
METHODS
published: 26 June 2020

doi: 10.3389/fgene.2020.00567

Frontiers in Genetics | www.frontiersin.org 1 June 2020 | Volume 11 | Article 567

Edited by:

Yang Zhang,

University of Michigan, United States

Reviewed by:

Xiaofei Zhang,

Central China Normal University, China

Yongcui Wang,

Northwest Institute of Plateau Biology

(CAS), China

*Correspondence:

Saeed Jalili

sjalili@modares.ac.ir

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 25 February 2020

Accepted: 11 May 2020

Published: 26 June 2020

Citation:

SabziNezhad A and Jalili S (2020)

DPCT: A Dynamic Method for

Detecting Protein Complexes From

TAP-Aware Weighted PPI Network.

Front. Genet. 11:567.

doi: 10.3389/fgene.2020.00567

DPCT: A Dynamic Method for
Detecting Protein Complexes From
TAP-Aware Weighted PPI Network
Ali SabziNezhad and Saeed Jalili*

Computer Engineering Department, Tarbiat Modares University, Tehran, Iran

Detecting protein complexes from the Protein-Protein interaction network (PPI) is the

essence of discovering the rules of the cellular world. There is a large amount of PPI data

available, generated from high throughput experimental data. The enormous size of the

data persuaded us to use computational methods instead of experimental methods to

detect protein complexes. In past years, many researchers presented their algorithms

to detect protein complexes. Most of the presented algorithms use current static PPI

networks. New researches proved the dynamicity of cellular systems, and so, the PPI is

not static over time. In this paper, we introduce DPCT to detect protein complexes from

dynamic PPI networks. In the proposed method, TAP and GO data are used to make a

weighted PPI network and to reduce the noise of PPI. Gene expression data are also used

to make dynamic subnetworks from PPI. A memetic algorithm is used to bicluster gene

expression data and to create a dynamic subnetwork for each bicluster. Experimental

results show that DPCT can detect protein complexes with better correctness than

state-of-the-art detection algorithms. The source code and datasets of DPCT used can

be found at https://github.com/alisn72/DPCT.

Keywords: protein complex, PPI network, TAP data, memetic algorithm, biclustering

INTRODUCTION

Protein complexes are modules made up of some proteins, which become a group at a specific time
and situation, to become a functional part of a biological process (Gavin et al., 2006). Research about
protein complexes can help in obtaining a better understanding of cellular systems. The importance
of investigating protein complexes has caused many researchers around the world to create large
amounts of experimental data such as protein-protein interaction (PPI) data and gene expression
data (GE) (Bader and Hogue, 2002). Considering the enormous size of experimental data and the
cost of experimental methods, it is necessary to define computational methods to process these data
and to detect protein complexes (Enright et al., 2002). Manymethods have therefore been proposed
to detect protein complexes from PPI networks (Li et al., 2010).

A basic method to detect protein complexes from the PPI network is clustering. MCL (Enright
et al., 2002) proposes to detect protein complexes by clustering the PPI network using random
walking. MCL is very useful and scalable but it cannot detect overlapping protein complexes. In
recent years, Ou-Yang et al. (2016a) introduced TINCD which consists of two layers. In the first
layer, adjacency matrices are created for both PPI and TAP data and ensemble learning is applied
to detect protein complexes from each matrix. TINCD uses 11 state-of-the-art methods on the PPI
network and five detectionmethods on TAP data to detect protein complexes. Two create similarity
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matrices and a scoring matrix, induced from PPI and TAP
adjacency matrices, is the input to the second layer of TINCD.
In the second layer, TINCD applies similarity network fusion to
detect final protein complexes. PSMVC (Ou-Yang et al., 2016b)
is another detection method that uses both PPI and TAP data.
For each dataset, an adjacency matrix is created for specific
patterns and another matrix is created for mutual patterns
between PPI and TAP using learning algorithms. Finally, PSMVC
detects protein complexes from these three matrices like TINCD.
Ramadan et al. (2016) proposed a genetic-based method to detect
protein complexes from the PPI network. In Ramadan’s method,
first, a clustering algorithm is applied to the PPI network and
then a genetic algorithm is used to improve detected clusters
by improving the cluster’s correlation using Gene Ontology
(GO) data.

GMFTP (Zhang et al., 2014) is a generative model with
functional and topological properties. This method tries to
find overlapping protein complexes using the PPI network
and functional profile. GMFTP defines four scores for protein-
complex affinity, complex-function preference, protein-function
association, and protein-protein interaction. Based on these
scores, GMFTP generates a protein-complex membership
indication matrix and detects protein complexes using that
matrix. Another new method to detect protein complexes
is InteHC (Wu et al., 2013) which relies on integrating
heterogeneous biological data to make a protein-protein
interaction network. InteHC uses PPI, GO, TAP, and GE
separately and defines a formulation for each data source to find
if proteins p and q have interaction. In the next step, InteHC uses
some known positive and negative protein-protein interactions
and applies a linear support vector machine (SVM) to learn from
this training data and to generate a weight for each interaction. In
the final phase, InteHC applies a hierarchical clustering algorithm
with three different formulations to detect protein complexes
from the protein-protein interaction network. ONCQS (Zhao
and Lei, 2019) uses the quotient space theory to detect
protein complexes. Themethodmakes somemaximum complete
subgraphs from the PPI network and detects overlapping protein
complexes. ONCQS uses GO to assign a weight to each
interaction of the PPI network.

Unlike previous methods that use just clustering, some
detection algorithms are seed-based. ClusterONE (Nepusz et al.,
2012), introduced by Nepusz et al., starts from each protein
and tries to grow it up by a greedy algorithm to make a
protein complex. ClusterONE attaches each neighbor protein to
a preliminary complex according to its cohesiveness amount.
The cohesiveness of a protein to a preliminary complex is the
proportion of its intra interactions to its extra interactions, so,
a higher value of cohesiveness indicates a more likely protein to
attach to the preliminary complex. Finally, ClusterONE merges
highly overlapping complexes to achieve the final set of protein
complexes. CSeq-GO (Yu et al., 2017) detects protein complexes
in three steps: making weighted PPI, feature selection, and
protein complex detection. First, a gene ontology graph and
amino acid frequency (topology-sequenced information) are
used tomake a weighted PPI network and then a protein complex
detection algorithm is applied to the weighted PPI network.

CSeq-GO detects protein complexes based on density, network
diameter, and the included angle cosine.

Scientists have proved that we can divide proteins in a protein
complex into two part called the core and attachment parts
(Gavin et al., 2006). The core proteins are the main functional
part of the complex and the attachment proteins act as help
for the core part. In case of density, core proteins have more
interaction among themselves and attachment proteins are the
environmental proteins for a core. There are many methods that
detect protein complexes by taking core-attachment structure
into account. COACH (Wu et al., 2009) detects cores by finding
dense subsets of the PPI network based on a threshold and adds
attachment proteins to the detected cores. A protein is considered
an attachment to a core if adding it to the core increases the
weight of the total complex. CAMWI (Lakizadeh et al., 2015a),
a core-attachment based algorithm, detects protein complexes
in four steps. First, it chooses seeds to find cores based on a
threshold; then, seeds are grown up tomake cores and in the third
step it adds attachment proteins to each core. Finally, it filters the
results and removes highly similar detected protein complexes.

