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Objective: Rates of diabetes mellitus are higher in South Asians than in other populations and persist
after migration. One unexplored cause may be higher exposure to persistent organic pollutants as-
sociated with diabetes in other populations. We compared organochlorine (OC) pesticide concentrations
in South Asian immigrants and European whites to determine whether the disease was positively
associated with OC pesticides in South Asians.

Research Design and Methods: South Asians of Tamil or Telugu descent (n = 120) and European
whites (n = 72) were recruited into the London Life Sciences Population Study cohort. Blood samples as
well as biometric, clinical, and survey data were collected. Plasma levels of p,p0-dichlorodiphenyldi-
chloroethylene (DDE), p,p0- dichlorodiphenyltrichloroethane, b-hexachlorohexane (HCH), and poly-
chlorinated biphenyl-118 were analyzed by gas chromatography-mass spectrometry. South Asian cases
and controls were categorized by binary exposure (above vs below the 50th percentile) to perform
logistic regression.

Results: Tamils had approximately threefold to ninefold higher levels of OC pesticides, and Telugus
had ninefold to 30-fold higher levels compared with European whites. The odds of exposure to p,p0-DDE
above the 50th percentile was significantly greater in South Asian diabetes cases than in controls (OR:
7.00; 95% CI: 2.22, 22.06). The odds of exposure to b-HCH above the 50th percentile was significantly
greater in the Tamil cases than in controls (OR: 9.35; 95% CI: 2.43, 35.97).

Conclusions: South Asian immigrants have a higher body burden of OC pesticides than European
whites. Diabetes mellitus is associated with higher p,p0-DDE and b-HCH concentrations in this pop-
ulation. Additional longitudinal studies of South Asian populations should be performed.
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Over 80 million adults are living with diabetes mellitus in India (9% to 10% prevalence),
and approximately 90% of these adults have type 2 diabetes [1]. Rates of type 2 diabetes are
also high in South Asian diaspora populations, including those in the United Kingdom
[2–4]. South Asians living in the United Kingdom have a twofold to threefold higher rate of
type 2 diabetes than European whites [2–4]. Diabetes mellitus develops in South Asian
Indians at a lower body weight, blood lipid level, and age than in other ethnic groups, yet
known risk factors, including genetics, do not explain this increased vulnerability [5, 6].
One possibility is that South Asians have a higher exposure to organochlorine (OC)
pesticides, which have been associated with diabetes mellitus in European, American, and
Korean populations [7].

South Asians have been exposed to OC pesticides for longer periods and at higher con-
centrations than populations inWestern Europe, where these legacy compounds were largely
phased out in the 1970s and 1980s. For example, unregulated spraying of p,p0- dichlor-
odiphenyltrichloroethane (DDT) and lindane [g-hexachlorohexane (g-HCH)] for control of
mosquito-borne diseases and agricultural purposes continued in India until after ratification
of the Stockholm Convention in 2006 [8, 9]. Today, India is still the top producer and con-
sumer of OC pesticides [10, 11] and has some of the world’s highest-recorded breast milk
concentrations of these pesticides, including DDT and HCH [12, 13]. Unlike in other Asian
nations such as China, environmental levels of DDT and HCHs in India have not appeared to
decrease since the implementation of tighter regulations [8].

DDT and dichlorodiphenyldichloroethylene (DDE) are stored for long periods in body fat and
are resistant to metabolism, with plasma half-lives of 2 and 6 to 7 years, respectively, in
humans [14]. Lindane is fairly short-lived in the environment and humans [9], but theb-isomer
(b-HCH), an impurity formed during production of lindane, has a half-life of 7 years in humans
[15]. Hence, these OC pesticides should persist in the bodies of South Asian immigrants many
years after they migrate to the West. We therefore measured blood levels of two subclasses of
persistent organic pollutants (POPs), OC pesticide derivatives and polychlorinated biphenyls
(PCBs), in subjects recruited for The London Life Sciences Prospective Population Study
(LOLIPOP), a cohort that includes South Asian immigrants and European whites residing in
the London area. Several genetic and epigenetic studies of diabetes susceptibility have been
performed previously on the LOLIPOP cohort [5, 16, 17], but environmental exposures
associated with diabetes mellitus have not yet been assessed in this population. PCBs were
considered a negative control in this study, as this chemical class of analytes was not
predicted to have differing levels within the sample population. We hypothesized that (1)
baseline levels of OC pesticides are higher in South Asian immigrants than in European
whites in the London area and (2) diabetes mellitus is associated with OC pesticide
exposure in South Asians.

