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Influenza A viruses evolve at a high rate requiring continuous monitoring to maintain

the efficacy of vaccines and antiviral drugs. We performed next generation sequencing

analysis of 100 influenza A/H3N2 isolates collected in four Asian countries (Japan,

Lebanon, Myanmar, and Vietnam) during 2012–2015. Phylogenetic analysis revealed

several reassortment events leading to the circulation of multiple clades within the

same season. This was particularly evident during the 2013 and 2013/2014 seasons.

Importantly, our data showed that certain lineages appeared to be fitter and were able

to persist into the following season. The majority of A/H3N2 viruses continued to harbor

the M2-S31N mutation conferring amantadine-resistance. In addition, an S31D mutation

in the M2-protein, conferring a similar level of resistance as the S31N mutation, was

detected in three isolates obtained in Japan during the 2014/2015 season. None of the

isolates possessed the NA-H274Y mutation conferring oseltamivir-resistance, though a

few isolates were found to contain mutations at the catalytic residue 151 (D151A/G/N

or V) of the NA protein. These variations did not alter the susceptibility to neuraminidase

inhibitors and were not detected in the original clinical specimens, suggesting that they

had been acquired during their passage in MDCK cells. Novel polymorphisms were

detected in the PB1-F2 open-reading frame resulting in truncations in the protein of
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24–34 aminoacids in length. Thus, this study has demonstrated the utility of monitoring

the full genome of influenza viruses to allow the detection of the potentially fittest lineages.

This enhances our ability to predict the strain(s) most likely to persist into the following

seasons and predict the potential degree of vaccinematch or mismatch with the seasonal

influenza season for that year. This will enable the public health and clinical teams to

prepare for any related healthcare burden, depending on whether the vaccine match is

predicted to be good or poor for that season.

Keywords: influenza A/H3N2, full-genome, phylogenetic analysis, antiviral, vaccine, evolution, reassortment,

PB1-F2

INTRODUCTION

Influenza A viruses are pleiomorphic, lipid-enveloped viruses
belonging to the family Orthomyxoviridae. It has a single-
stranded, segmented, negative-sense RNA genome of ∼14 kbp
(Webster et al., 1992), which is characterized by a high mutation
rate (Suárez et al., 1992; Nobusawa and Sato, 2006). This drives
its evolution and adaptation in response to various host and
environmental selection pressures. In addition, the segmented
genome facilitates the occasional reassortment of genes between
different influenza A viruses, leading to the development of
antigenically new viruses with pandemic potential (Steel and
Lowen, 2014). Some of these reassortment events are detrimental,
i.e., they reduce the viral fitness to such a degree that it
leads to the disappearance of the reassorted viral population.
Alternatively, such events could provide the virus with one
or more homotypic (same subtype) or heterotypic (different
subtype) genome segments that might boost its infectivity and/or
pathogenicity, enabling it to transmit efficiently and to replace
older strains (Li and Chen, 2014), as well as facilitating vaccine
escape.

Seasonal outbreaks are driven by antigenic drift, which allows
the virus to escape host immunologic memory to previous
infection- and/or vaccine-induced immunity. In temperate
zones, influenza A viruses cause annual winter outbreaks in
humans resulting in significant public health and economic
burden (Stöhr, 2002). In tropical zones influenza outbreaks occur
throughout the year, often with activity peaking during the rainy
season (Stephenson and Zambon, 2002).

Occasional antigenic shifts can arise which significantly alters
virus antigenicity, leading to pandemics (Scholtissek, 1995). The
most recent influenza pandemic was caused by a swine-origin
reassortant H1N1 virus in 2009 (H1N1pdm09;Massingale, 2009).
This caused over 60 million cases (20% of the population) in the
United States alone, with an estimated 274,304 hospitalizations
and 12,469 deaths during its first year (Shrestha et al., 2011).
This burden was even higher in developing countries, due to a
more delayed response and a more resource-limited healthcare
infrastructure (Charu et al., 2011). The global deaths attributed to
respiratory or cardiovascular complications due to H1N1pmd09
infections have been estimated to be in the range of 151,700–
575,400 people (Dawood et al., 2012).