Mehranfar et al.’s method (Mehranfar et al., 2017) is similar to
CAMWI and has threemajor steps (seed generation, core finding,
and core growing) but it differs in making the weighted PPI
network.Mehranfar’s method uses three graphs in the GO dataset
and for each graph applies (Resnik, 1995; Lin, 1998; Hwang
et al., 2007) algorithms to define weight to each interaction of
the PPI network. These data and other information come from
comparing the structure of proteins which are inputs to a fuzzy
(Zadeh, 1965; Mendel and John, 2002) function which makes
the final weight of each interaction in the PPI network. Finally,
the main three-step core-attachment protein complex detection
method is applied to the weighted PPI network. EWCA (Wang
and Caixia Wang, 2019) first uses Jaccard’s coefficient similarity
and a new high-order common neighborhood score to assign
a weight to each interaction of the PPI network. In the next
phase, EWCA starts to detect cores. Each core should have more
than two proteins and all proteins should be connected to each
other and have a heavier weight than other neighbors; all proteins
should have high functional similarity. In the next phase, the
algorithm finds potential attachment proteins and in the last
step, protein complexes are formed by adding attachments to
the cores.

Most protein complex detection methods use a static PPI
network as their dataset but it is shown that cellular systems are
dynamic in nature (Srihari and Leong, 2012), so the PPI network
will change over time/conditions. Considering this, static PPI
cannot represent the true nature of protein interactions across
time/condition. Most of the recent methods try to take the
dynamicity of cellular systems into account by creating dynamic
PPI from static PPI, using time-course Gene Expression (GE)
data (Hanna et al., 2015). Time-course gene expression data is
a matrix where each row represents a protein and each column
represents a time stamp. GE provides us with the expression level
of each protein during the microarray experiment.

TSN-PCD (Li et al., 2012) makes dynamic subnetworks for
each time point of gene expression data and it uses hierarchical
clustering called HC-PIN to detect protein complexes from
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each subnetwork. After removing redundant detected protein
complexes, the final result is the union of all detected complexes
in each subnetwork. TS-OCD (Ou-Yang et al., 2014) divides
all interactions of the PPI network into stable and temporal,
where stable interactions appear in all time points of gene
expression and temporal interactions appear only in parts of the
time points. After constructing dynamic subnetworks, protein
complex detection starts using OCD hierarchical clustering and
the final result is a set of protein complexes gathered from each
dynamic subnetwork.

There are some methods that use both dynamicity and core-
attachment approaches to detect protein complexes. Lakizadeh
et al. (2015b) introduced PCD-GED which uses a threshold to
separate active and inactive proteins in gene expression data and
makes dynamic PPI subnetworks. In the next step, PCD-GED
chooses some proteins as seeds and grows them up in a greedy
way to make cores and finally to add attachments to detected
cores. DPC-NADPIN (Shen et al., 2016) used gene expression
data with 36 time points and made 36 dynamic PPI subnetworks.
After finding cores based on the clustering coefficient and a
threshold, DPC-NADPIN tries to add attachment proteins based
on the proportion of inside and outside interactions between the
protein and core.

Taking the dynamicity of the cellular system into account, the
quality of detection methods has increased and in recent years,
using biclustering instead of clustering—another improvement
in the quality of detecting protein complexes. In methods
like DPC-NODPIN, the PPI network is partitioned to some
dynamic subnetworks based on time points of GE data. So,
we assume in each time point, only active proteins can
contribute to make a protein complex. On the other hand,
biclustering allows us to detect more biclusters (i.e., matrices
of some proteins and some time points). Moreover, considering
each bicluster, all of its proteins that are active in some
time point, have a better chance to participate in forming a
protein complex.

BiCAMWI (Lakizadeh and Jalili, 2016) is one of the methods
that uses a genetic algorithm to detect dynamic biclusters from
gene expression data. For each detected bicluster, BiCAMWI
makes a dynamic subnetwork of PPI and protein complexes
are detected from each subnetwork separately by applying
CAMWI. The main idea of BiCAMWI is using a metaheuristic
algorithm to make dynamic PPI and using biclustering instead
of clustering, which makes dynamic subnetworks more accurate.
After BiCAMWI, PCD-DPPI (Janani et al., 2018) was proposed
and used as a shuffled frog-leaping algorithm instead of the
genetic algorithm to bicluster gene expression data. The shuffled
frog leaping algorithm needs less time to converge vs. a genetic
algorithm. After making biclusters, PCD-DPPI makes dynamic
subnetworks and finds protein complexes from them. IFPA (Lei
et al., 2019) uses a nature-inspired optimization algorithm called
FPA (flower pollination algorithm) to detect protein complexes.
IFPA generates 12 dynamic PPI subnetworks based on GE
timestamps and divides interactions to certain and not certain
interactions and defines a co-essentiality value between two
proteins. In IFPA, co-localization, co-annotation, and co-cluster
values are also defined. The algorithm finds cores based on

density and applies an improved FPA to find the attachment
proteins for cores and detects final protein complexes.

In this study, we present a novel dynamic method to
detect protein complexes from the TAP-Aware weighted PPI
network (DPCT) which uses a memetic metaheuristic algorithm
for biclustering gene expression data, which can detect more
accurate biclusters and is time efficient rather than a genetic
algorithm. Using TAP data along with GO gives us a precise
weighted PPI network. A post-processing step in DPCT analyses
and aggregates also detects protein complexes from each dynamic
PPI subnetwork and removes highly similar or redundant
protein complexes.

In section Materials and Methods, we introduce datasets and
benchmarks used in the evaluation of DPCT and define all
phases of DPCT separately. In section Experiments and Results,
we evaluate the proposed method and compare it with state-
of-the-art methods. Section Analytical Discussion assesses the
effect of each novelty in DPCT and we conclude the paper in
section Conclusion.

MATERIALS AND METHODS

Datasets
We use DIP and BioGrid PPI networks to measure the
effectiveness of the proposed method. The DIP (Salwinski et al.,
2004) PPI network consists of 21,592 interactions among 4,850,
and the BioGrid (Chatr-aryamontri et al., 2013) PPI network
consists of 59,748 interactions between 5,640 proteins. To make a
dynamic PPI subnetwork, DIP expression data were used. In DIP
expression data, 2,390 proteins are expressed in 12 time courses.
To make weighted PPI, we used two separate datasets including
GO and TAP. TAP data consists of two datasets that come
from two experiments named LCMS and MALDI in research by
Krogan et al. (2006).

To evaluate the correctness of detected protein complexes, two
benchmark datasets were used. CYC2008 (Pu et al., 2008) with
408 protein complexes among 1,627 proteins, and MIPS (Mewes
et al., 2004) with 313 protein complexes among 1,225 proteins.

Method
The DPCT method includes four phases as shown in Figure 1.
Phase 1, assigns a weight to each interaction of the PPI network
using GO and TAP datasets. The second phase generates some
dynamic subnetworks from the PPI network using a memetic
metaheuristic algorithm. Phase 3 detects protein complexes from
each dynamic PPI subnetwork and finally the fourth phase,
analyzes and aggregates detected protein complexes to obtain
more accurate results and to remove results with a very high
similarity score. In the following subsections, the phases of the
DPCT method are introduced in detail.

Making TAP-Aware Weighted PPI Network
Many state-of-the-art protein complex detection methods use
gene ontology (GO) for PPI network noise reduction, i.e., by
assigning a weight to each interaction of the PPI network. In
DPCT, as shown in Figure 2, TAP data is used as an extra
resource, complementary to GO, to allow for more accurate

Frontiers in Genetics | www.frontiersin.org 3 June 2020 | Volume 11 | Article 567

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


SabziNezhad and Jalili Detect Complexes From TAP-Aware PPI

FIGURE 1 | The main structure of DPCT method.

weighted PPI. Both TAP data sets presented by Krogan et al.,
from LCMS and MALDI are used and normalized between 0 and
1. For each interaction between proteins P1 and P2 in the PPI
network, WTAP[P1, P2] is the weight of the interaction derived
fromTAP data.WTAP[P1, P2] is calculated by Equation (1); where
WLCMS[P1, P2] andWMALDI[P1, P2] are the normalized values of
TAP datasets which indicate the purification score between P1
and P2. If the interaction exists in just one of the TAP sources,
WTAP[P1, P2] is set to the available score, and for the interaction
that does not exist in both of TAP datasets, WTAP[P1, P2] is set to
0.5 and it does not affect the overall weight of the interaction.

