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ABSTRACT
Background To assess retinal layer thickness in
choroideremia (CHM) and to reveal its correlation with
optical coherence tomography (OCT) angiography (OCTA)
findings.
Methods The study was designed as an observational,
cross-sectional clinical series of patients with CHM, which
included 14 CHM eyes and 14 age-matched controls.
Multimodal imaging included OCT and OCTA. The vessel
density (VD) of superficial capillary (SCP), deep capillary
(DCP) and choriocapillaris (CC) plexuses was analysed by
OCTA. The apparently preserved retinal islet and atrophic
regions were investigated separately. Main outcome
measures were as follows: best-corrected visual acuity
(BCVA), total retinal layers, ganglion cell layer (GCL),
inner plexiform layer (IPL), inner nuclear layer (INL), outer
plexiform layer (OPL), outer nuclear layer (ONL), ellipsoid
zone–retinal pigment epithelium (EZ-RPE) layer, choroidal
thickness and VDs of SCP, DCP and of CC.
Results Mean BCVA was 0.0±0.0 LogMAR in both
groups. GCL, ONL, EZ-RPE and choroid were significantly
thinned in CHM, particularly in the atrophic region. OPL
was unaffected in the apparently preserved islet, whereas
INL and IPL were similarly thinned in the atrophic and
apparently preserved retina. DCP appeared severely
affected in both regions, while CC was only altered in the
atrophic retina. Significant correlations were found
between OCT and OCTA parameters.
Conclusions Our study showed severe alterations in
both outer and inner retinal layers of patients with CHM.
The extended retinal involvement might be the
consequence of neuronal and vascular trophic factor
reduction produced by the primarily altered RPE and/or
secondary Müller glial cell reaction.

INTRODUCTION
Choroideremia (CHM) is an X-linked recessive
retinal disease characterised by gradual and cen-
tripetal chorioretinal degeneration, with the fun-
dus having a typically pale end-stage
appearance.1–4 The disease is caused by mutations
in the CHM gene that encodes the Rab escort
protein-1, which interacts with Rab27a, an intra-
cellular protein involved in protein prenylation
and is believed to be necessary for vesicle traffick-
ing in the retinal pigment epithelium (RPE).5

Several histological reports carry images depicting
the chorioretinal degeneration, including an inde-
pendent choriocapillaris (CC), RPE and outer
retina degeneration; areas of well-preserved retina
in the vicinity of severe atrophy; and discordant

degrees of photoreceptor and RPE degeneration
in affected areas.6–10 A loss of nuclei has been
observed in the inner retina in postmortem
tissue.8

Patients with CHM generally report nyctalopia in
the first two decades of life, and the disease may lead
to blindness in middle age.3 4 However, since visual
acuity does not deteriorate until the disease’s late
stages, anatomical endpoints may provide addi-
tional help in determining disease progression.
Numerous ophthalmic imaging studies have studied
morphological and functional alterations in
CHM.11–19 However, no study has thoroughly
investigated quantitative alterations occurring in
retinal layers.

The goal of this study was to assess retinal layer
thickness in patients with CHMby performingmea-
surements both in the apparently preserved central
islet and in the atrophic retina, and to correlate
these findings with optical coherence tomography
(OCT) angiography (OCTA) data.

MATERIALS AND METHODS
The study was designed as an observational, cross-
sectional clinical series of patients with CHM.
Patients and healthy controls were consecutively
recruited from the Inherited Retinal Dystrophy
Units at the Department of Ophthalmology,
Scientific Institute San Raffaele, Milan, Italy, and
the Department of Ophthalmology, University of
Bonn, Germany. Written informed consent was
obtained from all subjects, and the study adhered
to the tenets of the Declaration of Helsinki. The
study was approved by the Ethical Committee of
Scientific Institute San Raffaele, Milan (NET-2016-
02363765).