1. Subjects and Methods

A. Study Population and Design

The LOLIPOP cohort comprised .30,000 South Asians and European whites living in West
London [18]. The subjects in the current study were adult volunteers (.21 years of age) of
mostly Telugu or Sri Lankan Tamil descent who were newly recruited into the LOLIPOP
cohort in 2012. The study was approved by the UK National Research Ethics Service (07/
H0712/150) and by the Berkeley Committee for Protection of Human Subjects. During their
enrollment, the subjects completed a questionnaire in which they were asked if they had a
medical history of diabetes and when it was diagnosed. An additional six new diabetic cases
were identified by fasting plasma glucose (FPG) level $7 mmol/L at the time of blood col-
lection. These six case diagnoses were based on a single blood collection. Nondiabetic controls
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were defined as having no history of diabetes and an FPG level ,5.6 mmol/L. None of the
subjects with a prior diagnosis of diabetes had an FPG level ,5.6 mmol/L. FPG was chosen
instead of hemoglobin A1c primarily to classify diabetes cases because the latter has had low
sensitivity in Asians [19].

We examined a total of 192 individuals: 120 South Asians of Indian Telugu or Sri Lankan
Tamil descent and 72 European whites (Table 1). The Tamils migrated to the United
Kingdom before the Telugus did (an average of 20 years vs 12 years before recruitment for
Tamils and Telugus, respectively). The European whites were born in the United Kingdom.
Among the 120 recruited South Asians, there were 24 cases of diabetes mellitus (four
Telugus, 20 Tamils) and 96 nondiabetic controls (43 Telugus, 53 Tamils).We assumed that the
24 diabetes mellitus cases were almost all patients with type 2 diabetes, but it is possible some
patients had type 1, although the prevalence of the latter in LOLIPOP is very low. The
South Asian controls were frequency matched to the diabetes cases on age, sex, proportion
of Telugus, smoking status, and waist-hip ratio (Table 1). The South Asian control group
was also frequency matched to a European white comparison group (n = 72 controls) on
similar characteristics.

B. Chemical Analysis

Plasma was extracted in four batches using chemical denaturation, liquid-liquid extraction,
solid-phase cleanup, and reconstitution with hexanes. An Agilent 7890B gas chromatograph
coupled to an Agilent 7000C GC Triple Quadrupole mass spectrometer was operated in
electron ionization, multiple-reaction monitoring mode. System performance was monitored

Table 1. Characteristics of the Study Subjects

Whites South Asians

Controls Controls Cases
Cases vs
Controls

n = 72 n = 96 n = 24 P Value

Males, % 36 (50) 53 (55.2) 17 (70.8) 0.25
Smoke, % 12 (16.7) 4 (4.17) 3 (12.5) 0.14
Drink, % 43 (59.7) 25 (26.0) 5 (20.8) 0.79

Mean SD Mean SD Mean SD P Value

Age, y 48.49 6.65 48.32 8.38 56.10 9.57 ,0.01
SBP, mm Hg 122.00 15.1 123.90 13.50 131.75 15.15 0.02
DBP, mm Hg 76.70 10.6 78.56 9.13 81.17 7.79 0.15
BMI, kg/m2 26.43 4.55 26.52 3.37 26.14 3.53 0.63
WHR 0.89 0.08 0.93 0.07 0.97 0.07 0.01
HDL, mmol/L 1.54 0.46 1.32 0.32 1.23 0.36 0.28
LDL, mmol/L 3.02 0.84 3.36 0.84 2.16 1.08 ,0.01
Glucose, mmol/L 4.97 0.34 4.83 0.33 9.02 1.63 ,0.01
% HbA1c 5.41 0.30 5.62 0.40 8.20 1.29 ,0.01
Chol, mg/dL 195.30 34.2 204.22 35.35 165.82 50.94 ,0.01
Trig, mg/dL 99.40 59.9 120.31 56.42 167.78 83.12 0.01
Years in the United