WTAP[P1, P2] =
WLCMS[P1, P2] + WMALDI[P1, P2]

2
(1)

The main source of making a weighted PPI network in DPCT
is GO. GO is a dataset with three graphs namely; Biological
Process (BP), Cellular Component (CC), andMolecular Function
(MF). The GossTo (Caniza et al., 2014) tool and the SimGIC
(Pesquita et al., 2008) algorithm are used to make weighted
PPI using GO. GossTo is a tool to compute a weight for each
interaction of the inputted PPI network based on each graph of
the inputted GO dataset. Therefore, there are three weights for
each interaction between protein P1 and P2 in the PPI network
based on BP, CC, andMF which we name; WBP[P1, P2], WCC[P1,
P2], and WMF[P1, P2]. GossTo can also run a post-processing
step including a local search through the graph to increase the
accuracy of weighting. Based on Equation (2), WGO[P1, P2] is
equal to the average of these three weights. After these steps,

FIGURE 2 | Making TAP-Aware weighted PPI network.

WTAP[P1, P2] and WGO[P1, P2] are merged to make the final
weight for each interaction among proteins of the PPI network.
To make WTAP a coefficient for noise reduction, α is defined by
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FIGURE 3 | Making dynamic PPI subnetworks.

Equation (3).

WGO[P1, P2] =
WBP[P1, P2]+ WCC[P1, P2]+ WMF[P1, P2]

3
(2)

α[P1, P2] = 1+ ((WTAP[P1, P2]− 0.5) × γ ) (3)

According to Equation (3), α[P1, P2] is a value between 1− γ /2
and 1 + γ /2 based on the WTAP[P1, P2] value for the PPI
interaction between P1 and P2. γ is the impact factor of TAP data,
and for a higher value of γ , the final interaction weight will be
more affected by WTAP. The final weight of interaction between
P1 and P2 is calculated by Equation (4).

W[P1, P2] = α × WGO[P1, P2] (4)

Making Dynamic PPI Subnetworks
Recent research demonstrates that cellular systems have a
dynamic nature. DPCT tries to take the dynamicity of protein
interactions into account to obtain more accurate results
(Przytycka et al., 2010). The second phase of DPCT derives
dynamic subnetworks from PPI based on gene expression data
in three steps, as shown in Figure 3. First, gene expression data is
normalized between 0 and 1; next, a memetic algorithm is applied
to bicluster the NGE (Normalized Gene Expression) dataset
to organize similar active proteins in each bicluster, i.e., PPI
subnetworks, and finally, PPI subnetworks are weighted using the
TWPPI dataset.

GE normalization
To normalize GE, considering GE[m][n] where m is the size of
protein array P = {p1, p2, .., pm} and n is the size of time points

array T = {t1, t2, .., tn} and GE[i][j] is describing expression
level of ith protein over jth time point, for each protein p,
according to Equations (5, 6) we first calculate mean (µ) and
standard deviation (σ ) of values for all time points and then, set
its corresponding element of NGE with 0 or 1 based on Equation
(7). For each protein in each time point, if the protein’s activation
is higher than the dynamic threshold [i.e., |µ [i]− (σ [i] × ε)|],
the value will be 1 and otherwise 0. Note that ε is a penalty factor
for the normalization process.

µ[i] =

∑n
j=1 GE [i] [j]

n
(5)

σ [i] =

√

∑n
j=1 (GE [i]

[

j
]

− µ[i])
2

n
(6)

NGE [i]
[

j
]

=















0,
GE [i]

[

j
]

< |µ [i]− (σ [i] × ε)|

1,
GE [i]

[

j
]

≥ |µ [i]− (σ [i] × ε)|

(7)

GE biclustering
DPCT uses a memetic algorithm to bicluster the NGE dataset.
The memetic algorithm in its early definition was a modified
genetic algorithm with the capability of local refinement by
a local-search operator to find a solution for the traveling
salesman problem (Norman et al., 1991; Neri and Cotta, 2012).
The memetic algorithm was improved and two basic forms of
individual learning schemas, named Lamarckian and Baldwinian,
were defined (Neri and Cotta, 2012). In Lamarckian learning,
any improved individual is forced back into the population to
compete for reproduction (Le et al., 2009). Baldwinian learning
is another type of memetic algorithm which does not force
improved individuals back into the population but updates
the fitness of the original individual (Le et al., 2009). In
DPCT, a Lamarckian memetic algorithm is used for biclustering
discretized gene expression data.

Algorithm 1 describes our memetic algorithm. In line 4, the
first population is initialized randomly. Lines 6-15 are the main
loop of the memetic algorithm. In line 7, two individuals are
selected as parents; in line 8, two children are created by applying
a crossover operator on the parents. Line 9 mutate children and
in line 10, the fitness of the children is calculated. Line 11 is
a local search that tries to optimize children and in line 12,
optimized children are inserted into the population. In line 13,
two of the worst individuals (i.e., those with least fitness values)
are removed from the population. If the end condition is satisfied
(i.e., the maximum iteration exceeds or individuals get enough
fitness), the loop breaks at line 14. In line 16 the population set
is sorted based on fitness values. Afterward, the best solutions are
returned as our final GE biclusters in line 17. Below, the encoding
of chromosomes, and the operators of our memetic algorithm
are described.

Encoding
Each bicluster is an induced matrix of GE (gene expression) so
it can be described like B[I][J] such that I ⊆ P and J ⊆ T. For
the memetic algorithm, each chromosome maps the structure
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Algorithm| 1Memetic algorithm

1. FunctionMemetic_Main
2. Input: Gene Expression Data
3. Output: set of solutions
4. Population⇐ Generate 400 random Solutions
5. iteration⇐ 0
6. while iteration < Max_Iteration
7. Parents⇐ Select two individuals

from Population
8. Children⇐ Crossover Parents
9. Mutate Children
10. Evaluate Children fitness
11. Optimize_Children⇐ Local_Search Children
12. AppendOptimize_Children to Population
13. Remove two worstIndividual from population
14. If end condition satisfied, break the loop
15. End while
16. Sort Population by fitness
17. return Select top solutions.

of a bicluster and is a vector of size m+n genes, where m and
n show the number of proteins and time points, respectively.
Each gene of the chromosome has a binary value, where 1 and 0
means presence and absence of the corresponding protein or time
point in the chromosome. As you can see in Figure 4, in each
chromosome, the first m genes are the protein parts describing
the presence or absence of each protein, and the time point
part starts from m+1 to m+n genes, describing the presence or
absence of each time point.

Fitness function
The goodness of a bicluster depends on the number of its active
proteins. We used a memetic algorithm to search for a group of
proteins and time points i.e., a bicluster such that most selected
proteins are active in the selected time points. Equation (8) is used
to measure the quality of each detected bicluster. As mentioned
above, a bicluster is a two-dimensional matrix, like B[I][J] such
that I is a subset of P and J is a submatrix of T. For each selected
protein, we have |J| time points, so we have |I| ∗ |J| expression
values and we expect most of them to be active. To calculate Fb,
we find the proportion of active to inactive expressions. In the
best case, if all selected proteins are active in all selected time
points, Fb becomes equal to 1 and in the worst case, if there is
no active protein among all selected proteins and time points, Fb
will be 0.