Inclusion criteria included (1) a genetically con-
firmed clinical diagnosis of CHM, (2) foveal sparing
and (3) clear optical media. Exclusion criteria
included (1) the presence of other retinal or optic
nerve disorders, (2) cystoid macular oedema, (3)
refractive errors greater than ±3 D, (4) previous
ophthalmic surgery and systemic conditions poten-
tially altering retinal anatomy and function. The
control group did not reveal any ocular or systemic
diseases, and was age-matched, sex-matched and
ethnicity-matched with the patient group.

Both cohorts underwent a complete ophthalmo-
logic examination, including best-corrected visual
acuity (BCVA) testing, slit-lamp biomicroscopy,
Goldmann applanation tonometry, funduscopic
examination, colour fundus photography (TRC-
50DX, Topcon Corporation; Tokyo, Japan, or
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Visucam, Zeiss, Oberkochen, Germany), blue-light fundus auto-
fluorescence (BL-FAF) and spectral domain-OCT (SD-OCT;
Spectralis HRA+OCT, Heidelberg Engineering; Heidelberg,
Germany). A subgroup underwent 12×12-mm OCTA examina-
tion (DRI TritonOCT, TopconCorporation; or PLEXElite 9000,
ZEISS, Dublin, California, USA). The acquisition protocol
included a single-line SD-OCT acquisition (1024 A-scans per B-
line scan; automatic real time (ART)=100 frames), passing
through the fovea. Eye tracking was enabled during the examina-
tion. Two independent graders (FR and AA) measured retinal
layers. In patients with CHM, measurements were performed at
the point of maximal foveal thickness in the apparently preserved
retina, within a 1.5 mm diameter area centred on the middle of
the fovea, and 100 μm external to the boundary between the
apparently preserved retina and the atrophic retina. In the con-
trols, the thickest foveal site was evaluated. The following were
assessed: total retinal layer, ganglion cell layer (GCL), inner plexi-
form layer (IPL), inner nuclear layer (INL), outer plexiform layer
(OPL), outer nuclear layer (ONL) and ellipsoid zone–RPE(EZ-
RPE) layer.20 The mean of the two independent measurements
from the same structural scan was used for the statistical analysis.
The areas of apparently preserved retina were outlined on the BL-
FAF image. OnOCTA, vessel densities (VDs) from the superficial
capillary (SCP), deep capillary (DCP) and CC) plexuses were
independently quantified in the apparently preserved and in the
atrophic areas, using a previously validated method.18 21 22 The
images were loaded in the Fiji software package23 and binarised
using a mean threshold, together with the following pipeline:
Image -> Adjust -> Automatic Threshold -> Mean threshold.
In-house scripts were then used to calculate the ratio between
white and black pixels in the manually segmented foveal avascu-
lar zone, introducing exclusion criteria.

The primary outcome measure was the assessment of the
retinal layer status. Secondary outcomes included their correla-
tions with the extent of the degenerative lesion and of the
vascular alterations.

Differences in thickness were studied by means of analysis of
variance for repeated measures and Bonferroni’s correction for
posthoc analysis. The relationship between morphological and
epidemiological variables was explored using Kendall’s Tau-b
(non-parametric) correlation test. Results for descriptive analyses
are expressed as mean±SD for quantitative values and as fre-
quency and percentages for categorical ones. Interobserver
reproducibility for the measurement of all the different layers
was evaluated by means of intraclass correlation coefficients
(95% CIs). Statistical significance was set at p<0.05, with all
the analyses being performed using the SPSS Statistics Version
21.0 Software package (IBM; Armonk, New York, USA).

