29 partially localizes with Rab4 (top panels), a marker of

recycling/sorting endosomes as well as with Rab5-containing early

endosomes (middle panels) suggesting that SNAP29 may function

SNAP29 Is Involved in Mast Cell Phagocytosis
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as part of the early endocytic pathway. We then determined

whether SNAP29 was also localized in the late endocytic pathway.

The SNARE VAMP8 was used as a marker for late endosomes/

lysosomes [27,28]. SNAP29 partially localized to VAMP8 positive

compartments (Figure 2B lower panels). Interestingly, it has been

shown that the majority of VAMP8 is present on secretory

granules [22], however there was no colocalization of SNAP29

with secretory granules (data not shown). This is consistent with

the fact that the colocalization of SNAP29 with VAMP8 is

minimal. Finally, SNAP29 localization in the Golgi was investi-

gated. Previous studies have shown that SNAP29 interacts with the

t-SNARE Syntaxin6, a Golgi marker [25,29]. Here, SNAP29 was

co-labeled with anti-Syntaxin6 or anti-GM130 Abs. Syntaxin6

marks the trans-Golgi while GM130 is found in the cis-Golgi. As

shown in Figure 2C, no clear colocalization between SNAP29 and

Syntaxin6 (top panels) or GM130 (lower panels) was observed.

Altogether, these data demonstrate that SNAP29 is located on the

plasma membrane and in the endocytic pathway, most signifi-

cantly with early endosomes, while being absent from the Golgi.

SNAP29 is not Involved in Mast Cell Secretion of
Inflammatory Mediators

Since a pool of SNAP29 is found on the plasma membrane, we

investigated whether SNAP29 plays a role in mast cell degranu-

lation. To do so, we specifically used the RBL-2H3 cell line since it

allowed us to generate cell populations stably overexpressing

SNAP29-GFP, which would not have been possible in primary

mast cells. In parallel, two RBL-2H3 cell populations stably

expressing GFP (negative control) and SNAP23-GFP were

established. The level of expression for both SNAP29-GFP and

SNAP23-GFP is shown in Figure 3A. Overexpression of SNARE

proteins is a common method to determine whether a protein is

involved in a specific pathway, which is indicated by a disturbance

in the given process (increase or decrease of transport) [22,30,31].

Overexpression is particularly useful when functional redundancy

is present in the system [32,33,34].

FceRI-dependent degranulation was quantified for SNAP29-

GFP expressing cells by measuring the kinetics of granular b-

hexosaminidase secretion into the cell culture medium. Interest-

ingly, overexpression of SNAP29-GFP does not significantly affect

Figure 1. SNAP29 is distributed in both cytosolic and membrane fractions in resting mast cells. (A) Schematic of SNAP29 and SNAP23
SNARE proteins. Both proteins contain two SNARE motifs. The SNARE motifs in SNAP29 are in positions 60–113 and 196–258, and in positions 14–76
and 146–211 for SNAP23. Unlike SNAP23, SNAP29 does not contain palmitoylation sites (indicated by the asterisks for SNAP23). (B) Bone marrow
derived mast cell (BMMC) homogenate was tested for SNAP29 expression by Western blot using an anti-SNAP29 Ab. As a control, SNAP23 expression
was confirmed using an anti-SNAP23 Ab. 76105 cells were loaded in each lane. (C) BMMC homogenate (H) was fractionated into both cytosol (Cyt)
and membrane (Mb) fractions. Fractions were solubilized with 1% SDS prior to loading. Equal volumes of each fraction were tested for SNAP29
expression by Western Blot using an anti-SNAP29 Ab. Cell fractionation was controlled using anti-actin (marker for cytosol) and anti-VAMP8 (marker
for membranes) Abs. (D) Resting BMMCs were fixed, permeabilized, labeled with anti-SNAP29/anti-Rabbit AlexaFluor488 Ab and analyzed by confocal
microscopy (Green). The nucleus was labeled with Hoechst (Blue). The overlay is presented on the right. Scale bar = 20 mm. (E) RBL-2H3 homogenate
was prepared and immunoblotted with both anti-SNAP23 and anti-SNAP29 Abs. 3.56105 cells were loaded in each lane. (F) RBL-2H3 were
fractionated and immunoblotted as described in C. (G) Fixed RBL-2H3 were labeled for SNAP29 as described in D. Scale bar = 20 mm. Each experiment
is representative of n = 3.
doi:10.1371/journal.pone.0049886.g001
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mast cell degranulation, compared to the GFP control (Figure 3B).