Kingdoma
16.33 11.28 23.96 12.06 0.01

Body fat, % 30.88 8.70 32.34 7.75 29.61 7.89 0.14

Abbreviations: BMI, bodymass index; Chol, cholesterol; DBP, diastolic blood pressure;HbA1c, hemoglobinA1c;HDL,
high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood pressure; Trig, triglycerides; WHR, waist/
hip ratio.
aAll white control subjects were born in the United Kingdom.
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with calibrators at seven concentration levels for each analyte. Variability was measured
using pooled reference samples at several intervals within each batch run.

We report measurements of the POPs p,p0-DDE, p,p0-DDT, b-HCH, and PCB-118 in the
plasma of 192 participants. Several other PCBs were also measured, including PCB-123,
PCB-114, PCB-105, PCB-167, PCB-156, PCB-157, and PCB-189; however, these PCBs were
detected in only some of the samples. Among the measured PCBs, only PCB-118 was above
the limit of detection and limit of quantitation for a majority of the samples and hence was
used as the PCB analyte of choice. Concentrations (ng/mL) were converted to lipid-adjusted
values by using the available clinical lipid profile measurements and the following formula:
Total lipids = (2.27 3 total cholesterol) + triglyceride + 0.623 [20].

C. Statistical Analysis

The Wilcoxon rank sum test was used to examine baseline differences in chemical con-
centrations within and between South Asian controls (n = 96) and European whites (n = 72).
To assess the association between individual chemicals and diabetes mellitus within the
South Asian sample population, we created two groups according to whether each chemical
concentration was above or below the median concentration. Logistic regression was used to
obtain unadjusted ORs for concentrations above vs below the median value. Small sample
size adjustments for ORs were calculated instead of logistic regression where appropriate.
P values for the 2 3 2 contingency tables of case/control and above/below median POP
concentrations were obtained using the Fisher’s exact t test. Multivariable models included
adjustments for age, sex, waist/hip ratio, systolic blood pressure, smoking status (yes/no), and
alcohol use (yes/no).

2. Results

Significantly higher concentrations of organochloring pesticides were observed in South
Asian immigrants than in European whites living in West London. Although some difference
was expected, the median concentrations of p,p0-DDE and p,p0-DDT among nondiabetic
control participants were more than eightfold higher (P , 0.001) in South Asians [median:
535.87 ng/g-lipid (range: 26.82 to 25,143.8 ng/g-lipid) and median: 17.65 ng/g-lipid (range:
3.91 to 316.45 ng/g-lipid) for p,p0-DDE and p,p0-DDT, respectively] than in whites [median:
61.26 ng/g-lipid (range: 17.65 to 353.3 ng/g-lipid) and median: 2.08 ng/g-lipid (range: 0.64 to
70.97 ng/g-lipid) for p,p0-DDE and p,p0-DDT, respectively]. This eightfold difference is large
considering that most of the South Asian immigrants had been living in London for many
years. As expected, PCB-118 concentrations were similar (P = 0.51) in the two groups
[median: 4.51 ng/g-lipid (range: 0.81 to 34.21 ng/g-lipid) and median: 3.94 ng/g-lipid (range:
0.89 to 13.38 ng/g-lipid) for South Asians and whites, respectively].

Unlike with p,p0-DDE, p,p0-DDT, and PCB-118, the baseline distribution of b-HCH con-
centrations differed widely by South Asian ethnic group.Median b-HCH levels were threefold
higher (P , 0.001) in Tamil control individuals [median: 36.73 ng/g-lipid (range: 4.63 to
541.67ng/g-lipid)] and 30-fold higher (P, 0.001) in Telugus [median: 365.32 ng/g-lipid (range:
96.86 to 714.45 ng/g-lipid)] than in whites [median: 12.86 ng/g-lipid (range: 3.18 to 36.44 ng/g-
lipid)]. Similar fold-change differences were found when levels were expressed in ng/mL
units.