Influenza reassortment events are usually identified by
drawing phylogenetic trees of each gene segment and identifying
clade jumping events, i.e., clustering of certain strains or isolates

in different clades on different gene trees (Steel and Lowen,
2014). Nonetheless, reassortment events among homogenous or
very closely related samples are more difficult to detect as these
strains tend to cluster together. Genomic reassortment events
have been implicated in the emergence of pandemic influenza
strains (e.g., the H1N1pdm09; Massingale, 2009), antiviral drug
resistance (e.g., the appearance of the M2-S31N seasonal H3N2
amantadine-resistant strain and the NA-H274Y seasonal H1N1
oseltamivir-resistant influenza strain; Simonsen et al., 2007;
Zaraket et al., 2010a,b), and novel avian influenza viruses with
pandemic potential (e.g., H5N1 and H7N9; Li et al., 2004; Wu
et al., 2013).

In this study, we analyzed the extent of interseasonal
reassortment events among H3N2 influenza viruses and assessed
their potential contribution to the evolution of seasonal strains,
using 100 full genome sequences obtained by next generation
sequencing of isolates obtained from Japan, Myanmar, Vietnam,
and Lebanon. We show evidence of frequent interseasonal
reassortment events among H3N2 influenza viruses and report
on novel PB1-F2 and M2 gene polymorphisms that confer
resistance to amantadine.

MATERIALS AND METHODS

Sample Collection and Ethical Approval
Nasopharyngeal swabs were collected from patients with
influenza-like illness (ILI) with at least one of the following
symptoms: fever >38◦C, coughing, rhinorrhea, myalgia,
arthralgia, or diarrhea.

In Lebanon, Japan, and Myanmar specimens were collected
as part of an influenza surveillance project run by our group.
Sample collection in these countries was approved by the
ethical committee at the home institution of each contributing
laboratory. A written informed consent was obtained from
subjects prior to enrollment in the study.

In Vietnam, sample collection was performed as part of
Ministry of Health surveillance program for ILI and severe acute
respiratory infection (SARI). The National Institute of Hygiene
and Epidemiology (NIHE), Vietnam, provided ethical committee
approval for the study and all subjects provided written, informed
consent.

Sample Selection and Virus Propagation
One hundred human influenza A/H3N2 clinical isolates
collected during July 2012–January 2015 were randomly
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selected from a bank of isolates available in our laboratory
through the aforementioned surveillance programs. All
isolates were passaged on Madin–Darby canine kidney
(MDCK) cells maintained in minimum essential medium
(MEM) supplemented with 10% fetal bovine serum
(Gibco).

Full Genome Sequencing
Viral RNA was extracted using Extragen II kit (Kainos) as per
manufacturer’s instructions. Full genome sequencing of H3N2
isolates was performed using next generation sequencing method
as previously described (Kanehira et al., 2015).

Briefly, a cDNA library was prepared using random hexamers
and NEBNext UltraTM RNA Library Prep kit (NEB) according
to the manufacturer’s instructions. This was sequenced using
a Miseq second-generation sequencer (Illumina) with Reagent
Kit v2 and v3 (Illumina). The genomic sequence of isolates
were determined using CLC Genomics Workbench 7.0.4 (CLC
bio, Inc.). Output reads from the sequencer were trimmed
with a quality score limit of 0.05 and mapped to influenza
A/H3N2 virus reference sequence sets with the following settings:
mismatch cost = 2, insertion cost = 3, deletion cost = 3,
length fraction = 0.5, similarity fraction = 0.8. The accession
number of the reference sequence sets used for mapping the full
H3N2 genomes are: KF432080, KF014949, JX437916, KF014151,
KF014594, KF451895, JX437856, and KF014664. Reads mapping
to the dog (source of MDCK cells) reference genome data
(Dog, CanFam3.1) available at the University Of California
Santa Cruz Genome Browser (http://genome.ucsc.edu/) were
subtracted.

Whole genomic sequences were established as consensus
sequences from reads mapped to the reference sequences.
The mapping of NA and M2 gene were subjected to CLC
quality-based variant detection with: minimum coverage = 10
reads; minimum frequency = 10%; neighborhood radius =

5; maximum gap and mismatch count = 2; minimum
neighborhood quality = 15; minimum central quality =

20. Amino acid changes conferring resistance to influenza
antiviral drugs were analyzed by the CLC amino acid changes
tool.

Sanger sequencing was used to confirm the presence of any
key mutations in the M2 or NA genes in RNA extracted directly
from the original clinical specimens, when these were available.
Briefly, cDNA was first performed using universal Uni12 primers
for influenza A (Hoffmann et al., 2001) followed by PCR with
M2 or NA specific primers (Masuda et al., 2000; Dapat et al.,
2009). The PCR products were then purified and sequenced using
Big Dye Terminator on an ABI Prism 3130XL Genetic analyzer
(Applied Biosystems). Sanger sequences from original samples
were not incorporated in the full genome sequences obtained
by NGS. All sequences were deposited in the public databases.
The accession numbers and data for the isolates are listed in
Supplementary Table 1.