In contrast, the overexpression of SNAP23-GFP drastically affects

b-hexosaminidase secretion compared to the GFP control. At

15 min, the cells expressing SNAP23-GFP secreted only 8% of b-

hexosaminidase compared to 39% for GFP. At 60 min, while the

GFP control has attained its maximum secretion (100%),

SNAP23-GFP expressing cells have only released 39% of b-

hexosaminidase. These results confirm the involvement of

SNAP23 in mast cell degranulation [26]. Although SNAP29 has

been previously implicated in exocytosis in C. elegans [18,35], our

Figure 2. SNAP29 is localized on the plasma membrane and in
endocytic compartments. (A) RBL-2H3 cells were fixed, permeabi-
lized, labeled with anti-SNAP29/anti-Rabbit AlexaFluor488 Ab and anti-
SNAP23/anti-Mouse AlexaFluor594 Ab and analyzed by TIRF microscopy

(top panels) or confocal microscopy (lower panels). To visualize the
plasma membrane in confocal, a high focal plane was used. Thus,
cytoplasmic SNAP29 is not visible. (B) RBL-2H3 cells were fixed,
permeabilized, labeled with anti-SNAP29/anti-Rabbit AlexaFluor488
Abs and anti-Rab4 (top panels), anti-Rab5 (middle panels), or anti-
VAMP8/anti-Mouse AlexaFluor594 Abs (lower panels) and analyzed by
confocal microscopy. (C) RBL-2H3 cells were fixed, permeabilized,
labeled with anti-SNAP29/anti-Rabbit AlexaFluor488 Abs and anti-
Syntaxin6 (top panels), or anti-GM130/anti-Mouse AlexaFluor594 Abs
(lower panels) and analyzed by confocal microscopy. All scale
bars = 10 mm. Arrowheads indicate areas of colocalization.
doi:10.1371/journal.pone.0049886.g002

Figure 3. SNAP29 is not involved in mast cell degranulation. (A)
RBL-2H3 cells were stably transfected with SNAP29-GFP, SNAP23-GFP or
GFP. Homogenates for each transfected population were immuno-
blotted with anti-SNAP29 and anti-SNAP23 Abs. 1.256106 cells were
loaded in each lane. For each transfected population, two bands
corresponding to the endogenous SNARE (lower band) and the SNARE-
GFP (higher band) were observed. (B) Transfected RBL-2H3 cells were
sensitized with anti-DNP IgE for 2 h, stimulated with DNP-BSA for 15,
30, and 60 min and b-hexosaminidase release was assayed. The data
shown are the mean 6 SD of five independent experiments each
performed in triplicate. The asterisks denote a significant difference
(p,0.01).
doi:10.1371/journal.pone.0049886.g003
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results show that in mast cells, despite its plasma membrane

location, SNAP29 is not involved in the exocytosis of inflammatory

mediators.

SNAP29 Localizes to the Phagosome in E.coli Infected
Mast Cells

The capacity of mast cells to internalize and kill bacteria is well

recognized and underscores the important role of mast cells in the

innate immune response against pathogens [3]. Since SNAP29 is

not involved in mast cell degranulation and our data, as well as

previous studies, place SNAP29 in the endocytic pathway

[17,18,19,20], we investigated whether SNAP29 played a role in

mast cell phagocytosis.

