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Abstract

Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary
hemochromatosis (HH) is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which
results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The
aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron
overload in murine liver and duodenum. IlluminaTM arrays containing over 47,000 probes were used to study global
transcriptional changes. Quantitative RT-PCR (Q-RT-PCR) was used to validate the microarray results. In the liver, the
expression of 151 genes was altered in Hfe2/2 mice while dietary iron overload changed the expression of 218 genes. There
were 173 and 108 differentially expressed genes in the duodenum of Hfe2/2 mice and mice with dietary iron overload,
respectively. There was 93.5% concordance between the results obtained by microarray analysis and Q-RT-PCR.
Overexpression of genes for acute phase reactants in the liver and a strong induction of digestive enzyme genes in the
duodenum were characteristic of the Hfe-deficient genotype. In contrast, dietary iron overload caused a more pronounced
change of gene expression responsive to oxidative stress. In conclusion, Hfe deficiency caused a previously unrecognized
increase in gene expression of hepatic acute phase proteins and duodenal digestive enzymes.
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Introduction

Iron plays crucial roles in cellular metabolism but, in excess, it

can catalyze the formation of free radicals leading to oxidative

stress and cell damage [1]. Iron is absorbed in the duodenum,

where it crosses the apical and basolateral membranes of

absorptive enterocytes to enter the blood stream [2]. There is no

regulated mechanism of iron excretion, and thus the absorption of

iron must be tightly regulated to maintain iron balance. HFE-

related hereditary hemochromatosis (HH, OMIM-235200) is an

autosomal recessive disorder in which absorption of iron is

inappropriately high [3,4]. HH is characterized by high transferrin

saturation and low iron content in macrophages. Iron is deposited

primarily in the parenchymal cells of various organs, particularly

the liver, but also the pancreas, heart, skin, and testes, resulting in

tissue damage and organ failure. Clinical complications in

untreated HH patients include hepatic fibrosis, cirrhosis, hepato-

cellular carcinoma, diabetes, cardiomyopathy, hypogonadism, and

arthritis [4].

HH is characterized by inappropriately low expression of the

iron-regulatory hormone hepcidin [5]. Hepcidin, a small peptide

hormone expressed mainly in the liver, is a central player in the

maintenance of iron balance [6]. The only known molecule

capable of transporting iron out of cells is ferroportin [7–9]. This

iron exporter is located in the plasma membrane of enterocytes,

reticuloendothelial cells, hepatocytes, and placental cells [7].

Hepcidin binds to ferroportin and induces its internalization and

degradation, therefore suppressing the transport of iron into the

circulation [10]. The expression of hepcidin is induced by

increased iron stores and inflammation, and suppressed by

hypoxia and anemia [11,12].

Mice homozygous for a null allele of Hfe (Hfe2/2) provide a

genetic animal model of HH [13]. There are several animal models

of iron overload based on administration of exogenous iron [14].

According to the route of iron delivery, these can be divided into two

main types: enteral (i.e. dietary) and parenteral models. For example,

dietary supplementation with carbonyl iron in mice reproduces the

HH pattern of hepatic iron loading, with predominantly parenchy-

mal iron deposition [14]. Although both Hfe2/2 mice and carbonyl

iron-fed mice develop iron overload, there are important differences

between these two models. Hfe2/2 mice lack Hfe protein and

therefore have decreased expression of hepcidin [15,16], while mice
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with dietary iron overload express functional Hfe protein and their

hepcidin expression is elevated [12].

Current RNA microarray technology allows expression profil-

ing of the whole transcriptome. This methodology has been used

to explore the effects of Hfe gene disruption on mRNA expression

in the liver and duodenum, two organs with crucial roles in iron

metabolism [17]. In the present study, we used this approach to

study gene expression in the liver and duodenum of Hfe2/2 mice

and wild-type mice, with or without dietary iron overload. This

allowed the identification of genes whose expression is changed

during iron overload and those genes whose expression is

differentially influenced by lack of Hfe protein.

Results

We used global microarray analysis to study gene expression in

the liver and duodenum of Hfe2/2 mice and carbonyl iron loaded

mice, and comparing it with that of wild-type mice fed a standard

diet. This approach allowed the identification of genes whose

expression is changed during iron overload and those genes whose

expression is differentially influenced by lack of Hfe protein. All

the mice used were males and all had the same genetic background

(C57BL/6).

Hepatic transcriptional response to Hfe deficiency and
dietary iron overload

Hepatic RNA from 3 Hfe2/2 mice and 2 wild-type mice was

subjected to microarray analysis. The Pearson correlation

coefficient between the knock out mice and between the controls

was in both cases 0.989. The results revealed 86 induced genes and

65 repressed genes, using a cutoff value of 61.4-fold (Table 1 and

Dataset S1). This cutoff value has been proposed as an adequate

compromise above which there is a high correlation between

microarray and Q-RT-PCR data, regardless of other factors such

as spot intensity and cycle threshold [18]. The fold-changes ranged

from 9.83 to 23.47. Functional annotation of the gene lists

highlighted the biological processes that may be modified by Hfe

deficiency. This analysis revealed enrichment of heat shock

proteins and proteins related to inflammatory responses or antigen

processing and presentation, among others (Table 2).

Another microarray experiment was performed using hepatic

RNA from 3 mice with dietary iron overload and 2 mice fed a

standard diet. The similarity between samples from individual

mice was measured as the Pearson correlation coefficient, which

was 0.989 between iron overloaded mice and 0.991 between

control mice. The expression of 123 genes was upregulated and

that of 95 genes was downregulated, applying a cutoff value of

61.4-fold (Table 1 and Dataset S2). The fold-changes ranged

between 13.58 and 27.46. The list of regulated genes was

functionally annotated (Table 3), showing enrichment of cyto-

chrome P450 proteins as well as others involved in glutathione

metabolism, acute-phase response, organic acid biosynthetic

process and cellular iron homeostasis, among others.