RESULTS
Overall, 14 patients with CHM (14 eyes) and 14 healthy male
controls were included. Mean age was 38.2±8.9 years (range:
23–56; median: 36) and 35.3±8.2 (range: 27–51; median: 36)
for patients and controls, respectively. LogMAR BCVA was 0.0
±0.0 for both groups. No differences in age, ethnicity or intrao-
cular pressure were observed (all p>0.05). A specimen case of
CHM is shown in figure 1.
Statistical analysis revealed significant retinal and choroidal

thinning in patients with CHM compared with controls
(F=160.8 and 135.6, respectively; both p<0.001). Quantitative
measurement of total retinal thickness revealed a thinner retina in
patients with CHM compared with controls (both p<0.001), not
only in the atrophic region but also in the apparently preserved
retina. Considering retinal layers separately, the thinning of the
GCL, ONL, EZ-RPE and choroid (all p<0.01) was more pro-
nounced in the atrophic region compared with the apparently
preserved central islet. In contrast, OPL thickness within the
apparently preserved central islet of patients with CHM did not
differ with respect to the controls (p=0.88) but was significantly
thinner in the atrophic region (both p<0.001). INL thickness was
significantly reduced both in the atrophic region and in the
apparently preserved islet, when compared with controls (both

Figure 1 Multimodal fundus imaging features in choroideremia. Colour and fundus autofluorescence images (A,B) show extensive retinal atrophy,
with the sparing of a central retinal islet. OOCTA analysis reveals preserved SCP (C), remarkably altered DCP (D) and total loss of CC, with preservation of
the central islet region (E). CC, choriocapillaris; DCP, deep capillary; OCTA, optical coherence tomography angiography; SCP, superficial capillary.
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p<0.01), with no difference between the two CHM regions
(p=0.89). The IPL showed the same behaviour as the INL, with
a comparable thinning in the atrophic retina and in the appar-
ently preserved region (p=0.88). All values are shown in table 1
and figure 2. Structural OCTs of retinal layers are shown in
figure 3.

OCTA analysis was performed in 11 of 14 patients (11 eyes
included) and in all control subjects. In detail, seven eyes were
examined by Topcon OCTA, whereas four eyes were analysed

using Zeiss OCTA. Significant differences between patients with
CHM and controls were detected when measuring VD of DCP
and of CC (F=3941.3 and 655.9, respectively; both p<0.001). In
contrast, SCP did not show VD alterations (p=0.90).
Considering the atrophic region and the apparently preserved
islet independently, DCP VD was significantly lower both in the
atrophic and in the apparently preserved retina compared with
controls (p<0.001). On the other hand, CC appeared to be
altered only in the atrophic region (p<0.001), and not in the

Table 1 Retinal layer thickness in patients with CHM and healthy controls

Retinal layer thickness

CHM apparently preserved retinal islet

EZ-RPE* ONL* OPL INL* IPL* GCL* RETINA* CHOROID*

44.58±5.13 70.63±12.79 40.25±7.30 37.17±9.78 37.38±9.59 49.54±9.70 286.50±31.51 155.67±46.74

p<0.001 p<0.001 p>0.05 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001

CHM atrophic retina

EZ-RPE* ONL* OPL* INL* IPL* GCL* RETINA* CHOROID*

21.96±3.38 37.67±14.32 30±9.73 36.75±9.05 37.71±7.93 40.75±9.97 217.88±36.87 75.96±34.05

p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001

Healthy controls

EZ-RPE ONL OPL INL IPL GCL RETINA CHOROID

72.81±5.55 92.13±7.24 41.13±5.89 45.94±6.33 47.75±7.06 61.86±7.39 398.24±18.57 286.86±91.15

All values are expressed in μm (mean±SD).
*Statistically significant changes compared with controls.
CHM, choroideremia; EZ-RPE, ellipsoid zone–retinal pigment epithelium layer; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; ONL, outer nuclear layer; OPL, outer
plexiform layer.

Figure 2 Boxplots of retinal layer thickness in choroideremia.
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apparently preserved islet (p=0.19). SCP was unaffected in both
regions (p>0.05) (figure 4). All values are reported in table 2.

Interestingly, significant correlations were found between VD
of DCP and the following retinal layers: OPL, INL, IPL. The
complete correlation panel is shown in table 3.