First, we established the bactericidal capacity of both BMMCs

and RBL-2H3 mast cells. To do so, BMMCs and RBL-2H3 were

infected for 2 h with E. coli at a multiplicity of infection (MOI) of

250, followed by incubation for 1 h in the presence of gentamicin

to kill extracellular bacteria. Then, the infected cells were collected

at t = 0, 1 h, 2 h and 24 h, lysed, and plated on LB agar at 37uC to

determine the number of surviving E. coli. Only internalized E. coli

are protected from gentamicin and grow on agar. The number of

internalized bacteria at 1 h, 2 h, and 24 h was compared to the

number of internalized bacteria at t = 0 (arbitrarily defined as

100%) for each mast cell type. Both BMMCs and RBL-2H3

internalized and killed E. coli during a 24 h period (Figure 4A and

B). Interestingly, during the first hours after internalization, we

observed an increase in the number of colonies recovered in

BMMCs and RBL-2H3. This may reflect slow killing kinetics in

mast cells, which would allow E. coli to replicate inside the

phagosome during the first hours before being killed. BMMCs

appear to more efficiently kill E. coli than RBL-2H3 since we

observed a significant decrease in viable colonies 2 h after

internalization for BMMCs (142% at t = 1 h to 76% at t = 2 h).

Figure 4. Mast cells kill E. coli while SNAP29 relocates to the phagosome. BMMCs (A) and RBL-2H3 cells (B) were infected with E. coli at a MOI
of 250 for 2 h at 37uC. Extracellular bacteria were killed with gentamicin for 1 h. Cells were then washed and incubated with DMEM without
antibiotics. The cells were incubated at 37uC for an additional hour, 2 h or 24 h. Cell lysates were serially diluted on agar plates at 37uC. Surviving
colonies were counted 24 h later. Both graphs represent the mean 6 SD of three independent experiments, each performed in duplicate. BMMCs (C)
and RBL-2H3 (D) were infected with mCherry E. coli (red) for 1 h, fixed, permeabilized, and labeled with anti-SNAP29/anti-rabbit AlexaFluor488 Abs
(Green). The nucleus was labeled with Hoechst (Blue). SNAP29 colocalization with E. coli was assessed using confocal microscopy. SNAP29 staining
accumulates around E. coli 1 h post infection. The inset in each image shows an enlarged area of an E. coli phagosome. This experiment is
representative of n = 3. Scale bar = 5 mm (C) and 20 mm (D).
doi:10.1371/journal.pone.0049886.g004
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In RBL-2H3, this decrease is delayed and takes place one hour

later. Twenty-four hours after infection, BMMCs killed greater

than 60% of internalized E. coli (Figure 4A) and RBL-2H3 killed

more than 80% (Figure 4B). This data confirms the killing capacity

and bactericidal role of mast cells in both BMMCs and RBL-2H3

cells [9].

Both early and late endosomal compartments are involved in

maturation of the phagosome prior to fusion with the degradative

lysosomal compartments. Since SNAP29 is localized in the

endocytic pathway in mast cells, we investigated whether SNAP29

was involved in the killing of E. coli. To do so, the intracellular

location of SNAP29 was examined during E. coli phagocytosis. We

anticipated that a relocation of SNAP29 towards the phagosomes

containing E. coli would constitute an indication that SNAP29 is

involved in the phagocytic process. BMMCs and RBL-2H3 were

infected with E. coli constitutively expressing mCherry, a

fluorescent marker. Bacteria internalization as well as the location

of the endogenous SNAP29 was determined 1 h post-infection. As

illustrated in Figure 4C, SNAP29 relocates to phagosomes that

contain E. coli in BMMCs. Similarly, we observe a relocation of

SNAP29 to the E. coli phagosomes in RBL-2H3 mast cells

(Figure 4D). The fact that (i) SNAP29 relocates to phagosomes

containing E. coli in both BMMC and RBL-2H3, in conjunction

with (ii) the similar localization of SNAP29 in both resting mast

cell types and (iii) the ability of both BMMCs and RBL-2H3 to kill

E. coli, supports RBL-2H3 mast cells as a strong model for mast

cell phagocytosis.