There were 11 upregulated and 7 downregulated genes that

were affected by both Hfe deficiency and dietary iron overload in

similar fashion, while 27 genes were regulated in opposite

directions by these two conditions in the liver (Table 4). In some

cases, several genes belonging to the same gene family showed

divergent regulation (e.g., Saa1, Saa2, Saa3) with upregulation in

Hfe2/2 mice and downregulation by dietary iron overload.

Altered expression of iron-related genes in the liver. The

expression of 3 iron-related genes was altered in the liver of Hfe2/2

mice. The expression of Hamp1 and Tfrc was decreased and that of

Lcn2 was induced. We confirmed these results using Q-RT-PCR,

and also tested the expression of Hamp2, which was downregulated

(Figure 1). Dietary iron overload changed the expression of 5 iron-

related genes in the liver. The expression of Hamp1, Hamp2, Lcn2

and Cp were upregulated using both microarray analysis and

Q-RT-PCR, while Tfrc expression was down-regulated by 1.7-fold

(Figure 2).

Confirmation of hepatic microarray results by Q-RT-

PCR. Microarray analysis for the expression of several genes was

confirmed by performing Q-RT-PCR on hepatic samples from 5

Hfe2/2 mice, 4 wild-type control mice, 5 iron-fed mice and 4 mice

fed a standard diet. For this purpose, we selected iron-related

genes and others whose expression was substantially altered in the

experimental groups. A total of 29 results from the hepatic

microarray data, corresponding to 24 different genes, were tested

by Q-RT-PCR, and 27 (93.1%) of them showed concordant

results by these two methods (Figures 1 and 2). Changes in Foxq1

and Dmt1 expression were false-positives in the microarray analysis

for Hfe2/2 mice and dietary iron overload, respectively. The

upregulation of Ltf expression by dietary iron overload observed by

microarray analysis could not be confirmed by Q-RT-PCR

because the expression levels in samples from all but one of the

treated mice and all control mice were below the detection

threshold.

Duodenal gene expression response to Hfe deficiency
and dietary iron supplementation

Microarray analysis of duodenal RNA from 2 Hfe2/2 mice and

2 wild-type mice revealed that the expression of 143 genes was

upregulated and that of 30 genes was downregulated when a cutoff

value of 61.4-fold was used (Table 1 and Dataset S3). The fold-

changes ranged from 15.67 to 23.14. The Pearson correlation

coefficient between knockout mice and between controls was 0.976

and 0.971, respectively. Functional categories overrepresented

among the genes regulated by Hfe deficiency included proteins

with endopeptidase activity, and others involved in lipid

catabolism and antimicrobial activity (Table 5).

Table 1. Number of genes regulated by Hfe deficiency or dietary iron overload in murine liver and duodenum.

Tissue Model
Total regulated
genes

Upregulated
genes

Downregulated
genes

Proportion of results
confirmed by Q-RT-PCR

Liver Hfe2/2 151 86 65 11/12

Dietary Iron 218 123 95 16/17

Duodenum Hfe2/2 173 143 30 6/7

Dietary Iron 108 49 59 10/10

Genes with changes in mRNA expression greater than 61.4-fold were considered as regulated.
doi:10.1371/journal.pone.0007212.t001

Transcription in Iron Overload
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Table 2. Functional annotation of genes regulated in the liver of Hfe2/2 mice.

Functional Category Gene Symbol Description GenBank Number FC Q-PCR

Response to unfolded protein Hspd1 heat shock protein 1 (chaperonin) NM_010477 1.54

H47 histocompatibility 47 NM_024439 21.45

Hsp90ab1 heat shock protein 90 kDa alpha (cytosolic), class B member 1 NM_008302 21.48

Hspb1 heat shock protein 1 NM_013560 21.66

Hspa8 heat shock protein 8 NM_031165 21.70

Hsp90b1 heat shock protein 90 kDa beta (Grp94), member 1 NM_011631 21.71

Hsp90aa1 heat shock protein 90 kDa alpha (cytosolic), class A member 1 NM_010480 21.72

Hspa5 heat shock protein 5 NM_022310 22.14

Hsph1 heat shock 105 kDa/110 kDa protein 1 NM_013559 22.16 22.43

Syvn1 synovial apoptosis inhibitor 1, synoviolin NM_028769 22.45

Inflammatory response Saa2 serum amyloid A 2 NM_011314 9.83 39.36

Saa1 serum amyloid A 1 NM_009117 6.30 16.36

Orm2 orosomucoid 2 NM_011016 3.29

Saa3 serum amyloid A 3 NM_011315 2.89

Orm1 orosomucoid 1 NM_008768 1.68

Serpina3n serine (or cysteine) peptidase inhibitor, clade A, member 3N NM_009252 1.63