Significant associations were found between OC pesticides and diabetes mellitus in South
Asians. We observed sevenfold increased odds of p,p0-DDE plasma concentrations occurring
above the median in diabetes mellitus cases compared with controls [OR: 7.00 (95% CI: 2.22,
22.06)] (Table 2). The OR for p,p0-DDT binary exposure was not significantly different be-
tween cases and controls. A significant association for PCB-118 was also found in ng/g-lipid
units [OR: 2.99 (95% CI: 1.13, 7.88)] but could not be replicated using ng/mL units (Table 3).
The Tamils and Telugus had widely differing exposure levels of b-HCH, and so inferences
could not be based on binary exposure levels across the entire South Asian group. Thus, South

doi: 10.1210/js.2017-00480 | Journal of the Endocrine Society | 835

http://dx.doi.org/10.1210/js.2017-00480


Asians were stratified into Tamil and Telugu subgroups before associations between b-HCH
levels and diabetes mellitus were assessed. Significantly increased odds [OR: 9.35 (95% CI:
2.43, 35.97)] of b-HCH concentrations above the median was observed in Tamils with di-
abetes mellitus compared with controls (Table 4). For the smaller Telugu population, the OR
was elevated but not significant [OR: 4.38 (95% CI: 0.52, 203.36)].

3. Discussion

Our study compared blood plasma POP levels of South Asians with those of European whites
residing in the same Western city. Blood levels of various OC pesticides were much higher in
the South Asian immigrants than in the whites born in the United Kingdom, whereas levels
of PCBs were not significantly different. The differences in OC pesticide levels between South
Asians and whites were sustained for at least 10 to 20 years after the South Asians had
migrated to the relatively low-exposure UK environment. The predicted blood half-life for p,
p0-DDE and p,p0-DDT is 6 to 7 years and 2 years, respectively [14], yet they were still detected
in almost all of the participant samples. Lindane (g-HCH) is fairly short-lived [9], but the
b-HCH isomer (an impurity formed during production of lindane) has a half-life of 7 years
[15]. Lindane was detected in only 75% of our participant samples, and the signal was 32-fold
lower than that of b-HCH in the analytical data. In addition, the b-HCH levels varied greatly
depending on country of origin (i.e., Sri Lanka vs India), indicative of the varied use of HCHs
across the Indian subcontinent. Within South Asian ethnic groups, Telugus had twofold
higher levels of p,p0-DDT and eightfold to 10-fold higher levels of b-HCH than Tamils. The
higher concentration of p,p0-DDT in Telugusmay be due to their more recent exposure, as this

Table 2. POP Concentrations and Numbers Above/Below Median for South Asian Diabetic Cases vs
Controls (ng/g-lipid)

Controls Cases

Compound

Groups
Split at
Median n Median (Range) n Median (Range)

Odds Ratio
(95% CI)a P Value

p,p’-DDE ,710.87 56 318.00 (26.82, 705.10) 4 208.34 (141.38, 552.80) 7.00 (2.22, 22.06) ,0.001
$710.87 40 1282.48 (736.62, 25143.80) 20 1698.55 (716.627, 6212.58)

p,p’-DDT ,17.61 47 11.12 (3.91, 17.57) 13 10.03 (6.24, 16.05) 0.8 (0.33, 1.99) 0.82
$17.61 49 30.91 (17.65, 316.50) 11 28.91 (17.66, 194.90)

PCB-118 ,4.36 53 2.66 (0.81, 4.33) 7 2.76 (2.03, 4.22) 2.99 (1.13, 7.88) 0.04
$4.36 43 7.33 (4.40, 34.21) 17 6.32 (4.52, 27.34)

aAdjustment for age, waist/hip ratio, sex, smoking status, and alcohol use did not change the effect size or significance
levels except for PCB-118 for South Asians [ORadj = 2.56 (95% CI: 0.80, 8.16)].