Fb =

∑

i∈I

∑

j∈J

(

NGE [i]
[

j
]

== 1
)

|I| × |J|
(8)

Selection and crossover
In the proposed memetic algorithm, a binary tournament is used
to select two best individuals for crossover. Two points crossover
is used, and crossover is only applied to the protein part of the
chromosome, so the time point part will not be affected. Having
two selected individuals, two crossover points on the protein part

of each individual are selected randomly and the part of parent
chromosomes between selected points will be swapped with the
probability of 0.9; as a result, we have two new individuals.

Mutation
A mutation operator with a different probability is used for the
protein part and time point part. For the protein part, each cell of
the chromosome will be flipped with the probability of 0.001 and
in the time point part, each cell will be flipped with the probability
of 0.1. As described above, crossover did not apply to the time
point part so we increased the probability of mutation for the
time point part to allow the memetic algorithm to walk through
different situations and to find better solutions.

Local search
Local search of the memetic algorithm is applied to any new
individual added to the population. In local search, each bit of
the chromosome is selected and flipped with the probability of
0.8. If the fitness of the derived chromosome is not increased, the
selected bit is reversed to its previous value, otherwise, the new
value is saved for the bit in the chromosome. Then the procedure
will continue for the next bit.

Making a dynamic subnetwork
After normalizing gene expression data and finding biclusters
using a memetic algorithm, the third step is to extract dynamic
subnetworks from PPI correspondent to the detected gene
biclusters. For each bicluster Bi, we make a correspondent
dynamic subnetwork of PPI, DTWPPI#i that contains only active
proteins which are members of bicluster Bi and their interactions.

Detecting Protein Complexes From Dynamic

Subnetworks
In section Making Dynamic PPI Subnetworks, the static PPI
network is divided into some DTWPPI (Dynamic TAP-Aware
Weighted PPI) that has the most active proteins at one or more
than one time points. These DTWPPIs may overlap due to the
nature of biclustering. We apply the CAMWI (Lakizadeh et al.,
2015a) method to detect protein complexes on each DTWPPI.
The CAMWImethod detects protein complexes from a weighted
PPI network in four steps. The first step calculates the weighted
local clustering coefficient for each protein of a PPI subnetwork
and selects seeds from them. For each seed, a core is created by
attaching some proteins of the DTWPPI subnetwork to seeds that
have the highest interactions among themselves and the seed. The
third step of CAMWI extends each core by selecting another set
of proteins from the DTWPPI subnetwork, called attachments,
and attaches them to its cores to make a protein complex.
Attachments are selected from the direct neighborhood of the
corresponding core of the DTWPPI subnetwork. Choosing a
protein as an attachment depends on the count of its interactions
with the core and a threshold parameter β . The last step is to filter
all detected protein complexes and remove redundant protein
complexes. The result of this stage of DPCT is a set of protein
complexes detected from the set of DTWPPIs.
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FIGURE 4 | The structure of each chromosome of memetic algorithm.

Analysis and Aggregation
In section Detecting Protein Complexes From Dynamic
Subnetworks CAMWI is applied to dynamic PPI subnetworks
to detect protein complexes so the result is a Z set of protein
complexes. The detected bicluster may overlap and this
overlapping will propagate to DTWPPIi so we may have a
protein complex completely or partially in more than one set of
results. In this section, we analyze the derived protein complex
sets and make a final set of protein complexes using a four step
algorithm. First, we need the similarity score of two protein
complexes; The Jaccard index (Srihari and Leong, 2014) is used
to calculate the similarity score of two protein complexes. If C1
and C2 are two protein complexes, J(C1, C2) can be calculated
by Equation (9) where, |C1 ∩ C2| is the count of mutual proteins
in C1 and C2, and |C1 ∪ C2| is the size of the set that contains all
proteins of C1 and C2.

J(C1, C2) =
|C1 ∩ C2|

|C1 ∪ C2|
(9)

Algorithm 2, presents the analysis and aggregation phase. In
the first step, G, a global set of protein complexes is defined. G
contains all detected protein complexes from all result sets of
CAMWI for each DTWPPI. All complexes of G with a count of
proteins less than three are removed. For another complex in G,
if the count of proteins is less than six, the complex is added to
the final result directly and complexes with a size of 5 or more,
will be categorized by similarity score to some set, so that all
complexes with a similarity score >0.8 are categorized to a set.
The result of phase 1 is that all complexes in some category of
protein complexes have a similarity score >0.8. This part of the
algorithm is shown in lines 6–13 of Algorithm 2.

Lines 14-32 of Algorithm 2 describe the main loop of the
post-processing algorithm which contains three phases. Phase 1,
2, and 3 will be applied to each category separately. In the first
phase, shown in lines 16 and 17, the common part of all protein
complexes from each category is found (CommonPart) and is
considered a protein complex. All proteins of the CommonPart
are removed from all protein complexes in the corresponding
category. In the next phase, in lines 19–23 of Algorithm 2,
each protein in each category is checked and if it participates
in at least half of the protein complexes in the corresponding
category, it is appended to the CommonPart of the category
and the protein is removed from all protein complexes in the
corresponding category. In this stage, the CommonPart is added
to the final result.

Remaining proteins in each category will enter the last phase
of analysis and aggregation algorithm which is defined in lines
25–31. In this phase, each remaining protein will be added to

a copy of CommonPart and if the new complex has a greater
weighted clustering coefficient (WCC) (Kalna and Higham,
2007) than before, the new complex will be added to the final
result, otherwise, the protein will be ignored. Line 25 calculates
WCC for the common complex and in lines 27–30, each protein
is added to the common part and its newWCC is compared with
its original one to decide whether to create a new protein complex
or to ignore the protein. The weighted clustering coefficient
for a protein complex can be calculated by Equations (10, 11).
Considering that C(V,E) is a protein complex with V = {v1, v2,
. . . , vm} proteins and E = {e1, e2, . . . , en} edges among proteins;
WCC(v) for each protein can be determined by Equation (10).
Where W(e) demonstrates the weight of edge e, and L is the
set of all edges of v. WCC(C) for each protein complex C(V, E)
is computed by Equation (11). At the end of the 4th phase, all
categories must be empty, and the final set contains the detected
protein complexes by DPCT.

WCC(v) =

∑

e∈LW(e)

|L| × (|L| − 1)
(10)

WCC (C) =

∑

v∈V WCC(v)

|V|
(11)

EXPERIMENTS AND RESULTS

Evaluation Measures
To assess the quality of the proposed DPCT method, we use
precision, recall and F-1 measures which are the common
measurements for protein complex detection methods. The
Jaccard index, defined in section Analysis and Aggregation, is
used to specify the overlap score between the detected protein
complex and the benchmark complex. B = {b1, b2, . . . , bn
} denotes the benchmark complex set and C = { c1, c2, ...,
cm } denotes the set of detected complexes by DPCT, then as
mentioned above, J(bi, ci) can be determined by Equation (9) and
if J

(

bi, ci
)

≥ th then ci is considered as a true detected complex.
In this study, like other state-of-the-art articles, we set th to
0.25. The precision measure represents howmuch of the detected
complexes are matched correctly with the benchmark and the
recall measure represents how much of the real complexes are
detected using the DPCT method. The F-1 measure is the
harmonic mean of precision and recall and can be used to assess
the overall performance of detection methods. Precision, recall,
and F-1 measures are defined in Equations (12–14) (Li et al.,
2010).