Phylogenetic Analysis
Individual gene segments of isolates from this study were aligned
with vaccine-strains obtained from the Influenza Resource

Database (http://www.ncbi.nlm.nih.gov/genomes/FLU) using
CLUSTAL W alignment tool in the BIOEDIT software (Hall,
1999). Maximum likelihood (ML) phylogenies were inferred on
the basis of the best fit nucleotide substitution model for each
gene as implemented in MEGA 6.0 (Tamura et al., 2013).

The Hasegawa-Kishino-Yano model with a gamma
distribution (HKY+G) was used for the PB2, PB1, PA, HA,
and NP, the Tamura-Nei model with gamma distribution
(T92+G) for the NA, the Kimura 2-parameter for MP, and the
T92 for NS.

Initial trees for the heuristic search were obtained by applying
the Neighbor-Joining method to a matrix of pairwise distances
estimated using the Maximum Composite Likelihood (MCL)
approach. A non-parametric bootstrap sampling analysis with
1000 replicates of the ML tree was applied using the best
nucleotide substitution model. Clades were designated based on
the clustering of isolates in the HA phylogeny with bootstrap
support≥70. Reassortment events were detected by mapping the
topologies of viruses across all trees using TreeDyn (http://www.
treedyn.org/).

Antiviral Drug Susceptibility Testing
Phenotypic antiviral drug susceptibility of influenza isolates to
neuraminidase inhibitors (NAIs) was assessed by measuring the
50% inhibitory concentrations (IC50) of oseltamivir (Sequoia
Research, UK), zanamivir (Sequoia Research, UK), peramivir
(Shionogi Co., Japan), and laninamivir (Daiichi Sankyo Co.,
Japan), using a fluorescence-based NA inhibition assay with
methylumbelliferone N-acetylneuraminic acid (MUNANA) as
the substrate (Hurt et al., 2009; Dapat et al., 2013).

Briefly, each virus isolate was first titrated to obtain a dilution
in the linear range of the NA activity curve. NAI assay was
performed by adding 25 µL of each NAI dilution (range
0.02–1250 nM) to all wells of a microtiter plate. The virus was
diluted to 25,000 fluorescence unit and 25 µL of each dilution
was added to all wells. Plates were incubated at 37◦C for 30
min. MUNANA substrate (50 µL at a final concentration of 25
µM) was added to each well then the plates were incubated at
37◦C for 60 min. The reaction was finally stopped by adding 260
µL of 200 mM of sodium carbonate to each well. Fluorescence
was measured using a TriStar LB 941 multi-well plate reader
(Berthold Technologies GmbH & Co.).

Amantadine susceptibility assay was performed to determine
the effect of the M2 gene mutation on inhibitory activity
of amantadine against H3N2 isolates (Masuda et al., 2000).
Confluent monolayers of MDCK cells in the 96-well plates
were inoculated in triplicate with 0.1 ml of each virus dilution.
Maintenance media (0.1 ml) containing 0.2 mg/ml TPCK trypsin
was added to each well and the plates were incubated at 37◦C in
a CO2 incubator, where a cytopathic effect was observed at 48 h.
The titers were calculated by the Reed–Muench method (Reed
and Muench, 1938). To assess the amantadine susceptibility
of the H3N2 viruses, the values of the TCID50/0.1 ml were
compared. A difference of 2.0 log10 TCID50/0.1 ml or more in
the presence and absence of amantadine was an indication of the
virus susceptibility to amantadine.
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RESULTS

HA Gene Analysis
In order to determine the relationship among the H3N2 isolates
included in the study and in relation to the vaccine strains, we
first inferred the phylogenetic tree of the HA gene using the
full coding sequence. A total of 100 isolates collected during
2012–2015 from Japan, Lebanon, Myanmar, and Vietnam were
sequenced using the IlluminaMiseq platform and included in the
analysis. The WHO-recommended vaccine strains for seasons
2011/2012–2015/2016 were also included in the analysis for the
purpose of comparison. We arbitrary classified the isolates in five
clusters based on the HA tree clustering (Figure 1). All clusters
had bootstrap support greater than 85%.