C1s complement component 1, s subcomponent NM_144938 1.47

Cxcl9 chemokine (C-X-C motif) ligand 9 NM_008599 21.57

Apolipoprotein associated with HDL Saa2 serum amyloid A 2 NM_011314 9.83 39.36

Saa1 serum amyloid A 1 NM_009117 6.30 16.36

Saa3 serum amyloid A 3 NM_011315 2.89

Apoa4 apolipoprotein A-IV NM_007468 2.36

Monooxygenase activity Moxd1 monooxygenase, DBH-like 1 NM_021509 4.12

Cyp2a5 cytochrome P450, family 2, subfamily a, polypeptide 5 NM_007812 1.67

Cyp27a1 cytochrome P450, family 27, subfamily a, polypeptide 1 NM_024264 1.64

Cyp2d26 cytochrome P450, family 2, subfamily d, polypeptide 26 NM_029562 1.59

Kmo kynurenine 3-monooxygenase (kynurenine 3-hydroxylase) NM_133809 1.48

Cyp4a14 cytochrome P450, family 4, subfamily a, polypeptide 14 NM_007822 21.44

Cyp3a11 cytochrome P450, family 3, subfamily a, polypeptide 11 NM_007818 21.58

Cyp26b1 cytochrome P450, family 26, subfamily b, polypeptide 1 NM_175475 22.39 22.18

Steroid biosynthetic process Nsdhl NAD(P) dependent steroid dehydrogenase-like NM_010941 1.44

Hmgcs1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 NM_145942 21.42

Lss lanosterol synthase NM_146006 21.45

Hmgcr 3-hydroxy-3-methylglutaryl-Coenzyme A reductase NM_008255 21.50

Mvd mevalonate (diphospho) decarboxylase NM_138656 21.67

Antigen processing and presentation Psmb8 proteasome (prosome, macropain) subunit, beta type 8
(large multifunctional peptidase 7)

NM_010724 1.50

Cd74 CD74 antigen (invariant polypeptide of major
histocompatibility complex, class II antigen-associated)

NM_010545 21.59

H2-Eb1 histocompatibility 2, class II antigen E beta NM_010382 21.63

H2-Ab1 histocompatibility 2, class II antigen A, beta 1 NM_207105 21.77

H2-Aa histocompatibility 2, class II antigen A, alpha NM_010378 21.81

Endopeptidase inhibitor activity Serpina12 serine (or cysteine) peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 12

NM_026535 2.01

Wfdc2 WAP four-disulfide core domain 2 NM_026323 1.65

Serpina3n serine (or cysteine) peptidase inhibitor, clade A, member 3N NM_009252 1.63

Itih4 inter alpha-trypsin inhibitor, heavy chain 4 NM_018746 1.48

carboxy-lyase activity Ddc dopa decarboxylase NM_016672 21.48

Mvd mevalonate (diphospho) decarboxylase NM_138656 21.67

Csad cysteine sulfinic acid decarboxylase NM_144942 21.76

Transcription in Iron Overload
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Global transcriptional regulation was also studied in the

duodenum of mice fed an iron-supplemented diet, using 3 treated

mice and 2 controls. The Pearson correlation coefficient was 0.985

between treated mice and 0.983 between controls. The expression

of 49 genes was induced and 59 genes were repressed, applying a

cutoff value of 61.4-fold (Table 1 and Dataset S4). The fold-

changes ranged between 6.07 and 25.64. Functional annotation

of the gene list evidenced enrichment of genes involved in

glutathione metabolism, antigen processing and presentation and

inflammatory response, among others (Table 6).

We identified genes whose expression was affected by both Hfe

deficiency and dietary iron supplementation in the duodenum.

There were 4 genes whose expression was induced in both

conditions, 3 genes whose expression was decreased, and 4 genes

with opposite regulation (Table 7).
Altered expression of iron-related genes in the duode-

num. In the duodenum of Hfe2/2 mice, Hamp2 expression was

increased by 2.7-fold using microarray analysis. However, this

could not be confirmed by Q-RT-PCR, because Hamp2 mRNA

levels in the samples from wild-type mice and in one Hfe2/2

sample were below the detection threshold. In mice fed the iron-

supplemented diet, the duodenal expression of Tfrc was

downregulated and that for Hmox1 was upregulated: both of

these results were validated by Q-RT-PCR (Figure 3).

Confirmation of duodenal microarray results by Q-RT-

PCR. Q-RT-PCR analyses were done on duodenal RNA

samples from 5 Hfe2/2 mice, 4 wild-type control mice, 5 iron-

fed mice and 4 mice fed a standard diet in order to confirm the

microarray results. The mRNA expression of a total of 17 different

genes was tested and 16 (94.1%) showed concordant results

between microarray analysis and Q-RT-PCR (Figures 3 and 4).

The sole discrepant result concerned the expression of Ddb1 that

was downregulated according to microarray analysis, while Q-RT-

PCR revealed a slight induction (1.25-fold) of expression.

Discussion

The goal of this study was to explore and compare the genome-

wide transcriptome response to Hfe deficiency and dietary iron

overload in murine liver and duodenum. This approach allowed

the identification of genes whose expression is changed during iron

overload and those genes whose expression is differentially

influenced by lack of Hfe protein. The global transcriptional

response to Hfe deficiency has been explored previously in the liver

and duodenum of two mouse strains [17]. However, it is notable

that only a few analogous changes in gene expression are seen

when comparing our data with those of the previous study, even

for mice of the same genetic background. Two other reports have

explored expression of selected genes by using dedicated arrays in

Hfe2/2 mice and in mice with secondary iron overload produced

by intraperitoneal injection of iron-dextran [19,20]. In one study,

duodenum and liver samples were analyzed using an array of iron-

related genes [19]. The results for duodenal gene expression in

Hfe2/2 mice have no concordance with ours. Regulation of

hepatic gene expression, on the other hand, is similar for several

genes, such as Hamp1, Tfrc and Mt1. The second report focused on

gene expression in the duodenum [20], and again, there is little

concordance between their observations and ours. The lack of

agreement between these studies is probably due to differences in

the animal models (parenteral vs. enteral iron loading; mouse

strains) and in the microarray methodology.