DISCUSSION
The present study assesses retinal layers both in the apparently
preserved central islet and in the atrophic region. Their relation-
ship with vascular impairment, detected on OCTA, is also con-
sidered. As expected, the atrophic retina appeared thinner, both
globally and in relation to individual retinal layers. Significant
differences between the apparently preserved central islet and the
atrophic regionwere detected not only at the level of EZ-RPE and
ONL but also in the inner retina (INL and IPL). These alterations
were not confined to the atrophic retina but extended to the
apparently preserved central islet. The EZ-RPE, ONL, INL, IPL
and GCL were all markedly thinner than in the controls. It is
notable that while INL and IPL showed the same degree of

thinning between the apparently preserved islet and the atrophic
retina, the other retinal layers were characterised by an inter-
mediate thinning in the apparently preserved islet.
Previous structural OCT investigations have described precise

anatomical correspondences in the affected retina of patients
with CHM between RPE degeneration and photoreceptor loss,
including the ONL, the external limiting membrane and the
EZ.13 14 17 Moreover, OCTA has recently shown that profound
alterations occur in the retinal vascular networks of these
patients18; indeed, the DCP turned out to be almost completely
absent both in the central apparently preserved islet and in the
peripheral atrophic retina, whereas the CC was significantly
altered only in the degenerated region. SCP was not significantly
altered either in the apparently preserved islet or in the atrophic
retina.
Interpreting the OCT and OCTA findings is a challenge.

Bearing in mind the ubiquitous expression of the CHM gene
across different cellular subtypes,17 24 the well-known RPE
degenerationmay coexist with the inner retinal cell degeneration.

Figure 3 Retinal layers in choroideremia. A specimen choroideremia case is shown in (A) and is compared with a control case (B). More specifically,
retinal layers of the apparently preserved islet (orange squares and C) are found to be already remarkably altered in terms of thickness and reflective
signal attenuation, compared with the control. The loss of normal morphological integrity is particularly evident in the atrophic region (blue squares and
D).
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Our comprehensive hypothesis suggests an early impairment of
RPE andMüller cells,25 leading to a diminished production of the
angiogenic and trophic factors that are essential to guarantee
both vascular and neuronal integrity. As a consequence, the
downregulation and reduced release of cytokines and growth
factors may bring about the apoptosis of ganglion, amacrine
and bipolar cells, as already found in other diseases.26 27 This
phenomenon might thus explain our findings regarding the
reduction of INL, IPL and GCL thickness.

In addition, it should be noted that the decreased VD of
DCP found both in the apparently preserved and in the
atrophic regions might be explained by the inner retinal
involvement of these regions. A DCP perfusion deficit might

be due to a self-regulating mechanism occurring secondary to
the loss of the outer retinal layers, the latter leading to a drop
in hypoxic drive and therefore reduced DCP perfusion speed
or capillary loss. Furthermore, bearing in mind the primary
role of the outer retina, our findings regarding the involve-
ment of the inner retina might also be the consequence of a
trans-synaptic degeneration. In addition, the possible impair-
ment of other retinal cytotypes, especially the Müller cells,
might lead to a loss of homeostasis and a reduction in the
release of growth factors and other mediators.
In view of the recent rapid developments in CHM therapy, it is

essential to develop biomarkers for the disease’s progression,
prognosis, inclusion into clinical trials and as an aid in improving
surgical techniques.28–30 We hypothesise that inner retina altera-
tions may occur relatively early during the disease and might
affect the outcome of the treatment adopted.
We acknowledge that our study has several limitations, including

the intrinsic drawbacks of OCT-based techniques. Equally,
although CHM is a rare condition, we realise the small number
of patients contributes considerably to the research’s weak statis-
tical power. Moreover, the cross-sectional analysis of patients in
advanced stages makes it impossible to determine when OCTand
OCTA changes occur. We analysed patients displaying the classic
manifestation of CHM in order to obtain the most uniform infor-
mation about this choroidal degeneration. The use of two different
swept-source OCTAs may be considered a further limitation.
Although we found the data obtained from the two instruments
to match, in accordance with a previous paper comparing different
OCTAdevices,31we recommend thatOCTA findings generated by
different devices be interpreted with care. For all the above-men-
tioned reasons, further studies are needed in order to validate
microstructural retinal damage, as well as to test the effectiveness
of OCT-based assessment and monitoring in CHM.
In conclusion, the present study demonstrates that neurosen-

sory retinal alterations are not limited to the outer retina, but
extend to the inner retinal layers, both in the atrophic and in the
apparently preserved areas in patients with CHM. Further long-
itudinal studies are warranted in order to better characterise the
degenerative course of the disease.