Cluster 1 was formed of Vietnamese isolates collected in 2012
and was closely related to A/Perth/16/2009, the 2011/2012 season
vaccine strain. Cluster 2 included isolates collected from the four
countries included in the study during the 2013 and 2013/2014
seasons. Cluster 3 contained isolates from Myanmar, Japan, and
Lebanonwhichwere collected in the 2013 and 2013/2014 seasons.
Cluster 4 consisted mainly of Myanmar isolates and one Japanese
isolate that were collected in 2014, which also included the
WHO-recommended vaccine strain for the 2015/2016 season
(A/Switzerland/9715293/2013). Cluster 5 was composed of the
Japanese isolates collected during the 2014/2015 season. It was
further noted that clusters 2, 3, 4, and 5 were descended from the
A/Texas/50/2012 vaccine strain for the 2013/2014 and 2014/2015
seasons. Overall, the HA tree revealed both a temporal and
geographical clustering of samples.

Strains isolated in 2013/2014 in the northern hemisphere
(Lebanon and Japan) seemed to originate from those that had
been circulating several months earlier in tropical Myanmar
during 2013. Multiple lineages were observed, co-circulating in
different countries, as in the case of clusters 2 and 3 during
the 2013 (tropical) and 2013/2014 (temperate) influenza seasons.
Two isolates collected in Vietnam, A/Vietnam/13V H3-9/2012
and A/Vietnam/13V H3-4/2013, could not be assigned to any of
the clusters and were designated as singleton intermediates of
major clusters. This small number of Vietnamese isolates may
have hindered our ability to accurately infer their relationship
with strains that were circulating in other countries.

Full Genome Analysis
In order to investigate the full genome evolution of the circulating
strains, we next analyzed the phylogenetic tree of each segment
(Figure 1).

Cluster 2 isolates of the HA tree were found in two distinct
clusters in the phylogenies of the seven other genes. One
cluster was exclusively formed of closely related Myanmar
isolates, while the rest of the isolates from Japan and Lebanon
seemed to be more distantly related despite clustering together.
This observation suggests that cluster 2 samples evolved into
two lineages sharing the same HA gene as a result of 1+7
reassortment event.

Cluster 3 isolates consistently grouped together in the trees
of PA, HA NP, and NS but divided into two distinct clusters in
the PB2, PB1, and NA trees. In the M tree, a subset of cluster 3

isolates intermingled among those of cluster 5 in close proximity
to the rest of the isolates from cluster 3. This suggests that cluster
3 emerged into two lineages as a result of a 5+3 reassortment
event.

Cluster 4 isolates consistently grouped together but possessed
different topologies in different gene trees. This cluster, which is
mainly formed of Myanmar isolates, was closely related to cluster
2 in the HA, PA, M, and NS tree but it associated with cluster 3 in
the PB2, PB1, NP, and NA trees indicating a 4+4 reassortment
event involving a cluster 2 descendent strain with a cluster 3
derived strain.

Several other singleton reassortants were also identified
(summarized in Table 1). A common feature of these isolates is
that they all shared a common ancestral gene PB1 gene, which
belonged to cluster 3. Thus, PB1 gene of cluster 3 may have a
fitness advantage over other lineages, allowing it to persist into
subsequent seasons.

Antiviral Drug Resistance Markers
In order to determine the genotypic antiviral drug susceptibility
of the H3N2 isolates included in this study we analyzed
the M2 and NA protein coding sequences for the reported
genetic markers of resistance against M2-channel blockers
(amantadine and rimantadine) and neuraminidase inhibitors
(NAIs; oseltamivir, zanamivir, laninamivir, and peramivir).
Five mutations (L26F, V27A, A30T, S31N, and G34E) in the
transmembrane region of the M2-channel protein of influenza
A virus have been reported to confer resistance to M2-channel
blockers. Mutations E119V/I, Q136K, D151A/D, I222V, R292K,
and N294S in the NA protein have been reported to cause
reduced susceptibility to NAIs (Abed et al., 2006; Dapat et al.,
2010; Mishin et al., 2014). In this study, 60/63 samples possessed
the S31Nmutation conferring resistance toM2-channel blockers.
The remaining three isolates (A/Nagasaki/14N010/2014,
A/Nagasaki/14N012/2014, and A/Nagasaki/14N013/2014) had
an S31D mutation. This mutation was also detected in the
original clinical samples, using Sanger sequencing (Table 2).
These three isolates were identified during the 2014/2015 seasons
in Japan and formed a subgroup within cluster 5.