Precision =
|{ci | ci ∈ C ∧ ∃ bi ∈ B : J

(

ci, bi
)

≥ th}|

|C|
(12)

Recall =
|{bi | bi ∈ B ∧ ∃ ci ∈ C : J

(

bi, ci
)

≥ th}|

|B|
(13)
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Algorithm| 2 Analysis and aggregation

1. Function PostProcessing
2. input: G: Set of All Detected Complexes
3. output: FinalSet: Final Complex List
4.
5. CategorySet= a list of array of protein complexes
6. For each Complex c in G
7. if size(c) < 3 then remove c from G, continue
8. if size(c) < 5 then Add c to FinalSet, Remove c

from G, continue
9. if size(c) >= 5
10. Category ⇐ all complex cmx in

G that
Similarity(c, cmx)>0.8 and c <> cmx

11. Remove all complexes of Category from G
12. Insert Category to CategorySet
13. End For
14. For each Category Cat in CategorySet
15. //Phase 1:
16. CommonComplex ⇐ Find all proteins which

appears in all complexes in Cat
17. Remove all proteins in CommonComplex

from Cat
18. //Phase 2:
19. For each remain proteins P in Cat
20. IF P appears in at least half of complexes

in Cat
21. add P to CommonComplex and

remove P from Cat
22. Insert CommonComplex to FinalSet
23. End For
24. //Phase 3:
25. W1 ⇐ Weighted clustering coefficient

of CommonComplex
26. For each remain proteins P in Cat
27. Temp⇐ CommonComplex
28. Insert P to Temp
29. if weighted clustering coefficient of Temp

>=W1
30. Insert Temp to FinalSet
31. End For
32. End For
33. return FinalSet

F −Measure =
2 × Precision × Recall

Precision+ Recall
(14)

DPCT Parameter Tuning
DPCT uses five parameters in the process of detecting
protein complexes. In a real-world situation, it may be
hard to tune these parameters but in this section, we
analyze the effect of each parameter on the final result.
It can help us obtain an approximate estimation for each
parameter and this analysis shows how to decline the range

of parameters. Furthermore, there are many protein complex
datasets presented by biologists and we can use some set of
known protein complexes to test and tune the parameters
of DPCT.

Tuning α and β Parameters
There are two parameters that come from CAMWI. CAMWI
uses α and β to tune the seed generation step and the core
growing step. These parameters and CAMWI, are used in
the 3rd phase of DPCT to detect protein complexes from
dynamic PPI subnetworks. CAMWI, with lower values of α finds
more seeds and consequently more protein complexes. β is a
threshold in the process of selecting proteins as attachments
to a core, so greater values of β will decrease the size of
detected protein complexes. To find the best values for α

and β for each dataset, we run DPCT with α and β in
range of [0.1 .. 0.9]. Figure 5 shows the F-1 Measure for
different values of α and β with the CYC2008 benchmark
for BioGrid and DIP datasets. According to the results, for
the BioGrid dataset the best result was achieved when α was
set to 0.3 and β was set to 0.5. Furthermore, for the DIP
dataset, α = 0.55 and β = 0.7, which causes a higher F-
1 Measure.

Tuning the γ Parameter
In the first phase of DPCT, TAP, andGOdatasets are used tomake
a weighted PPI network. Since, we face a high degree of missing
data in TAP, GO is considered as the main source of weighting
and TAP data is considered to be complementary. According to
Equation (3), the efficacy of TAP on GO is controlled by γ . γ can
be set from [0 .. 1] and for γ = 1; the GO score will be multiplied
by a factor between 0.5 and 1.5 based on the TAP score. We can
set γ based on the availability and the missing rate of TAP data
and the reliability of GO data.

To find a good value for γ , we run DPCT with different values
of γ . Figure 6 shows the result of DPCT with γ in range of 0.1–
0.9 for the CYC2008 benchmark in BioGrid and DIP datasets.
Considering Figure 6, the best γ for BioGrid and DIP datasets
are 0.4 and 0.3, respectively. These values of γ causes GO to be
multiplied by a number in a range of [0.8, 1.2] and [0.85, 1.15]
for BioGrid and DIP datasets based on TAP data, respectively.

Tuning the ε Parameter
Another parameter that is used in the second phase of DPCT is ε,
our threshold to discretize gene expression data. So for the same
gene expression data, ε is supposed not to change for different
PPI networks. Considering Equation (7), higher values of ε lead
to having more inactive genes and it increases the sparseness of
the gene expressionmatrix and vice versa. Figure 7 represents the
result of running DPCT for possible values of ε for the BioGrid
and DIP dataset with the CYC2008 benchmark. We can see that
the best value of ε for both BioGrid and DIP is 0.6.

Tuning the Parameter
The last parameter that is used in the second phase of
DPCT is, which declares the number of derived biclusters and,
consequently, the number of dynamic PPI subnetworks. Figure 8
represents the F-1 Measure of DPCT when changes in the range
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FIGURE 5 | Tuning α and β with CYC2008 benchmark.

FIGURE 6 | Tuning γ with CYC2008 benchmark.

FIGURE 7 | Tuning ε with CYC2008 benchmark.

of 15–30 in the BioGrid and DIP datasets with the CYC2008
benchmark. Due to Figure 8, the best value for in BioGrid and
DIP is 30 and 27, respectively. Experiments show that increasing

has no effect on the result of DPCT because the analysis and
aggregation phase will merge or remove the redundant detected
protein complexes.
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FIGURE 8 | Tuning with CYC2008 benchmark.

Best Results and Comparison With Other
Methods
We applied DPCT on BioGrid and DIP datasets as input PPI
networks and used CYC2008 and MIPS as benchmarks to
confirm the correctness of detected protein complexes. We ran
DPCT on a computer with 2.5 GHz Intel CoreI7 CPU and 4 GB
of RAM and it took about 12 s on average.We also ran BiCAMWI
and CAMWI on the samemachine and they required 25 and 3.5 s
to finish, respectively. Based on reports, COACH takes <40 s on
a 3.5 GHz CPU and 3 GB of RAM to generate results, and TINCD
takes between 785 and 4,200 s to conclude its calculation on a
system with a 2× 2.1 GHz CPU and 12 GB RAM.

Table 1 shows the best result of the DPCT and some other
state-of-the-art methods to detect protein complexes in the
BioGrid Dataset. In this test, we use the best values for each
parameter to obtain the best accuracy. Based on Table 1, in most
cases, the DPCT detects protein complexes more accurately than
other methods. In the BioGrid dataset and MIPS benchmark,
EWCA has the best recall with ∼2% better results than DPCT.
Table 2 presents the best result of the DPCT and other methods
on the DIP dataset. With respect to precision, the DPCT does
not have the best value in the DIP dataset and BiCAMWI is
6.4 and 8.3% better than our method for CYC2008 and MIPS
benchmarks; but in recall, the DPCT is 35 and 19.4% better than
BiCAMWI for CYC2008 and MIPS benchmarks. Overall, F-1
Measure values of the DPCT are better than all other methods.
Note that in Tables 1, 2, the best result of all methods is shown
and for the DPCT, the tuned values of parameters described in
sectionDPCT Parameter Tuning are used. For somemethods like
InteHC, IFPA, and ONCQS, there were differences between the
datasets, benchmarks, or evaluation metrics; so, we only report
the comparable results. The results for InteHC are reported from
Ou-Yang et al. (2016b).