Table 3. POPs Concentrations and Numbers Above/Below Median for South Asian Diabetic Cases vs
Controls (ng/mL)

Controls Cases

Compound (ng/mL)
Exposure
Status n Median (Range) n Median (Range)

Odds Ratio
(95% CI) P Value

p,p’-DDE ,3.82 54 1.86 (0.16, 3.76) 6 2.49 (1.18, 3.79) 5.01 (1.40, 17.99) 0.01
.3.82 42 7.54 (3.84, 145.85) 18 12.11 (3.92, 52.99)

p,p’-DDT ,0.11 47 0.07 (0.02, 0.11) 13 0.06 (0.03, 0.10) 0.94 (0.29, 3.08) 0.82
.0.11 49 0.19 (0.11, 2.17) 11 0.24 (0.11, 1.34)

PCB-118 ,0.03 49 0.02 (0.006, 0.02) 11 0.02 (0.01, 0.02) 1.60 (0.52, 4.97) 0.82
.0.03 47 0.05 (0.03, 0.24) 13 0.05 (0.03, 0.12)
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subgroupmigrated to the United Kingdom 10 years after the Tamils (on average). The higher
b-HCH levels in Telugus may be due to more prevalent use of lindane in India than in Sri
Lanka [11]. Overall, these findings of high but varying levels of OC pesticides in different
ethnic groups aremost likely the result of high exposure in early life in India or Sri Lanka and
perhaps ongoing exposure from Indian foods, such as ghee [21], and are not due to differences
in clearance of the compounds.

Significant associations between diabetes mellitus and p,p0-DDE and b-HCH levels were
also found in the South Asians, with greater overall effect sizes than those generally reported
in other studies [7]. Significant associations were found with p,p0-DDE and b-HCH in both
lipid-adjusted (ng/g-lipid) and unadjusted (ng/mL) units. The lack of a strong association of
diabetes mellitus with PCBs in this population demonstrates the specificity of this finding to
OC pesticides. Associations between type 2 diabetes and p,p0-DDE have been observed in
cross-sectional studies in Americans [22–24], Native Americans [25], Koreans [26], and
Slovakians [27], as well as in prospective studies in Great Lakes fish consumers [28] and
Swedes [29]. There are no prior studies of this association in a UK population. A link between
b-HCH and preexisting type 2 diabetes has also been reported in cross-sectional studies
involving Americans [22, 23], Koreans [26], Slovakians [27], Saudi Arabians [30], and
Norwegians [31]. Again, there are no prior studies of this association in a UK population.
Taken together, our results suggest that the high levels of OC pesticides found in South Asian
immigrants may help explain their greater susceptibility to diabetes mellitus.

Our finding has potentially important implications for public health because dispropor-
tionate exposure to diabetes-associated endocrine disrupting chemicals (EDCs) may be an
underappreciated contributor to disparities in metabolic disease risk. Ruiz et al. [32] de-
scribed how the burden of diabetes is not uniformly borne in American society, as the disease
disproportionately affects certain populations, including African Americans, Latinos, and
low-income individuals. Among these susceptible populations, numerous studies have re-
ported significantly higher exposures to diabetogenic EDCs, including OC pesticides. The
presence of high levels of OC pesticides in South Asian migrants to the United Kingdom
makes them a similar “at risk” population. Further, it suggests that immigrants may be
“silent carriers” of high exposure who themselves may not be aware of prior high-exposure
experiences and who may be surrounded by public and medical health communities that are
also unaware of their increased risk. A future goal should be to perform further studies of the
association between diabetes risk and EDC exposure in subpopulations, including migrant
communities, and to educate the medical community about early-life EDC exposure as a risk
factor for diabetes mellitus.

Animal and tissue culture models support the association with OC pesticides and provide
additional evidence of mechanisms for glucose dysregulation and reduced insulin sensitivity
from OC pesticide exposure. Associations between DDT exposure and blood glucose levels
were initially found in rats [33] andmice [34].40 years ago.More recent studies inmice have

Table 4. b-HCH Concentrations and Numbers Above/Below Median for Diabetic Cases vs Controls in
Tamil and Telugu Populations (ng/g-lipid)

Controls Cases

Compound
(ng/g-lipid) Population

Groups
Split at
Median n Median (Range) n Median (Range)

Odds Ratio
(95% CI) P Value

b-HCH Tamil ,50.58 33 27.12 (4.63, 48.98) 3 49.30 (35.61, 49.89) 9.35a (2.43, 35.97) ,0.001
$50.58 20 84.61 (50.58, 541.70) 17 95.35 (52.03, 499.20)