To further characterize the involvement of SNAP29 in mast cell

phagocytosis, we determined the kinetics of SNAP29 relocation in

RBL-2H3 infected with E. coli at 1 h, 2.5 h, and 4 h post-infection.

As illustrated in Figure 5A, at t = 0, while E. coli is bound to the

mast cell surface, SNAP29 localization is identical to resting cells.

As shown previously (Figure 4D), SNAP29 localization changes

after 1 h at 37uC. At this time, SNAP29 appears to be enriched

around E. coli phagosomes (Figure 5A t = 1 h), where it remains for

a few hours (Figure 5A t = 2.5 h). Four hours post-infection, the

location of SNAP29 is similar to its location in resting mast cells

(Figure 5A t = 4 h), suggesting that the relocation of SNAP29

towards the phagosome is a transient event.

Interestingly, the relocation of SNAP29 around the phagosomes

appears to be punctate in nature, rather than a continuous labeling

of the phagosomal membrane, suggesting that SNAP29 may be

present on small vesicles adjacent to the phagosomes. To

investigate this possibility, E. coli phagosomes were further

analyzed using confocal microscopy and 3D reconstruction. As

illustrated in Figure 5B (center image and enlarged phagosomes),

3D reconstruction of phagosomes 2.5 h after infection reveals that

SNAP29-positive endosomes are intimately interacting with the

phagosome. In some cases, SNAP29-positive endosomes appear to

be curving around the bacteria. However, at 4 h (Figure 5C)

SNAP29-positive endosomes are not found close to the bacterium,

which is consistent with our previous observations (Figure 4A

t = 4 h). Altogether these results suggest that SNAP29-positive

endosomes transiently interact with E. coli phagosomes during

maturation.

SNAP29 is Involved in Mast Cell Phagocytosis
The relocation of SNAP29 towards E. coli phagosomes

highlights its potential involvement in phagocytosis. To test this

possibility, RBL-2H3 cells overexpressing SNAP29-GFP,

SNAP23-GFP or GFP were tested in a series of phagocytic assays.

First, the rate of E. coli internalization was quantified. To do so,

transfected RBL-2H3 cells were infected with E. coli at a MOI of

250 for 2 h at 37uC and treated with gentamicin for 1 h at 37uC.

This was considered t = 0. The infected cells were then lysed, and

plated on LB agar at 37uC to determine the number of surviving

E. coli. As illustrated in Figure 6A, the overexpression of SNAP23-

GFP seems to slightly reduce internalization (80% versus 100%),

whereas the overexpression of SNAP29-GFP increases the

internalization of E. coli compared to the GFP control. Although

the increase in internalization is limited (120% for SNAP29-GFP

versus 100% for GFP), it is statistically significant and may reflect a

function of the SNAP29 plasma membrane pool in phagocytosis.

During phagocytosis, intracellular compartments fuse with the

phagocytic cup to supply membrane for the formation of

phagosomes [36]. A number of different compartments, namely

recycling endosomes, late endosomes/lysosomes and secretory

granules, have been shown to fuse with plasma membrane during

phagocytosis [36]. In macrophages, recycling endosomes fuse with

the plasma membrane at the level of the phagocytic cup in a

SNAP23-dependent manner [36,37]. The fact that both overex-

pressed SNAP29-GFP and SNAP23-GFP affect mast cell phago-

cytosis suggests that both of these SNAREs may participate in

fusion events occurring at the plasma membrane during internal-

ization in mast cells.