ANALYTICAL DISCUSSION

The Effectiveness of TAP Data
Due to the high level of noise in the PPI network, DPCT used
GO and TAP data to assign a weight to each interaction of the

PPI network. To assess the effect of using TAP in the accuracy of
detected protein complexes, we ran DPCT without considering
TAP data and we compared its results with normal the DPCT
method which uses both GO and TAP data. In the TAP-OFF
situation, a weighted PPI network was created with GO data only.
Figures 9, 10 show the results of DPCT in TAP-OFF and TAP-
ON (normal) mode for BioGrid and DIP datasets with CYC2008
and MIPS benchmarks, respectively. Considering Figure 9, we
realize that by taking TAP data into account, the quality of DPCT
is enhanced. In TAP-ON mode for BioGrid data, the F-1 Metric
increases∼5% for the CYC2008 benchmark and 6% for theMIPS
benchmark. According to Figure 10 in the DIP dataset, in TAP-
ON mode, the Recall metric increases about 7% for CYC2008
and MIPS benchmarks in comparison with the TAP-OFF mode.
This experiment shows that using both TAP and GO removes
more noise from PPI networks. A comparison between DPCT
and other methods (Wu et al., 2013; Ou-Yang et al., 2016a,b) that
use only GO to make weighted PPI, also represents a positive
effect of TAP data.

The Effectiveness of the Memetic
Algorithm
In DPCT, a memetic algorithm is proposed to bicluster gene
expression data and to make dynamic PPI subnetworks. Some
state-of-the-art methods for protein complex detection, use
metaheuristic algorithms to bicluster gene expression data.
BiCAMWI is a method that defines and uses GA-DCT, a
novel genetic algorithm for clustering gene expression data.
To investigate the effect of our proposed memetic algorithm,
we used GA-DCT instead of our proposed memetic algorithm.
Figures 11, 12 compare the results of DPCT and DPCT-G
(DPCT with GA-DCT Genetic algorithm) for BioGrid and DIP
datasets. We can see that DPCT with the proposed memetic
algorithm has a better F-1 value in all datasets and benchmarks.
Note that, for the CYC2008 benchmark, DPCT has a lower
recall in the BioGrid dataset and a lower precision in the DIP
dataset. The main difference between the proposed memetic
algorithm and GA-DCT is in the selection, cross over, mutation,
and the fitness function of the algorithm. The new definition of
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TABLE 1 | Comparison of the proposed DPCT method with other methods in terms of Precision, Recall, and F-1 measures on BioGrid dataset.

Benchmark CYC2008 MIPS

Method

Measurement
Precision Recall F-1 Precision Recall F-1

Proposed DPCT 0.693 0.875 0.773 0.608 0.738 0.667

BiCAMWI (Lakizadeh and Jalili, 2016) 0.443 0.695 0.534 0.412 0.58 0.481

TS-OCD (Ou-Yang et al., 2014) 0.363 0.741 0.478 0.312 0.575 0.404

CAMWI (Lakizadeh et al., 2015a) 0.4 0.61 0.5 0.29 0.5 0.36

Cluster-ONE (Nepusz et al., 2012) 0.312 0.655 0.422 0.208 0.445 0.283

PCD-GED (Lakizadeh et al., 2015b) 0.43 0.63 0.51 0.35 0.53 0.42

COACH (Wu et al., 2009) 0.284 0.716 0.406 0.221 0.562 0.317

GMFTP (Zhang et al., 2014) 0.291 0.783 0.424 0.283 0.753 0.411

EWCA (Wang and Caixia Wang, 2019) 0.579 0.809 0.675 0.582 0.756 0.657

InteHC (Wu et al., 2013) 0.213 0.527 0.303 N/A N/A N/A

Best values are bolded.

TABLE 2 | Comparison of the proposed DPCT method with other methods in terms of Precision, Recall, and F-1 measures on DIP dataset.

Benchmark CYC2008 MIPS

Method

Measurement
Precision Recall F-1 Precision Recall F-1

Proposed DPCT 0.557 0.883 0.698 0.524 0.708 0.602

BiCAMWI (Lakizadeh and Jalili, 2016) 0.621 0.533 0.585 0.607 0.514 0.556

TS-OCD (Ou-Yang et al., 2014) 0.429 0.524 0.472 0.397 0.449 0.421

CAMWI (Lakizadeh et al., 2015a) 0.43 0.47 0.45 0.35 0.5 0.411

Cluster-ONE (Nepusz et al., 2012) 0.301 0.447 0.36 0.247 0.331 0.283

PCD-GED (Lakizadeh et al., 2015b) 0.485 0.52 0.5 0.45 0.44 0.444

COACH (Wu et al., 2009) 0.295 0.553 0.385 0.269 0.5 0.35

GMFTP (Zhang et al., 2014) 0.266 0.665 0.38 0.275 0.698 0.395

EWCA (Wang and Caixia Wang, 2019) 0.523 0.707 0.602 0.499 0.701 0.583

IFPA (Lei et al., 2019) 0.694 0.461 0.554 N/A N/A N/A

ONCQS (Zhao and Lei, 2019) 0.356 0.826 0.497 N/A N/A N/A

Best values are bolded.

the fitness function allows the algorithm to choose promising
individuals. Moreover, applying the local search in memetic
algorithm decreases the running time of the algorithm and
increases the performance of final solutions.

The Effectiveness Analysis and
Aggregation Phase
The last phase of the DPCT method is analysis and aggregation,
a post-processing phase. After detecting protein complexes from
each dynamic PPI subnetwork, due to the nature of biclustering,
there may be many redundant and highly similar protein
complexes in the result set. In this post-processing phase, all
highly similar protein complexes are aggregated and also, we can
control and decrease the negative effect of the parameter which
controls the number of dynamic PPI subnetworks. By increasing
the value of, the total number of dynamic subnetworks will grow
up; therefore, the total number of redundant or highly similar
detected protein complexes are increased. In this situation, the
analysis and aggregation phase remove or merge redundant
protein complexes.

In order to assess the effect of the post-processing phase,
we ran DPCT without its last phase. Table 3 shows the
result of detected protein complexes in PostProcessing-On and
PostProcessing-Off modes. We can see that the post-processing
phase reduced the number of redundant protein complexes.
The analysis and aggregation phase are also evaluated based
on precision, recall, and F-1 measures. In the BioGrid dataset
with the CYC2008 benchmark, when DPCT uses the post-
processing phase we see a 0.9% fall in precision and no
change in recall, so, DPCT without the analysis and aggregation
phase has a 0.6% better F-1 measure. However, for the MIPS
benchmark, DPCT with the analysis and aggregation phase
has a 3.4, 3.3, and 3.9% rise in precision, recall, and F-1
measure, respectively.

In the DIP dataset with the CYC2008 benchmark, whenDPCT
uses the post-processing phase, we see a rise in precision and F-1
measures by 1.4 and 0.9% respectively. Moreover, for the MIPS
benchmark, DPCT with the analysis and aggregation phase, gain
the rise of precision, recall, and F-1 Measures by 2.6, 2.6, and
2.7% respectively. As the results show, the last phase of DPCT,
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FIGURE 9 | The effectiveness of DPCT when TAP data is off/on in BioGrid dataset with CYC2008 and MIPS benchmarks.

FIGURE 10 | The effectiveness of DPCT when TAP data is off/on in DIP dataset with CYC2008 and MIPS benchmarks.

not only removes redundant detected protein complexes, so
decreases the size of the result set, but also in most cases, it
leverages the quality of results and removes incorrectly detected
protein complexes.

CONCLUSION

Protein complexes play an important role in the cellular system.
Many researchers therefore work on developing new methods

to detect protein complexes. There are many methods that use
different approaches like clustering, seed generation, and core-
attachment to detect protein complexes. In recent years, many
methods first make a dynamic PPI network and then detect
protein complexes from the network.

In this paper, we present DPCT, a novel method to detect
protein complexes. DPCT uses TAP data as minor data, and as
the complement of GO to make a more accurate weighted PPI
network. An extended memetic algorithm is used to bicluster
gene expression data and to consequently make a dynamic
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FIGURE 11 | The effectiveness of using the novel memetic algorithm (in DPCT) in compare with using GA-DCT in DPCT (DPCT-G) in BioGrid dataset with CYC2008

and MIPS benchmarks.