The hepatic expression of acute phase proteins (APPs) can be

induced by inflammatory mediators such as interleukin-6. Interest-

ingly, the liver of Hfe2/2 mice has upregulated expression of APPs

such as serum amyloids, lipocalins and orosomucoids. Notably, the

expression of serum amyloid genes (Saa1, Saa2, Saa3) was

upregulated in the Hfe2/2 mice compared to being downregulated

in dietary iron overload, suggesting that Hfe deficiency induces this

gene expression by an iron-independent mechanism. However,

hepatic interleukin-6 mRNA expression was not significantly

changed by Hfe deficiency, so the potential involvement of this

cytokine in the observed upregulation of APPs remains uncertain.

Lipocalin2 (human Ngal from neutrophil gelatinase-associated

lipocalin) is an APP with antimicrobial properties through a

mechanism of iron deprivation by siderophore binding [21]. It can

donate iron to various types of cells [22,23] and seems to be

capable of intracellular iron chelation and iron excretion [24].

Furthermore, a recent study has shown that lipocalin2 is an

adipokine with potential importance in insulin resistance associ-

ated with obesity [25]. We observed that Lcn2 expression is

increased in the liver of both Hfe2/2 mice and those with dietary

iron overload, suggesting that this induction is iron-related.

Dietary iron overload of the liver led to increased expression of

both hepcidin genes (Hamp1, Hamp2) as previously reported

[26,27], and these results were verified by Q-RT-PCR. In the liver

of Hfe2/2 mice, Hamp1 expression was downregulated as expected

[15,16,19]. We also examined the levels of Hamp2 mRNA by Q-

RT-PCR and found a -1.92-fold change. The low expression of

hepatic Hamp1 in Hfe2/2 mice is likely responsible for the

increased iron absorption and low microphage iron content in

these mice [15,16,19].

Inhibitor of DNA-binding/differentiation proteins, also known

as Id proteins, comprise a family of proteins that heterodimerize

Functional Category Gene Symbol Description GenBank Number FC Q-PCR

T cell differentiation Cd74 CD74 antigen (invariant polypeptide of major
histocompatibility complex, class II antigen-associated)

NM_010545 21.59

Hsp90aa1 heat shock protein 90 kDa alpha (cytosolic), class A member 1 NM_010480 21.72

Egr1 early growth response 1 NM_007913 21.77

H2-Aa histocompatibility 2, class II antigen A, alpha NM_010378 21.81

Gadd45g growth arrest and DNA-damage-inducible 45 gamma NM_011817 21.97

Glycogen metabolic process G6pc glucose-6-phosphatase, catalytic NM_008061 2.38

Ppp1r3c protein phosphatase 1, regulatory (inhibitor) subunit 3C NM_016854 1.57

Ppp1r3b protein phosphatase 1, regulatory (inhibitor) subunit 3B NM_177741 1.55

doi:10.1371/journal.pone.0007212.t002

Table 2. Cont.

Transcription in Iron Overload
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Table 3. Functional annotation of genes regulated in the liver of iron-fed mice.

Functional Category Gene Symbol Description GenBank Number FC Q-PCR

Electron transport, containing heme
and monooxygenase activity

Cyp2b10 cytochrome P450, family 2, subfamily b, polypeptide 10 NM_009999 13.58

Cyp2b9 cytochrome P450, family 2, subfamily b, polypeptide 9 NM_010000 7.41

Cyp4a14 cytochrome P450, family 4, subfamily a, polypeptide 14 NM_007822 6.97 16.06

Cyp26b1 cytochrome P450, family 26, subfamily b, polypeptide 1 NM_175475 2.24

Cyp2c29 cytochrome P450, family 2, subfamily c, polypeptide 29 NM_007815 1.77

Cyp2c54 cytochrome P450, family 2, subfamily c, polypeptide 54 NM_206537 1.76 2.37

Cyp2a5 cytochrome P450, family 2, subfamily a, polypeptide 5 NM_007812 1.65

Cyp2b13 cytochrome P450, family 2, subfamily b, polypeptide 13 NM_007813 1.50

Cyp4v3 cytochrome P450, family 4, subfamily v, polypeptide 3 NM_133969 21.82

Cyp7b1 cytochrome P450, family 7, subfamily b, polypeptide 1 NM_007825 22.50

Cyp4a12b cytochrome P450, family 4, subfamily a, polypeptide 12B NM_172306 22.73

Cyp7a1 cytochrome P450, family 7, subfamily a, polypeptide 1 NM_007824 22.80

Cyp4a12a cytochrome P450, family 4, subfamily a, polypeptide 12a NM_177406 23.62

Glutathione metabolism Gsta1 glutathione S-transferase, alpha 1 (Ya) NM_008181 1.94

Gstt2 glutathione S-transferase, theta 2 AK079739 1.86

Gsta2 glutathione S-transferase, alpha 2 (Yc2) NM_008182 1.83

Gstm6 glutathione S-transferase, mu 6 NM_008184 1.78

Mgst3 microsomal glutathione S-transferase 3 NM_025569 1.72

Gstm3 glutathione S-transferase, mu 3 NM_010359 1.59

Gclc glutamate-cysteine ligase, catalytic subunit NM_010295 1.55

Gstp1 glutathione S-transferase, pi 1 NM_013541 21.81

Acute-phase response Il1b interleukin 1 beta NM_008361 2.04

Saa3 serum amyloid A 3 NM_011315 21.82

Saa4 serum amyloid A 4 NM_011316 21.91

Saa2 serum amyloid A 2 NM_011314 22.79 23.36

Saa1 serum amyloid A 1 NM_009117 23.96 24.31

Organic acid biosynthetic process Fasn fatty acid synthase NM_007988 2.22

Elovl6 ELOVL family member 6, elongation of long chain fatty acids NM_130450 1.87