We then determined the impact of SNAP29-GFP overexpres-

sion on the killing capacity of mast cells. Cells overexpressing

SNAP29-GFP, SNAP23-GFP and GFP were infected with E. coli

and the number of surviving bacteria at 1 h, 2 h, and 24 h was

compared to the number of internalized bacteria at t = 0 for each

transfected population (arbitrarily defined as 100%). Normalizing

the kinetics of each transfected population to its own t = 0 (100%)

allowed us to compare the kinetics of these three populations

despite differences in internalization. As shown in Figure 6B, the

killing kinetics for both the GFP and the SNAP23-GFP cells are

similar. Overall, both populations are able to eliminate the

internalized E. coli in 24 h. Note that there is an increase in the

number of colonies during the first 2 h, which is consistent with

what was observed in non-transfected RBL-2H3. Interestingly, the

SNAP29-GFP transfected cells show a remarkable decrease in the

number of viable E. coli during the first 2 h (average of 150%

viable colonies for both GFP and GFP-SNAP23 versus 60% for

SNAP29-GFP at t = 2 h). This decrease is not due to recycling of

the intracellular bacteria back to the extracellular medium since

the number of extracellular bacteria measured for GFP-SNAP29 is

not higher than the GFP control (Figure 6C). Collectively, these

data suggest that SNAP29 is involved in phagocytosis.

Figure 5. SNAP29 relocation to E. coli phagosomes in infected mast cells is transient. (A) RBL-2H3 cells were infected with E. coli expressing
mCherry (red) for 0 h, 1 h, 2.5 h or 4 h. Cells were then fixed, permeabilized and labeled with anti-SNAP29/anti-rabbit AlexaFluor488 Abs (green). The
nucleus was labeled with Hoechst (blue). SNAP29 localization was assessed using confocal microscopy. SNAP29 staining accumulates around E. coli
phagosomes at t = 1 h and t = 2.5 h. The inset in each image shows an enlarged area of E. coli phagosomes. This experiment is representative of n = 3.
Scale bars = 20 mm. (B and C) RBL-2H3 cells were infected with E. coli mCherry (red) for 2.5 h (B) or 4 h (C). Cells were fixed and stained as described in
A. SNAP29 localization was assessed using confocal microscopy. Two different E. coli phagosomes are shown on the left and right of the center image.
Z-sections of 0.3 mm were used to reconstruct each phagosome in 3D (shown below the enlarged phagosomes). SNAP29-positive endosomes
associate with phagosomes at 2.5 h, but are not present 4 h post-infection. Scale bars = 20 mm.
doi:10.1371/journal.pone.0049886.g005
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Discussion

Phagocytosis is an important process for the elimination of

invading pathogens, foreign particles and dead cell bodies. During

the course of this study, we confirmed the phagocytic function of

mast cells using BMMCs and the rat RBL-2H3 mast cell line. We

showed that mast cells not only internalize E. coli, but also kill these

bacteria within 24 h. The killing of E. coli appears to be relatively

slow, allowing E. coli to replicate during the first 2 h after

internalization. The slow kinetics could be due to the fact that

trafficking through the endocytic pathway to the lysosome may be

slower in mast cells. In fact, the relative contribution of individual

intracellular lytic systems appears to vary depending upon the role

of the phagocytic cells. For instance, compared to macrophages

and neutrophils, the pH of the phagosome in dendritic cells (DC) is

much higher and does not decrease over time [38]. In these cells,

the enzymatic content of the lysosome or lytic granules is also

reduced and as a result, their potency is greatly diminished [39]. In

addition, the acquisition of lysosomal markers in DCs is also

remarkably slower compared to macrophages, highlighting the

differences in lytic capacity of various cell types [40]. Thus, it is

possible that, like dendritic cells, the killing capacity of mast cells

may be differentially regulated compared to macrophages. This

observation may reflect the multitude of processes that mast cells

juggle during the immune response.