FIGURE 12 | The effectiveness of using the novel memetic algorithm (in DPCT) in compare with using GA-DCT in DPCT (DPCT-G) in DIP dataset with CYC2008 and

MIPS benchmarks.

TABLE 3 | The number of detected protein complexes with and without

post-processing phase of DPCT (analysis and aggregation) for BioGrid and DIP

datasets with both CYC2008 and MIPS benchmarks.

Benchmark CYC2008 MIPS

Situation

Dataset
BioGrid DIP BioGrid DIP

PostProcessing-OFF 250 145 248 141

PostProcessing-ON 181 138 162 138

PPI subnetwork. After applying the third phase of DPCT on
each dynamic PPI subnetwork, detected protein complexes are

aggregated so that redundant detected protein complexes are
removed from the final result set. A comparison between DPCT
and other state-of-the-art methods shows that DPCT can detect
protein complexes with better values of precision, recall, and
F-1 measures.

For future works, we suggest using a learner to fuse the weights

that come from TAP and GO to obtain a better weighted PPI

network. Gene expression is experimental data that may have

a high noise rate so any effort to decrease the noise rate of

gene expression data can increase the quality of the detection

method. Using other methods to make dynamic PPI subnetworks
that are more consistent with biological concepts, such as other
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evolutionary algorithms, can be helpful in increasing the accuracy
of protein complex detection.

DATA AVAILABILITY STATEMENT

The datasets used in this study can be found at https://github.
com/alisn72/DPCT.

AUTHOR CONTRIBUTIONS

AS was responsible for development phase of the main
algorithm and also draft the article. SJ also revised the
drafted article and approved the content to publish
the paper. All authors were responsible for designing
the algorithm.

REFERENCES

Bader, G. D., and Hogue, C. W. V. (2002) Analyzing yeast protein–protein

interaction data obtained from different sources. Nat. Biotechnol. 20, 991–997.

doi: 10.1038/nbt1002-991

Caniza, H., Romero, A. E., Heron, S., Yang, H., Devoto, A., Frasca, M., et al.

(2014). GOssTo: a stand-alone application and a web tool for calculating

semantic similarities on the gene ontology. Bioinformatics 30, 2235–2236.

doi: 10.1093/bioinformatics/btu144

Chatr-aryamontri, A., Breitkreutz, B. J., Heinicke, S., Boucher, L., Winter, A., Stark,

C., et al. (2013). The BioGRID interaction database. Nucleic Acids Res. 41,

D816–D823. doi: 10.1093/nar/gks1158

Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002). An efficient algorithm

for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584.

doi: 10.1093/nar/30.7.1575

Gavin, A. C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., et al.

(2006). Proteome survey reveals modularity of the yeast cell machinery. Nature

440, 631–636. doi: 10.1038/nature04532

Hanna, E. M., Zaki, N., and Amin, A. (2015). Detecting protein complexes in

protein interaction networks modeled as gene expression biclusters. PLoS ONE

10:e0144163. doi: 10.1371/journal.pone.0144163

Hwang, W., Kim, T., Cho, Y. R., Zhang, A., and Ramanathan, M. (2007). “SIGN:

reliable protein interaction identification by integrating the similarity in GO

and the similarity in protein interaction networks,” in Proceeding of 7th

IEEE International Symposium on BioInformatics (Boston, MA), 1384–1388.

doi: 10.1109/BIBE.2007.4375752

Janani, S., Duraisamy, R., and Rani, R. (2018). Ramyachitra, R.: Ranjani Rani.

PCD-DPPI: Protein complex detection from dynamic PPI using shuffled

frogleaping algorithm. Gene Rep. 12, 89–98. doi: 10.1016/j.genrep.2018.06.002

Kalna, G., and Higham, D. J. (2007). A clustering coefficient for weighted

networks, with application to gene expression data. Ai Commun. 20, 263–271.

doi: 10.5555/1365534.1365536

Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., et al. (2006).

Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.

Nature 440, 972–976. doi: 10.1038/nature04670

Lakizadeh, A., and Jalili, S. (2016). BiCAMWI: a genetic-based biclustering

algorithm for detecting dynamic protein complexes. PLoS ONE 11:e0159923.

doi: 10.1371/journal.pone.0159923

Lakizadeh, A., Jalili, S., and Marashi, S. A. (2015a). CAMWI: detecting protein

complexes using weighted clustering coefficient and weighted density. Comput.

Biol. Chem. 58, 231–240. doi: 10.1016/j.compbiolchem.2015.07.012

Lakizadeh, A., Jalili, S., and Marashi, S. A. (2015b). PCD-GED: protein complex

detection considering PPI dynamics based on time series gene expression data.

J. Theor. Biol. 378, 31–38. doi: 10.1016/j.jtbi.2015.04.020

Le, M. N., Ong, Y. S., Jin, Y., and Sendhoff, B. (2009). Lamarckian memetic

algorithms: local optimum and connectivity structure analysis. Memetic

Comput. 1, 175–190. doi: 10.1007/s12293-009-0016-9

Lei, X., Fang, M., Guo, L., and Wu, F. X. (2019). Protein complex detection based

on flower pollination mechanism in multi-relation reconstructed dynamic

protein networks. BMC Bioinformatics 20:131. doi: 10.1186/s12859-019-2649-0

Li, M., Wu, X., Wang, J., and Pan, Y. (2012). Towards the identification of

protein complexes and functional modules by integrating PPI network and

gene expression data. BMC Bioinformatics 13:109. doi: 10.1186/1471-2105-

13-109

Li, X., Wu, M., Kwoh, C. K., and Ng, S. K. (2010). Computational approaches for

detecting protein complexes from protein interaction networks: a survey. BMC

Genomics 11(Suppl. 1):S3. doi: 10.1186/1471-2164-11-S1-S3

Lin D. (1998). “An information-theoretic definition of similarity,” in ICML, Vol.

98, 296–304.

Mehranfar, A., Ghadiri, N., Kouhsar, M., and Golshani, A. (2017). A Type-2

fuzzy data fusion approach for building reliable weighted protein interaction

networks with application in protein complex detection. Comput. Biol. Med.

88, 18–31. doi: 10.1016/j.compbiomed.2017.06.019

Mendel, J. M., and John, R. B. (2002). “Type-2 fuzzy sets made simple,” in IEEE

Transactions on Fuzzy Systems, Vol. 10, 117–127. doi: 10.1109/91.995115

Mewes, H. W., Amid, C., Arnold, R., Frishman, D., Güldener, U., Mannhaupt, G.,

et al. (2004). MIPS: analysis and annotation of proteins from whole genomes.

Nucleic Acids Res. 32, 41–44. doi: 10.1093/nar/gkh092

Nepusz, T., Yu, H., and Paccanaro, A. (2012). Detecting overlapping protein

complexes in protein-protein interaction networks. Nat. Methods 9, 471–471.

doi: 10.1038/nmeth.1938

Neri, F., and Cotta, C. (2012). Memetic algorithms and memetic computing

optimization: a literature review. Swarm Evol. Comput. 2, 1–14.

doi: 10.1016/j.swevo.2011.11.003

Norman, M., Moscato, P., and Plata, L. (1991). “A competitive-cooperative

approach to complex combinatorial search,” in Proceedings of the 20th

Informatics and Operations Research Meeting.

Ou-Yang, L., Dai, D. Q., Li, X. L., Wu, M., Zhang, X. F., and Yang,

P. (2014). Detecting temporal protein complexes from dynamic

protein-protein interaction networks. BMC Bioinformatics 15, 335–350.

doi: 10.1186/1471-2105-15-335

Ou-Yang, L., Wu, M., Zhang, X. F., Dai, D. Q., Li, X. L., and Yan, H. (2016a).