Acaca acetyl-Coenzyme A carboxylase alpha NM_133360 1.81

Cd74 CD74 antigen (invariant polypeptide of major histocompatibility
complex, class II antigen-associated)

NM_010545 1.65

Cyp7b1 cytochrome P450, family 7, subfamily b, polypeptide 1 NM_007825 22.50

Elovl3 elongation of very long chain fatty acids-like 3 NM_007703 25.00

Cellular iron ion homeostasis Hamp2 hepcidin antimicrobial peptide 2 NM_183257 10.03 24.77

Hamp1 hepcidin antimicrobial peptide 1 NM_032541 1.73 5.27

Tfrc transferrin receptor NM_011638 21.74

Alas2 aminolevulinic acid synthase 2, erythroid NM_009653 22.20

Hemopoiesis and immune system
development

Id2 inhibitor of DNA binding 2 NM_010496 2.92 5.2

Egr1 early growth response 1 NM_007913 2.55

H2-Aa histocompatibility 2, class II antigen A, alpha NM_010378 1.81

Gadd45g growth arrest and DNA-damage-inducible 45 gamma NM_011817 1.66

Cd74 CD74 antigen (invariant polypeptide of major histocompatibility
complex, class II antigen-associated)

NM_010545 1.65

Hbb-b1 hemoglobin, beta adult major chain NM_008220 1.45

Pik3r1 phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1
(p85 alpha), transcript variant 1

NM_001024955 21.70

Alas2 aminolevulinic acid synthase 2, erythroid NM_009653 22.20

Bcl6 B-cell leukemia/lymphoma 6 NM_009744 22.61

Serine-type endopeptidase inhibitor
activity

Serpina7 serine (or cysteine) peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 7

NM_177920 2.12

Transcription in Iron Overload
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with basic-helix-loop-helix (bHLH) transcription factors to inhibit

their binding to DNA. Several studies have reported that Id

proteins have important roles in differentiation, cell cycle and

angiogenesis in various cell types [28]. Expression of Id1, 2, and 3

is increased during liver disease, with levels that escalate as liver

disease progresses from hepatitis to cirrhosis. In hepatocellular

carcinoma, high expression is observed in well-differentiated

tumors, and it decreases as the tumor cells become undifferenti-

ated [29]. In light of these findings, it has been suggested that Id1,

2, and 3 may play a role in the early stages of hepatocarcinogen-

esis. Given that, it is notable that we found that the expression of

Id1, 2, 3, and 4 was increased in the liver of mice with dietary iron

overload, but was unaffected in Hfe2/2 mice. Increased hepatic

expression of Id1 mRNA has previously been reported in mice fed

an iron-supplemented diet [30]. The same study showed

upregulation of the gene for bone morphogenetic protein 6

(Bmp6) in the same experimental mice. Recent work demonstrates

that Bmp6 is a key player in the signalling pathway that controls

hepcidin expression [31]. Unexpectedly, upregulation of hepatic

Bmp6 mRNA expression by dietary iron overload was not evident

in the current study.

The gene expression of several heat shock proteins was

downregulated in the liver and duodenum by both Hfe deficiency

and dietary iron overload, with a considerably greater number of

these genes downregulated in the liver of Hfe2/2 mice. Although

these genes are induced under certain stress conditions, such as

heat shock and ischemia–reperfusion, their expression is decreased

by iron overload [19,27,32]. Currently, the physiological implica-

tions of this downregulation are unknown.

Our results indicate that disruption of the Hfe gene induces the

expression of many genes in the duodenum coding for digestive

enzymes, such as elastases, carboxypeptidases, trypsins, chymo-

trypsins, amylases, and lipases. In contrast, feeding mice with an

iron-supplemented diet did not affect the expression of any of these

genes. The upregulation of gene expression for digestive enzymes

in Hfe2/2 mice is surprising because overexpression of these

enzymes has not been associated with HH.

A common feature of the duodenal response to both Hfe deficiency

and dietary iron overload was the transcriptional repression of genes

involved in antimicrobial activities, such as cryptdins. In mice fed an

iron-supplemented diet, there was also a decrease in mRNA

expression for genes involved in antigen processing and presentation,

such as some genes of the MHC class II family.

The solute carrier molecules constitute a large family of proteins

involved in membrane transport of diverse molecules. The gene

expression of many family members was affected by Hfe deficiency

or dietary iron overload. In the duodenum, the expression of the

sodium-coupled neutral amino acid transporter Slc38a5 was

induced in Hfe2/2 mice and repressed in mice fed an iron-

supplemented diet. In the liver, the expression of Slc46a3 was

upregulated in Hfe2/2 mice. This gene belongs to the Slc46

subfamily of heme transporters. It is thus a close relative of Slc46a1

(also known as HCP1), a recently identified, although controversial,

heme transporter [33,34]. The iron transporter Dmt1, encoded by

Slc11a2, contains an iron-responsive element (IRE) in the 39UTR

of its mRNA. This permits the regulation of Dmt1 mRNA levels

according to the cellular labile iron pool by mediation of the iron

regulatory proteins, IRP1 and IRP2. Under iron-replete condi-

tions, IRP activity is reduced rendering the Dmt1 mRNA

vulnerable to degradation. The opposite is true under iron-

deficient conditions, which is believed to be the situation inside the

enterocytes of HH patients and Hfe2/2 mice [35,36]. Accordingly,

in some studies, increased expression of Dmt1 has been observed in

the duodenum of HH patients [37] as well as in Hfe2/2 mice [38].