Phenotypic amantadine susceptibility assay, revealed that the
S31D mutation confers a similar level of resistance as the widely
spread S31N mutation, as demonstrated by the similar titers
in presence and absence of amantadine (Table 2). In contrast,
the reference amantadine-susceptible S31 strain demonstrated a
difference of 2 log10 – TCID50/0.1 ml in presence and absence of
amantadine.

No variations were identified in any of the known NAI
resistance markers except for residue 151 of the NA enzyme
catalytic site for which several variants were detected by deep
sequencing analysis. Variants (A, G, N, or V) at residue 151
were co-detected with the wild-type (D) with an average variant
frequency of 48% (range 7.7–84.7%).

One isolate possessed a D151A mutation, two had a D151V
mutation, 10 possessed a D151G mutation, and 27 had a D151N
mutation. In order to assess the effect of these mutations on the
susceptibility of the isolates to NAIs, we performed IC50 analysis
of 11 representative isolates with substitutions D151G/A/or
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FIGURE 1 | Continued
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FIGURE 1 | Continued
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FIGURE 1 | Continued
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FIGURE 1 | Evolutionary relationship among human influenza A/H3N2 isolates from Asian countries. Full genome sequences of 100 H3N2 isolates were

aligned and the phylogenetic tree for each genome segment was inferred using maximum likelihood analysis based on the best-fit nucleotide substitution model for

(Continued)
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FIGURE 1 | Continued

each gene. Bootstrap support values ≥70%, which corresponds to a ≥95% probability that a given clade is real, are shown (Hillis and Bull, 1993). Full genome

sequences of WHO-recommended vaccine strains for the seasons covered by the study were obtained from the Influenza Resource Database and included in the

analysis for comparison. The vaccine strains are indicated in boldface italics. The season(s) covered by the vaccine strains are indicated next to the vaccine strain

name in the HA tree: e.g., V11/12 for season 2011/2012, V12/13 for 2012/2013, V13/14 for 2013/2014, V14/15 for 2014/2015, and V15/16 for 2015/2016.

TABLE 1 | Genetic makeup of the singleton reassortant isolates detected in this study.

Sample ID Gene segment cluster

PB2 PB1 PA HA NP NA M NS

A/Myanmar/13M070/2013 2 3 3 2 2 3 3 2

A/Myanmar/13M098/2013 3 3 3 3 3 2 3 2

A/Myanmar/13M124/2013 3 3 3 2 2 2 3 2

A/Nagasaki/13N020/2014 3 3 3 5 3 3 5 3

A/Niigata/14F004/2015 5 3 5 5 3 3 5 5

TABLE 2 | Amantadine susceptibility of H3N2 isolates with S31D M2

mutation.

Sample ID Amino acid

at residue

31a

Log10TCID50/0.1 ml Phenotype

Am(–)b Am (+)c Difference

A/Nagasaki/

14N010/2014

D 4.5 4.8 0.3 Resistant

A/Nagasaki/

14N012/2014

Dd 1.5 1.5 0.0 Resistant

A/Nagasaki/

14N013/2014

Dd 3.5 3.5 0.0 Resistance

A/Nagasaki/

05N230/2006

S 4.8 2.8 2.0 Sensitive

A/Okinawa/

14T006/2015

N 3.5 3.5 0.0 Resistant

aData using NGS of MDCK-passaged samples.
bAmantadine absent.
cAmantadine present.
dThe mutation was also confirmed in the original sample using Sanger sequencing.

V. All of the samples had IC50-values corresponding to the
reference susceptible strain (Table 3). Sanger sequencing of the
original clinical samples of these isolates showed clear single
peaks for the D codon at residue 151 (Table 3). Therefore, these
mutations might have emerged in cell culture, and their presence
as a mixed population with the D151 does not alter the IC50

of NAIs.

Novel PB1-F2 Polymorphisms
The PB1-F2 protein is a non-structural protein encoded by
a +1 alternate open reading frame (ORF) in the PB1 gene
segment (Chen et al., 2001). By analyzing the PB1-F2 ORF, we
found five isolates with polymorphisms leading to an early stop
codon resulting in a truncated protein. A/Niigata/13F416/2014
and A/Niigata/13F335/2014 of cluster 3 had a CGA to TGA
polymorphism leading to PB1-F2 truncated protein of 24 amino
acids (aa). A/Vietnam/13V H3-2/2012 of cluster 1 had CAA to
TAA polymorphism leading to a 25 aa PB1-F2 protein.