Figure 4 OCTA features in choroideremia. A specimen choroideremia case shows the differences in SCP (A), DCP (B) and CC (C) compared with a
healthy control (D, E, F, respectively). CC, choriocapillaris; OCTA, optical coherence tomography angiography; SCP, superficial capillary.

Table 2 Vessel density analysis in patients with CHM and healthy
controls

Vessel density analysis

CHM mean vessel density values

SCP DCP CC

0.412±0.014 0.017±0.009* 0.246±0.007*

p>0.05 p<0.001 p<0.001

CHM apparently preserved islet vessel density values

SCP DCP* CC

0.413±0.021 0.020±0.013 0.492±0.015

p>0.05 p<0.001 p<0.001

CHM atrophic retina vessel density values

SCP DCP* CC*

0.411±0.013 0.014±0.009 0.0±0.0

p>0.05 p<0.001 p<0.001

Healthy controls

SCP DCP CC

0.425±0.026 0.432±0.027 0.501±0.024

All values are expressed in μm (mean±SD)
*Statistically significant changes compared with controls.
CC, choriocapillaris; CHM, choroideremia; DCP, deep capillary; SCP, superficial capillary.
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Table 3 Correlation analysis of quantitative parameters in CHM

Correlation analysis

OPL_islet Parameter INL_islet IPL_islet RETINA_islet ONL_atrophy DCP_global DCP_islet

Tau coefficient 0.626 0.651 0.452 0.428 0.625 0.851

P value 0.00039 0.00025 0.0097 0.015 0.00035 1.14E-06

INL_islet Parameter IPL_islet RETINA_islet CHOROID_islet ONL_atrophy DCP_global DCP_islet

Tau coefficient 0.493 0.576 0.399 0.42 0.563 0.735

P value 0.005 0.0009 0.022 0.016 0.001 0.000025

IPL_islet Parameter CHOROID_islet EZ-RPE_atrophy ONL_atrophy DCP_global DCP_islet

Tau coefficient 0.375 0.374 0.517 0.473 0.607

P value 0.033 0.038 0.0033 0.007 0.0005

GCL_islet Parameter RETINA_islet

Tau coefficient 0.361

P value 0.039

RETINA_islet Parameter DCP_islet

Tau coefficient 0.464

P value 0.007

CHOROID_islet Parameter EZ-RPE_atrophy RETINA_atrophy

Tau coefficient 0.402 0.559

P value 0.024 0.0013

ONL_atrophy Parameter DCP_global DCP_islet

Tau coefficient 0.48 0.507

P value 0.006 0.003

OPL_atrophy Parameter CHOROID_atrophy

Tau coefficient 0.374

P value 0.035

INL_atrophy Parameter DCP_global DCP_atrophy

Tau coefficient 0.372 0.433

P value 0.033 0.0133

RETINA_atrophy Parameter DCP_global DCP_islet

Tau coefficient 0.341 0.341

P value 0.048 0.048

SCP_global Parameter SCP_islet SCP_atrophy

Tau coefficient 0.682 0.651

P value 0.000013 0.006

DCP_global Parameter DCP_islet DCP_atrophy

Tau coefficient 0.686 0.367

P value 0.00007 0.034

CC_global Parameter CC_islet

Tau coefficient 0.724

P value 0.00003

All the reported correlations proved statistically significant.
CC, choriocapillaris; CHM, choroideremia; DCP; deep capillary; EZ-RPE, ellipsoid zone–retinal pigment epithelium layer; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer;
ONL, outer nuclear layer; OPL, outer plexiform layer; SCP, superficial capillary.
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