However, we did not find a significant change in the expression of

Dmt1 in the Hfe2/2 duodenum. This may be explained by the

inability of our microarray probes and PCR primers to

discriminate between IRE-positive and IRE–negative transcripts.

The post-transcriptional regulation of Tfrc (transferrin receptor

1) by iron is also mediated through the IRE/IRP system [39]. Tfrc

is involved in the uptake of transferrin-bound iron by cells.

Analogous to our observations, suppression of Tfrc expression in

the duodenum [40] and liver [27] of mice fed an iron-

supplemented diet, and in the liver of Hfe2/2 mice [19] has been

reported previously. Our microarray analysis indicates that the

expression of Tfrc was not significantly changed in the duodenum

of Hfe2/2 mice, a result that agrees with a previous report [19].

Excess free iron increases oxidant production [1]. Subsequently,

some antioxidant defense mechanisms are upregulated in order to

provide resistance to iron-related toxicity. It is notable from our

data that this response is elicited in both liver and duodenum, as

seen in the upregulation of glutathione S-transferase genes.

Interestingly, dietary iron overload seems to induce a stronger

response than Hfe deficiency, especially in the regulation of

enzymes involved in glutathione-related detoxification of reactive

intermediates.

Functional Category Gene Symbol Description GenBank Number FC Q-PCR

Serpina3m serine (or cysteine) peptidase inhibitor, clade A, member 3 M NM_009253 2.04

Spink4 serine peptidase inhibitor, Kazal type 4 NM_011463 1.52

Serpina1e serine (or cysteine) peptidase inhibitor, clade A, member 1e NM_009247 21.86

Serpina12 serine (or cysteine) peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 12

NM_026535 22.19

Serpine2 serine (or cysteine) peptidase inhibitor, clade E, member 2 AK045954 22.88

Antigen processing and presentation
via MHC class II

H2-Aa histocompatibility 2, class II antigen A, alpha NM_010378 1.81

H2-Ab1 histocompatibility 2, class II antigen A, beta 1 NM_207105 1.68

Cd74 CD74 antigen (invariant polypeptide of major histocompatibility
complex, class II antigen-associated)

NM_010545 1.65

H2-Eb1 histocompatibility 2, class II antigen E beta NM_010382 1.43

doi:10.1371/journal.pone.0007212.t003

Table 3. Cont.

Transcription in Iron Overload

PLoS ONE | www.plosone.org 6 September 2009 | Volume 4 | Issue 9 | e7212



Table 4. Comparison of hepatic gene regulation by Hfe deficiency or dietary iron overload.

Gene Symbol Description GenBank Number FC Hfe2/2 FC diet

Increased in Hfe2/2 and by diet Lcn2 lipocalin 2 NM_008491 9.54 2.10

Rgs16 regulator of G-protein signaling 16 NM_011267 4.61 5.06

Mt1 metallothionein 1 NM_013602 4.17 3.95

Apoa4 apolipoprotein A-IV NM_007468 2.36 6.56

Slc2a2 solute carrier family 2 (facilitated glucose transporter),
member 2

NM_031197 1.92 2.17

Mfsd2 major facilitator superfamily domain containing 2 NM_029662 1.68 3.59

Cyp2a5 cytochrome P450, family 2, subfamily a, polypeptide 5 NM_007812 1.67 1.65

Gstt2 glutathione S-transferase, theta 2 NM_010361 1.58 1.86

Ppp1r3c protein phosphatase 1, regulatory (inhibitor) subunit 3C NM_016854 1.57 1.53

Bhlhb2 basic helix-loop-helix domain containing, class B2 NM_011498 1.52 2.35

Dusp1 dual specificity phosphatase 1 NM_013642 1.50 2.15

Increased in Hfe2/2 and decreased by diet Saa2 serum amyloid A 2 NM_011314 9.83 22.79

Saa1 serum amyloid A 1 NM_009117 6.30 23.96

Saa3 serum amyloid A 3 NM_011315 2.89 21.82

Angptl4 angiopoietin-like 4 NM_020581 2.30 22.03

Hp haptoglobin NM_017370 2.23 21.69

Serpina12 serine (or cysteine) peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 12

NM_026535 2.01 22.19

Lpin1 lipin 1 NM_015763 1.92 21.59

Il6ra interleukin 6 receptor, alpha AK020663 1.70 22.08

Dio1 deiodinase, iodothyronine, type I NM_007860 1.57 21.87

Ppp1r3b protein phosphatase 1, regulatory (inhibitor) subunit 3B NM_177741 1.55 21.95

Dct dopachrome tautomerase NM_010024 1.50 22.72

Mup4 major urinary protein 4 NM_008648 1.44 24.28

Decreased in Hfe2/2 and increased by diet Cyp26b1 cytochrome P450, family 26, subfamily b, polypeptide 1 NM_175475 22.39 2.24