A two-layer integration framework for protein complex detection. BMC

Bioinformatics 17:100. doi: 10.1186/s12859-016-0939-3

Ou-Yang, L., Zhang, X. F., Dai, D. Q., Wu, M. Y., Zhu, Y., Liu, Z., et al. (2016b).

Protein complex detection based on partially shared multi-view clustering.

BMC Bioinformatics 17:371. doi: 10.1186/s12859-016-1164-9

Pesquita, C., Faria, D., Bastos, H., Ferreira, A. E. N., Falcão, A. O., and Couto,

F. M. (2008). Metrics for GO based protein semantic similarity: a systematic

evaluation. BMC Bioinformatics 9:S4. doi: 10.1186/1471-2105-9-S5-S4

Przytycka, T. M., Singh, M., and Slonim, D. K. (2010). Toward the

dynamic interactome: it’s about time. Briefings Bioinform. 11, 15–29.

doi: 10.1093/bib/bbp057

Pu, S., Wong, J., Turner, B., Cho, E., and Wodak, S. J. (2008). Up-to-date

catalogues of yeast protein complexes. Nucleic Acids Res. 37, 825–831.

doi: 10.1093/nar/gkn1005

Ramadan, E., Naef, A., and Ahmed, M. (2016). Protein complexes predictions

within protein interaction networks using genetic algorithms. BMC

Bioinformatics 17:269. doi: 10.1186/s12859-016-1096-4

Resnik P. (1995). Using information content to evaluate semantic similarity in a

taxonomy. arXiv preprint cmp-lg/9511007.

Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U., and Eisenberg, D.

(2004). The database of interacting proteins.Nucleic Acids Res. 32, D449–D451.

doi: 10.1093/nar/gkh086

Shen, X., Yi, L., Jiang, X., Zhao, Y., Hu, X., He, T., et al. (2016). Neighbor

affinity based algorithm for discovering temporal protein complex from

dynamic PPI network. Methods 110, 90–96. doi: 10.1016/j.ymeth.2016.

06.010

Srihari, S., and Leong, H. W. (2012). Temporal dynamics of protein

complexes in PPI networks: a case study using yeast cell cycle

dynamics. BMC Bioinformatics 13:16. doi: 10.1186/1471-2105-13-

S17-S16

Srihari, S., and Leong, H. W. (2014). A survey of computational

methods for protein complex prediction from protein interaction

Frontiers in Genetics | www.frontiersin.org 14 June 2020 | Volume 11 | Article 567

https://github.com/alisn72/DPCT
https://github.com/alisn72/DPCT
https://doi.org/10.1038/nbt1002-991
https://doi.org/10.1093/bioinformatics/btu144
https://doi.org/10.1093/nar/gks1158
https://doi.org/10.1093/nar/30.7.1575
https://doi.org/10.1038/nature04532
https://doi.org/10.1371/journal.pone.0144163
https://doi.org/10.1109/BIBE.2007.4375752
https://doi.org/10.1016/j.genrep.2018.06.002
https://doi.org/10.5555/1365534.1365536
https://doi.org/10.1038/nature04670
https://doi.org/10.1371/journal.pone.0159923
https://doi.org/10.1016/j.compbiolchem.2015.07.012
https://doi.org/10.1016/j.jtbi.2015.04.020
https://doi.org/10.1007/s12293-009-0016-9
https://doi.org/10.1186/s12859-019-2649-0
https://doi.org/10.1186/1471-2105-13-109
https://doi.org/10.1186/1471-2164-11-S1-S3
https://doi.org/10.1016/j.compbiomed.2017.06.019
https://doi.org/10.1109/91.995115
https://doi.org/10.1093/nar/gkh092
https://doi.org/10.1038/nmeth.1938
https://doi.org/10.1016/j.swevo.2011.11.003
https://doi.org/10.1186/1471-2105-15-335
https://doi.org/10.1186/s12859-016-0939-3
https://doi.org/10.1186/s12859-016-1164-9
https://doi.org/10.1186/1471-2105-9-S5-S4
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1093/nar/gkn1005
https://doi.org/10.1186/s12859-016-1096-4
https://doi.org/10.1093/nar/gkh086
https://doi.org/10.1016/j.ymeth.2016.06.010
https://doi.org/10.1186/1471-2105-13-S17-S16
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


SabziNezhad and Jalili Detect Complexes From TAP-Aware PPI

networks. J. Bioinformatics Comput. Biol. 11, 1230002–1230021.

doi: 10.1142/S021972001230002X

Wang, R., and Caixia Wang, G. L. (2019). Identifying protein complexes based on

an edge weight algorithm and core-attachment structure. BMC Bioinformatics

20:471. doi: 10.1186/s12859-019-3007-y

Wu, M., Li, X., Kwoh, C. K., and Ng, S. K. (2009). A core-attachment based

method to detect protein complexes in PPI networks. BMC Bioinformatics

10:169. doi: 10.1186/1471-2105-10-169

Wu, M., Xie, Z., Li, X., Kwoh, C. K., and Zheng, J. (2013). Identifying

protein complexes from heterogeneous biological data. Proteins 81, 2023–2033.

doi: 10.1002/prot.24365

Yu, Y., Liu, J., Feng, N., Song, B., and Zheng, Z. (2017). Combining

sequence and Gene Ontology for protein module detection in the

Weighted Network. J. Theor. Biol. 412, 107-112. doi: 10.1016/j.jtbi.2016.

10.010

Zadeh, L. (1965). Fuzzy sets. Information and Control 8, 338–353.

doi: 10.1016/S0019-9958(65)90241-X

Zhang, X. F., Dai, Q. D., Ou-Yang, L., and Yan, H. (2014). Detecting overlapping

protein complexes based on a generative model with functional and topological

properties. BMC Bioinformatics 15:186. doi: 10.1186/1471-2105-15-186

Zhao, J., and Lei, X. (2019). Detecting overlapping protein complexes in weighted

PPI network based on overlay network chain in quotient space. BMC

Bioinformatics 20:682. doi: 10.1186/s12859-019-3256-9

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 SabziNezhad and Jalili. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 15 June 2020 | Volume 11 | Article 567

https://doi.org/10.1142/S021972001230002X
https://doi.org/10.1186/s12859-019-3007-y
https://doi.org/10.1186/1471-2105-10-169
https://doi.org/10.1002/prot.24365
https://doi.org/10.1016/j.jtbi.2016.10.010
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1186/1471-2105-15-186
https://doi.org/10.1186/s12859-019-3256-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	DPCT: A Dynamic Method for Detecting Protein Complexes From TAP-Aware Weighted PPI Network
	Introduction
	Materials and Methods
	Datasets
	Method
	Making TAP-Aware Weighted PPI Network
	Making Dynamic PPI Subnetworks
	GE normalization
	GE biclustering
	Encoding
	Fitness function
	Selection and crossover
	Mutation
	Local search
	Making a dynamic subnetwork

	Detecting Protein Complexes From Dynamic Subnetworks
	Analysis and Aggregation


	Experiments and Results
	Evaluation Measures
	DPCT Parameter Tuning
	Tuning α and β Parameters
	Tuning the γ Parameter
	Tuning the  Parameter
	Tuning the  Parameter

	Best Results and Comparison With Other Methods

	Analytical Discussion
	The Effectiveness of TAP Data
	The Effectiveness of the Memetic Algorithm
	The Effectiveness Analysis and Aggregation Phase

	Conclusion
	Data Availability Statement
	Author Contributions
	References