The slow killing capacity of mast cells may also be linked with

the bacterial strain that is internalized. In macrophages for

example, mechanisms of phagosome formation and maturation,

and ultimately the killing of bacteria are highly dependent on the

nature of the bacterium. Non-pathogenic bacteria are internalized

and degraded within the phagolysosome [41]. On the other hand,

pathogenic bacteria can not only avoid recognition [42] or induce

their own internalization [43], but also corrupt the trafficking of

their phagosome and subsequent fusion with the lysosome [44,45].

In the case of mast cells, they respond to FimH+E. coli differently

than to their FimH- counterparts [9]. FimH is a subunit of type I

fimbriae expressed by enterobacteria, which promotes the binding

of bacteria to mucosal surfaces. Mast cells appear four times more

efficient at killing FimH+compared to FimH- E. coli, which may be

due to the greater oxidative burst triggered by FimH+E. coli [9]. In

addition to E. coli, mast cells respond to a variety of different

bacteria [7,46,47,48]. The intracellular mechanism by which mast

cells differentially process bacteria is still unclear but it will be

interesting to study the kinetics of bactericidal killing of other

bacteria. Altogether, the differential trafficking of pathogenic and

non-pathogenic bacteria highlights the complexity of the phago-

cytic pathway, which is not only dependent on the phagocytic cell

type, but also on the strain of bacteria.

Elements of the phagocytic molecular machinery have been

identified in professional phagocytes [11,12,16,49]. Mast cells

however, whose phagocytic function is now well established, have

not been studied in this regard. Here we demonstrate that the

SNARE protein SNAP29 is involved in phagocytosis. In resting

mast cells, SNAP29 is distributed in both membrane and cytosolic

fractions. Although it is unclear whether these pools have different

functions, the distribution of SNAP29 in mast cells is similar to the

Figure 6. SNAP29 is involved in mast cell phagocytosis. (A) RBL-
2H3 cells overexpressing GFP, SNAP29-GFP, or SNAP23-GFP were
infected with E. coli at a MOI of 250 for 2 h at 37uC. Extracellular
bacteria were killed with gentamicin for 1 h. Cells were then lysed and
serially diluted on agar plates at 37uC. Surviving colonies were counted
24 h later. (B) Transfected RBL-2H3 cells were infected as described in A.
Extracellular bacteria were killed with gentamicin for 1 h. The infected
cells were then washed and incubated with DMEM without antibiotics.
The cells were returned to 37uC for an additional hour, 2 h or 24 h. Cell
lysates were serially diluted on agar plates at 37uC. Surviving colonies

were counted 24 h later. (C) After transfected RBL-2H3 cells were
infected with E. coli (MOI 250), the culture medium was collected,
centrifuged to concentrate the bacteria and serially diluted on agar
plates at 37uC. Colonies were counted 24 h later. All the graphs
represent the mean 6 SD of five independent experiments, each
performed in triplicate. The asterisks denote a significant difference
(p,0.01).
doi:10.1371/journal.pone.0049886.g006
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distribution observed in other cell types [24,25]. Using confocal

microscopy, we demonstrated that the membrane-associated

SNAP29 is present on the plasma membrane and on early

endosomes. To our knowledge, SNAP29 has never been shown to

associate with the plasma membrane. What could be the function

of this plasma membrane pool of SNAP29? Here, we established

that SNAP29, unlike its homologue SNAP23, is not involved in the

exocytosis of inflammatory mediators in mast cells. However, we

observed that the overexpression of SNAP29 and SNAP23 in mast

cells affected the internalization of E. coli. Since nascent

phagosomes are derived from the plasma membrane, SNAP29

and SNAP23 may be involved in the early process of phagosome

formation. Sustained phagocytosis requires the continuous re-

placement of cell surface membrane from intracellular sources

[50,51,52]. In macrophages, SNAP23 is involved in the fusion of

recycling endosomes with phagocytic cup to supply additional

membrane to the forming phagosome [37]. In mast cells, the

plasma membrane pools of SNAP29 and SNAP23 may participate

in the fusion events necessary to replenish the membrane stock

that decreases during phagocytosis. Consistent with this possibility,

SNAP29 is able to interact with Syntaxin4 [24,53], a t-SNARE

shown to be involved in mast cell exocytosis when bound to

SNAP23 [22].