Phlda1 pleckstrin homology-like domain, family A, member 1 NM_009344 22.20 1.51

Gadd45g growth arrest and DNA-damage-inducible 45 gamma NM_011817 21.97 1.66

Socs3 suppressor of cytokine signaling 3 NM_007707 21.96 1.89

Cish cytokine inducible SH2-containing protein NM_009895 21.93 2.37

H2-Aa histocompatibility 2, class II antigen A, alpha NM_010378 21.81 1.81

Egr1 early growth response 1 NM_007913 21.77 2.55

H2-Ab1 histocompatibility 2, class II antigen A, beta 1 NM_207105 21.77 1.68

Gsta2 glutathione S-transferase, alpha 2 (Yc2) NM_008182 21.71 1.83

H2-Eb1 histocompatibility 2, class II antigen E beta NM_010382 21.63 1.43

Cd74 CD74 antigen (invariant polypeptide of major
histocompatibility complex, class II antigen-associated)

NM_010545 21.59 1.65

Cyp4a14 cytochrome P450, family 4, subfamily a, polypeptide 14 NM_007822 21.44 6.97

Hbb-b1 hemoglobin, beta adult major chain AK010993 21.42 1.45

Rnf186 ring finger protein 186 NM_025786 21.41 1.81

Hamp1 hepcidin antimicrobial peptide 1 NM_032541 21.41 1.73

Decreased in Hfe2/2 and by diet Creld2 cysteine-rich with EGF-like domains 2 NM_029720 23.47 21.64

Hsph1 heat shock 105 kDa/110 kDa protein 1 NM_013559 22.16 22.13

Tfrc transferrin receptor NM_011638 21.92 21.74

Hspb1 heat shock protein 1 NM_013560 21.66 21.81

Hhex hematopoietically expressed homeobox NM_008245 21.55 22.05

Mcm10 minichromosome maintenance deficient 10
(S. cerevisiae)

NM_027290 21.55 21.55

Ddc dopa decarboxylase NM_016672 21.48 21.97

FC, fold-change; diet, iron-supplemented diet.
doi:10.1371/journal.pone.0007212.t004
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In conclusion, Hfe deficiency results in increased gene

expression of hepatic APPs and duodenal digestive enzymes. In

contrast, dietary iron overload causes a more pronounced change

of gene expression responsive to oxidative stress.

Materials and Methods

Ethics Statement
The animal protocols were approved by the Animal Care and

Use Committees of Saint Louis University and the University of

Oulu (permission No 102/05).

Animal care and animal models
Five male C57BL/6 mice homozygous for a disruption of the

Hfe gene and 4 male wild-type control mice were fed a standard

rodent diet (250 ppm of iron) and sacrificed at approximately 10

weeks of age. The generation of the Hfe2/2 mice has been

described elsewhere [13]. In addition, 5 male C57BL/6 mice fed

an iron-supplemented diet (2% carbonyl iron) and 4 male control

mice fed a standard diet (200 ppm of iron) for 6 weeks were used

[27]. The mice with dietary iron overload had a hepatic iron

concentration that was approximately 2.5 times higher than the

Hfe2/2 mice. The duodenum and liver samples were immediately

collected from anesthetized mice and immersed in RNAlater

solution (Ambion, Huntingdon, UK).

RNA isolation
Total RNA extraction and quality control have been described

previously [27].

Microarray analysis
All microarray data reported in the present article are described

in accordance with MIAME guidelines, have been deposited in

NCBI’s Gene Expression Omnibus public repository [41], and are

accessible through GEO Series accession number GSE17969 [42].

Microarray experiments were performed in the Finnish DNA

Microarray Centre at Turku Centre for Biotechnology using

Illumina’s Sentrix Mouse-6 Expression Beadchips. Duodenal and

liver RNA samples from 3 Hfe2/2 mice and 3 mice with dietary

iron overload were used. As controls, RNA samples from the

duodenum and liver of 4 wild-type mice (2 controls of the Hfe2/2

mice and 2 controls of the mice with dietary iron overload) were

used. All 10 samples were analyzed individually. The amplification

of total RNA (300 ng), in vitro transcription, hybridization and

scanning have been described before [27].

Figure 1. Validation of liver microarray data from Hfe2/2 mice by Q-RT-PCR. The expression of various mRNA species in 5 Hfe2/2 mice is
compared to those in 4 wild-type controls. Each sample was run in triplicate. (mean6SD). *p,0.05; **p,0.025; ***p,0.01.
doi:10.1371/journal.pone.0007212.g001

Figure 2. Expression of genes affected by dietary iron overload in the liver, as confirmed by Q-RT-PCR. Samples from 5 mice fed an
iron-supplemented diet and 4 mice fed a control diet were used, and each sample was run in triplicate. (mean6SD). *p,0.05; **p,0.025; ***p,0.01.
doi:10.1371/journal.pone.0007212.g002
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Data analysis
Array data were normalized with Chipster (v1.1.1) using the

quantile normalization method. Quality control of the data included

non-metric multidimensional scaling, dendrograms, hierarchical

clustering, and 2-way clustering (heat maps). These analyses showed

that data from one of the three duodenal samples from Hfe2/2 mice

were highly divergent from the other two. Thus, this sample was

excluded from further analyses. The data were then filtered

according to the SD of the probes. The percentage of data that

did not pass through the filter was adjusted to 99.4%, implicating a

SD value of almost 3. At this point, statistical analysis was performed

using the empirical Bayes t-test for the comparison of 2 groups. Due

to the small number of samples, the statistical results were considered

as orientative and thus no filtering was applied to the data according

to p-values. The remaining 280 probes were further filtered

according to fold-change with 61.4 as cut-off values for up- and

down-regulated expression, respectively. The functional annotation

tool DAVID (Database for Annotation, Visualization and Integrated

Discovery) [43,44] was used to identify enriched biological categories

among the regulated genes as compared to all the genes present in

Illumina’s Sentrix Mouse-6 Expression Beadchip. The annotation

groupings analyzed were: Gene Ontology biological process and

molecular functions, SwissProt Protein Information Resources

keywords, SwissProt comments, Kyoto Encyclopedia of Genes and

Genomes and Biocarta pathways. Results were filtered to remove

categories with EASE (expression analysis systematic explorer) scores

greater than 0.05. Redundant categories with the same gene

members were removed to yield a single representative category.