Telugu ,369.30 23 272.81 (96.86, 365.42) 0 N/A 4.38 (0.52, 203.36) 0.11
$369.30 20 461.41 (369.34, 714.45) 4 535.66 (374.28, 627.60)

Abbreviation: N/A, not available.
aFurther adjustment for age, waist/hip ratio, sex, smoking status, and alcohol use did notwidely change the effect size
nor significance levels except for Tamils [ORadj = 7.01 (95% CI: 1.44, 34.0)].
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shown acute exposure to DDE increases fasting blood glucose levels and body weight for 7 to
21 days after treatment [35]. Another study in female mice showed that perinatal DDT
exposure reduced core body temperature, impaired cold tolerance, decreased energy ex-
penditure, and produced a transient early-life increase in body fat in female offspring [36].
When challenged with a high-fat diet for 12 weeks in adulthood, female offspring perinatally
exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered
bile acid metabolism. Perinatal DDT exposure combined with high-fat feeding in adulthood
further impaired thermogenesis as evidenced by reductions in core temperature and in the
expression of numerous RNAs that promote thermogenesis and substrate utilization in the
brown adipose tissue of adult female mice [36]. Hence, perinatal DDT exposure in mice
impairs thermogenesis and the metabolism of carbohydrates and lipids, which may increase
susceptibility to metabolic syndrome in adult female offspring. Similar results have been
reported in rats [37]. These studies suggest that in utero and early-life exposure to DDT or
DDE in children may predispose adults to the harmful effects of a high-fat Western diet. This
may help explain the high preponderance of diabetes mellitus in immigrants who have
migrated to theWest from locations with a high utilization of DDT, such as India andMexico.

Studies in cell culture also support the association. In vitro, pancreatic b-cells chronically
exposed to p,p0-DDT or p,p0-DDE decreased protein expression involved in the hyperglycemia
stress response [38]. In addition, glucose dysregulation has been observed following acute
treatment with lindane in animal and cell models, yet the opposite effects were seen in vitro
vs in vivo [39]. Although individual OC pesticides have been shown to affect glucose
metabolism in experimental models, the combined effect of mixtures on metabolic changes
needs further elucidation.

This study has several limitations. First, the small number of cases did not allow for
rigorous statistical analysis in the Tamil and Telugu subgroups. However, the observed
trends suggest that there are higher levels of OC pesticides in diabetes mellitus cases than in
controls. The small number of cases also made it difficult to examine dose-response re-
lationships in this study. However, we conducted exploratory analyses and calculated the
odds of diabetes within tertile levels of POP exposure (Supplemental Table 1). CIs were broad
as expected, and the OR estimate for each tertile was within the CI of the adjacent tertile. We
were reassured that a dose response appeared evident for DDE. Second, the OC pesticide
exposuremeasurements in this study were highly correlated (Supplemental Fig. 1). Thus, OC
pesticides may not contribute independently to diabetes risk and could act through similar
mechanisms. Third, diabetes risk may be more dependent on the timing and dose of cu-
mulative OC pesticide levels as opposed to current measurements of single analytes or
chemical classes. In the future, cohort studies on banked blood samples from the LOLIPOP
and other studies, such as theMediators of Atherosclerosis in South Asians Living in America
cohort of South Asian migrants to the United States, could be used to demonstrate exposure-
disease temporality.

Despite these limitations, this study adds to the growing literature of positive epidemi-
ological associations between OC pesticides and diabetes mellitus. There have been few
biomonitoring studies of OC pesticides in South Asian migrants to date and, to our
knowledge, no studies examining the relationship between their high rates of diabetes
mellitus and OC pesticide exposure. Future prospective studies on OC pesticides in Indians
should focus on native and migrant South Asians, who historically have had high exposure to
multiple pesticides and have a disproportionately high risk of developing diabetes. South
Asians comprise a substantial proportion of the world’s population; thus, confirmation of the
associations we found here between OC pesticides and diabetes mellitus could have public
health implications on a global scale.
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