Three Lebanese isolates, A/Lebanon/14L45/2014,
A/Lebanon/14L56/2014, and A/Lebanon/14L78/2014 belonging
to cluster 2 had a TCA to TAA polymorphism resulting in
a truncated PB1-F2 protein with 34 aa. These three isolates
clustered together in all segment phylogenies; two were identical
and one had slightly diversified relative to the two other strains.
This truncation appeared to have no detrimental effect on the
infectivity and transmissibility of these viruses.

We next assessed the historic global prevalence of these
polymorphisms by analyzing all the human H3N2 PB1 gene
sequences available in the Influenza Virus Resource (http://www.
ncbi.nlm.nih.gov/genomes/FLU/FLU.html). Analysis of PB1-F2
coding sequence of 5365 deposited PB1 sequences revealed that
the full-length PB1-F2 of 87 or 90 aa constituted the majority of
reported sequences (87.9%; Figure 2). PB1-F2 of 52 aa was the
most prevalent truncation accounting for 10% of all samples. The
prevalence of this polymorphism rapidly surged during 2010–
2012, constituting 22–50% of all reported sequences during these
years but dropped again in frequency in the subsequent years.
Overall, 19 different truncations were reported in the database,
including one (25 aa) similar in length to the truncation detected
in the Vietnamese isolate in this study.

DISCUSSION

Influenza A/H3N2 viruses have been shown to exhibit the
fastest evolutionary rate compared to other contemporary human
influenza viruses such as seasonal H1N1 and influenza B
(Nobusawa and Sato, 2006; Zaraket et al., 2009). This difference
is attributable to the higher fixation rate of mutations acting
upon H3N2 viruses (Zaraket et al., 2009). Reassortment events
among multiple lineages can aid in the fixation of mutations in
the genome if they enhance viral fitness. These events might also
force further selection of additional mutations in the genome to
retain the functional balance among the virus components (Li
and Chen, 2014; Steel and Lowen, 2014).

In this study, we describe the full genome analysis of 100
influenza A/H3N2 isolates obtained during 2012–2015 from four
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TABLE 3 | IC50 for NAIs against influenza samples with amino acid variation at NA 151 residue.

Sample ID Residue 151 (N2 numbering) IC50 (nM)

Sangera NGSb Oseltamivir Zanamivir Peramivir Laninamivir

A/Niigata/13F335/2014 D G 0.72 0.47 0.18 0.68

A/Niigata/13F416/2014 D G 0.65 0.44 0.16 0.60

A/Okinawa/14T003/2015 D G 0.15 0.94 0.50 0.60

A/Myanmar/13M004/2013 D G 0.71 1.05 0.10 0.64

A/Myanmar/13M006/2013 D V 0.63 0.53 0.10 0.45

A/Myanmar/13M007/2013 D G 0.69 0.59 0.13 0.48

A/Myanmar/13M035/2013 D G 0.61 1.07 0.12 0.68

A/Myanmar/13M084/2013 D V 0.59 0.85 0.08 0.66

A/Myanmar/13M102/2013 D G 0.64 0.98 0.12 0.59

A/Myanmar/13M109/2013 D A 0.88 0.67 0.13 0.51

A/Myanmar/13M300/2013 D G 0.47 1.21 0.10 0.68

A/FUKUI/20/2004c D - 0.50 1.26 0.14 0.93

aSanger sequence result of original clinical specimen.
bNext generation sequence result of MDCK-passaged samples.
cReference strain.

FIGURE 2 | Frequency of PB1-F2 polymorphisms leading to a truncated protein. The PB1-F2 coding region of 5365 H3N2 isolates reported between 1968

and 2014 at the Influenza Virus Resource were analyzed to determine the polymorphisms leading to an early stop codon in the PB1-F2 open reading frame. The

predicted protein/peptide length in amino acid is indicated in the figure.

Asian countries: Japan, Lebanon, Myanmar, and Vietnam. Our
analysis revealed the co-circulation of multiple lineages of H3N2
strains during the same period sharing the same ancestry of the
HA protein. We also report the emergence of a rare amantadine-
resistance conferring mutation, S31D, and several novel PB1-
F2 polymorphisms. Several reassortment events among H3N2
isolates were also detected especially during the 2013 (tropical)
and 2013/2014 (temperate) seasons, during which four major
lineages sharing the same ancestry co-circulated along with other
minor lineages or singleton strains. This phenomena has been
previously described for H3N2 viruses in past influenza seasons
(Holmes et al., 2005; Nelson and Holmes, 2007). Some of the

lineages detected in this study, e.g., lineages belonging to clusters
2 or 3, shared the same HA protein as evident by the close
clustering of these isolates in the HA tree.