Because SNAP29 is not restricted to a specific compartment,

unlike most SNARE proteins, it has been suggested that SNAP29

may be involved in multiple transport steps [24,53]. In fact,

SNAP29 has been implicated in a variety a pathways including

endocytosis, recycling, and exocytosis [17,18,19,20,35,54,55,56].

Consistent with this result, in mast cells, we observe partial, but

significant colocalization with Rab4-positive recycling endosomes

and Rab5-positive early endosomes, whereas the colocalization of

SNAP29 with late endosomes/lysosomes is limited. Interestingly,

SNAP29-positive endosomes transiently associate with E. coli

phagosomes. 3D reconstructions of confocal Z-sections establish

that SNAP29-positive endosomes intimately interact with the

phagosomes at 2.5 h. Importantly, using a gentamicin protection

assay, we discovered that SNAP29, unlike SNAP23, is involved in

phagocytosis during which it appears to regulate the killing of the

internalized E. coli. Although both SNAP23 and SNAP29 are

potentially involved in the formation of nascent phagosomes

(Figure 6A), SNAP29 is the only one involved in phagosomal

maturation. The restricted plasma membrane location of SNAP23

likely prevents SNAP23 from being further involved in the process.

This is supported by the absence of SNAP23 on the phagosomes

(data not shown).

Altogether, this constitutes yet another function for SNAP29 in

that it likely regulates the fusion of the phagosomes with the

endocytic compartments, and ultimately the generation of the

degradative phagolysosome.

In professional phagocytic cells various SNAREs have been

implicated in the phagocytic process, including Syntaxin7,

Syntaxin13, VAMP7 and VAMP8 [11,12,57]. Early during

phagosomal maturation, Syntaxin13 appears to mediate the fusion

of early endosomes with the phagosome, along with Syntaxin6 and

Vti1a [11,58]. Later, Syntaxin7, which is localized on the late

endocytic compartments, interacts with the t-SNAREs Syntaxin8

and Vti1b, and the v-SNARE VAMP7 to trigger the formation of

the phagolysosomes [59,60,61]. This process is highly regulated

since VAMP8, another late endocytic SNARE has been shown to

negatively regulate phagocytosis in dendritic cells, probably by

competing with VAMP7 [57]. Although our functional data

clearly establish the involvement of SNAP29 in mast cell

phagocytosis, because we are using an overexpression strategy to

study the role of SNAP29 (knock-down of SNAP29 expression

using shRNA was unsuccessful in mast cells), it is difficult to

conclude whether SNAP29 is positively or negatively regulating

this process. Nevertheless, SNAP29 has been shown to bind a

number of SNARE proteins in vitro including Syntaxin7, and

Syntaxin13 [24,53]. Since SNAP29 is mainly present on the

endocytic compartments, it will be important to determine

whether either or both these proteins form a fusogenic complex

with SNAP29 in mast cells, which could potentially be involved in

the early phagocytic process. Identifying cognate SNARE partners

of SNAP29 will greatly contribute to understanding the function of

SNAP29 in phagocytosis.

In summary, we show that SNAP29, a SNARE member of the

SNAP sub-family, is involved in mast cells phagocytosis. This is a

novel function for SNAP29 and it will be important to establish

whether this role is conserved in other professional phagocytic cells

such as macrophages and dendritic cells. Understanding the

molecular machinery controlling phagocytosis in mast cells will be

a crucial step towards evaluating the physiological implications of

this process and its importance during bacterial infections.

Furthermore, a complete identification of the fusogenic SNARE

complexes involved in different intracellular trafficking events in

mast cells, and evaluating the interplay between these SNAREs

will be critical to understanding how this unique cell can juggle so

many physiological processes necessary to orchestrate the innate

immune response.
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