HA Gene
Interestingly, despite a change in the composition of the other
genes, the HA protein appears to have undergone a parallel
evolution, likely under similar selection pressures as those
exerted on these closely related lineages. In contrast to the 2013
and 2013/2014 strains, most of the 2014/2015 season isolates
belonged to one lineage and sporadic singleton reassortant strains
were observed.
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Notably, the 2014/2015 strains (cluster 5) emerged from
cluster 3 rather than cluster 2, which circulated in the previous
season. Also the cluster 3 PB1 gene was shared by all of the
singleton reassortants observed in our study. This suggests a
fitness advantage of the gene constellation of lineage 3 enabling
it to persist into the following season. Currently, the selection of
vaccine strains for each season is based on the degree of antigenic
drift and the prediction of which strain might predominate in the
following season (Stöhr et al., 2012). Our data as well as others
highlight the importance of considering full genome sequences,
in addition to antigenic data, to predict the influenza strain that is
most likely to prevail in the next influenza season (Belanov et al.,
2015).

Additionally, we noticed that strains circulating in Japan
(northernHemisphere) originated from those circulatingmonths
earlier in the tropical region, as shown by the co-clustering
of Japanese and Myanmar isolates from successive seasons—
particularly in the HA tree. These findings are in agreement
with our previous data showing that amantadine-resistant
H3N2 influenza strains circulated in the subtropical islands of
Okinawa several months before their detection in the main
islands of Japan (Suzuki et al., 2009). This data supports
the monitoring of influenza in tropical regions to improve
the selection process of vaccine strains. Furthermore, Japan
uses more influenza antivirals than anywhere else in the
world subjecting viruses circulating in this country to this
specific selection pressure (Monto, 2009). This increases the
likelihood for emergence of resistant strains, indicating the
need for comprehensive influenza sequence surveillance in this
country.

PB1 Gene
The PB1-F2 is a pro-apoptotic protein that is localized to
the mitochondria (Chen et al., 2001). Other roles for PB1-
F2 like the promotion of inflammation and the regulation of
viral polymerase activity have been also described (McAuley
et al., 2007; Mazur et al., 2008). Nonetheless, its contribution to
virulence remains controversial and is likely to be host and strain
dependent (McAuley et al., 2010). The full length PB1-F2 is 87–90
aa in length, however, mutations in the ORF could lead to early
stop codons resulting in a truncated product.

In this study, all samples had a full length PB1-F2 protein
except for six isolates. These isolates possessed truncated PB1-
F2 proteins with 24, 25, or 34 aa residues, five of which were
novel polymorphisms leading to an early stop codon in the
ORF. Three of these isolates, containing a 34 aa-length PB1-F2,
were isolated within a 1-month period in Lebanon and clustered
closely in all of the gene trees. The ability of these viruses to
circulate in the community implies aminimal effect of the PB1-F2
truncation on their transmissibility and infectivity. Analysis of all
previously reported human H3N2 viruses revealed that the vast
majority of all isolates possessed a complete length PB1-F2 (87
or 90 aa).

The most common variant was a PB1-F2 of 52 aa in length,
which accounted for almost 50% of all reported isolates in
2011 and 2012 before sharply dropping again in prevalence
in the following years to be replaced by the full length

variant. The impact of PB1-F2 truncations on the infectivity
and transmissibility of H3N2 viruses is not known. Gibbs
et al. showed that PB1-F2 amino acids 69–82 constitute the
minimal mitochondrial translocation signal (Gibbs et al., 2003).
In contrast, Yamada et al. showed that amino acids 63–75 are the
minimal sequence required to allow mitochondrial localization
(Yamada et al., 2004). The H1N1pdm09 virus, despite lacking
the PB1-F2 protein, was able to widely transmit and become
pandemic by establishing in humans. Expression of the full length
PB1-F2 by the H1N1pdm09 had a minimal impact on the virus
virulence in mice and ferrets (Hai et al., 2010). Studies to better
elucidate the effect of PB1-F2 truncations on virulence of seasonal
H3N2 viruses are warranted.

M Gene
All of our H3N2 viruses had the M2-S31N mutation conferring
resistance to amantadine, except three isolates. These isolates
were collected in Nagasaki within a short period during the
2014/2015 season and possessed an S31D mutation. This
mutation has been sporadically reported in Japan and Korea in
2006 and 2008 (Hata et al., 2007; Baek et al., 2009).

Baek et al. reported that the S31D mutation did not cause
resistance of H3N2 isolates to amantadine contrary to the S31N
mutation (Baek et al., 2009), but later demonstrated that this
mutation reduces the ability of amantadine to block the M2-
channel to a level comparable to that of the S31N mutation
(Balannik et al., 2010). Our data confirmed that the S31D
mutation causes phenotypic resistance to amantadine at a similar
level as the S31N mutation.

The three Nagasaki isolates with the S31D mutation were
closely related, clustering together with another S31N containing
strain from Nagasaki in all gene trees. The four strains possessed
identical PA genes but were slightly divergent in the other genes.
Therefore, we speculate that the S31D mutant virus has emerged
from an S31N strain by a single-point mutation of AAT(N)
to GAT(D). Future monitoring of the S31D mutation among
clinical specimens is critical to determine its prevalence and
fitness-cost on H3N2 viruses.

NAI Susceptibility
All of the tested isolates were susceptible to the four NAIs tested.
A few isolates show some variation at residue 151 (D151A/G/N/
or V) in the catalytic site of the NA enzyme active site. Variations
at residue 151 have been previously described as common among
influenza isolates (McKimm-Breschkin et al., 2003; Lin et al.,
2010). Residue 151 has been suggested as a proton donor in
the NA catalytic reaction during the binding of the enzyme to
the sialic-acid containing receptor (Varghese et al., 1992) and
to induce receptor binding ability of the NA gene (Lin et al.,
2010; Mohr et al., 2015). As a result, the receptor binding affinity
of the virus increases which could bias the interpretation of
hemagglutination inhibition data used by the WHO for vaccine
selection (Lee et al., 2013).

Changes at this residue also affect the enzymatic activity.
The D151E possesses <10% of the wild-type enzyme activity
(McKimm-Breschkin et al., 2003), resulting in a 10-fold increase
in the IC50 of oseltamivir (Yen et al., 2006). Additionally,
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D151A and D151G variations were shown to cause a 30- and
1000-fold increase, respectively, in zanamivir IC50s compared
to D151 (Sheu et al., 2008; Mishin et al., 2014). However, in
this study, isolates possessing variations at residue 151 had
IC50s comparable to the reference strain containing the wild-
type D151 residue. These variations were present at an average
frequency of 48% along with the wild-type residue, which
could have masked their effect on NA activity and susceptibility
to NAIs.

These findings should be taken with care, as the D151G/N/A
substitutions have not been reported in patients treated with
NAIs and are likely to be an artifact of passaging H3N2 virus
in MDCK cells (Sheu et al., 2008; Lee et al., 2013; Mishin et al.,
2014). Studies reporting these mutations used viruses isolated in
MDCK cells (McKimm-Breschkin et al., 2003; Lin et al., 2010).
Consistently, sequencing of the original (uncultured) clinical
samples in our study revealed that, unlike the MDCK-passaged
isolated, they all possessed the wildtype D151 residue. This
confirms that variations at this residue are very likely cell culture-
induced. Therefore, when reporting new NA resistant variants it
is essential to confirm the results in the original clinical samples
and not only using isolates.

One limitation of the study is that NGS was performed
on MDCK-isolates rather than original samples. While this
could introduce some artifacts to the data such as cell-induced
mutations (e.g., residue 151 variants), it is unlikely to affect our
analysis of reassortment events. To overcome this limitation, we
also confirmed keyM2 and NAmutations in the original samples
using Sanger sequencing.

CONCLUSION

In conclusion, the frequency of reassortment events detected
in this study and the observation that one out of several
genetic constellations that circulate in a given season might
seed subsequent epidemics has important implications for
selection of vaccine strains. Choosing a vaccine strain that not
only matches the antigenically drifted strain from a previous
season but also one that possess a better fit constellation
is likely to improve the success of vaccine-strain selection.
Finally, even though amantadine is considered an obsolete
medication due to the universal carriage of S31N-M2 mutation
among contemporary H3N2 isolates, the detection of an S31D
mutation suggests that this residue is still undergoing mutations
with the potential to revert back to the susceptible S31
genotype.
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