Table 5. Functional annotation of genes regulated in the duodenum of Hfe2/2 mice.

Functional Category Gene Symbol Description GenBank Number FC Q-PCR

Endopeptidase activity Ela3 elastase 3, pancreatic NM_026419 15.67 14.77

Try4 trypsin 4 NM_011646 13.09

RP23-395H4.4 elastase 2A NM_007919 10.20

Ctrl chymotrypsin-like NM_023182 9.99

Ctrb1 chymotrypsinogen B1 NM_025583 9.68

Prss2 protease, serine, 2 NM_009430 7.41

2210010C04Rik RIKEN cDNA 2210010C04 gene NM_023333 7.14

Ela1 elastase 1, pancreatic NM_033612 5.84

Klk1b5 kallikrein 1-related peptidase b5 NM_008456 2.90

Ctrc chymotrypsin C (caldecrin) NM_001033875 2.51

Klk1b11 kallikrein 1-related peptidase b11 NM_010640 2.34

Klk1 kallikrein 1 NM_010639 2.29

Klk1b27 kallikrein 1-related peptidase b27 NM_020268 2.22

Klk1b4 kallikrein 1-related pepidase b4 NM_010915 2.11

Klk1b24 kallikrein 1-related peptidase b24 NM_010643 2.10

Mela melanoma antigen NM_008581 2.05

Ctse cathepsin E NM_007799 1.91 2.32

Klk1b26 kallikrein 1-related petidase b26 NM_010644 1.74

Capn5 calpain 5 NM_007602 1.60

Lipid catabolic function Cel carboxyl ester lipase NM_009885 9.82

Pnliprp1 pancreatic lipase related protein 1 NM_018874 8.17

Clps colipase, pancreatic NM_025469 5.35

Pla2g1b phospholipase A2, group IB, pancreas NM_011107 4.86

Pnliprp2 pancreatic lipase-related protein 2 NM_011128 4.50

Apoc3 apolipoprotein C-III NM_023114 21.79

Triacylglycerol lipase activity Cel carboxyl ester lipase NM_009885 9.82

Pnliprp1 pancreatic lipase related protein 1 NM_018874 8.17

Pnliprp2 pancreatic lipase-related protein 2 NM_011128 4.50

Antimicrobial Hamp2 hepcidin antimicrobial peptide 2 NM_183257 2.74 6.66

Defcr-rs1 defensin related sequence cryptdin peptide (paneth cells) NM_007844 21.60

Lyz1 lysozyme 1 NM_013590 21.68

Defcr6 defensin related cryptdin 6 NM_007852 22.11

Defcr20 defensin related cryptdin 20 NM_183268 22.69

Metallocarboxypeptidase activity Cpa1 carboxypeptidase A1 NM_025350 12.42

Cpa2 carboxypeptidase A2, pancreatic NM_001024698 8.14

Cpb1 carboxypeptidase B1 (tissue) NM_029706 12.51 14.55

doi:10.1371/journal.pone.0007212.t005
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Table 6. Functional annotation of genes regulated in the duodenum of mice fed an iron-supplemented diet.

Functional Category Gene Symbol Description GenBank Number FC Q-PCR

Glutatione metabolism Gstm1 glutathione S-transferase, mu 1 NM_010358 4.42 4.29

Gsta3 glutathione S-transferase, alpha 3 NM_010356 4.27

Gsta1 glutathione S-transferase, alpha 1 (Ya) NM_008181 3.51

Gsta2 glutathione S-transferase, alpha 2 (Yc2) NM_008182 2.93

Gstm6 glutathione S-transferase, mu 6 NM_008184 2.80

Gstm4 glutathione S-transferase, mu 4 NM_026764 2.41

Gsta4 glutathione S-transferase, alpha 4 NM_010357 2.26

Gstm3 glutathione S-transferase, mu 3 NM_010359 1.88

Anpep alanyl (membrane) aminopeptidase NM_008486 21.83

Antigen processing and presentation Cd74 CD74 antigen (invariant polypeptide of major
histocompatibility complex, class II antigen-associated)

BC003476 21.95

H2-Eb1 histocompatibility 2, class II antigen E beta NM_010382 22.06

H2-DMa histocompatibility 2, class II, locus DMa NM_010386 22.07

Psmb8 proteasome (prosome, macropain) subunit, beta type 8
(large multifunctional peptidase 7)

NM_010724 22.07

H2-DMb2 histocompatibility 2, class II, locus Mb2 NM_010388 22.16

H2-Aa histocompatibility 2, class II antigen A, alpha NM_010378 22.53

H2-Ab1 histocompatibility 2, class II antigen A, beta 1 NM_207105 22.76

Chaperone cofactor-dependent protein folding Cd74 CD74 antigen (invariant polypeptide of major
histocompatibility complex, class II antigen-associated)

BC003476 21.95

H2-DMa histocompatibility 2, class II, locus DMa NM_010386 22.07

H2-DMb2 histocompatibility 2, class II, locus Mb2 NM_010388 22.16

Dnajb1 DnaJ (Hsp40) homolog, subfamily B, member 1 NM_018808 22.62 22.17

Hsph1 heat shock 105 kDa/110 kDa protein 1 NM_013559 25.64 26.55

MHCII H2-Eb1 histocompatibility 2, class II antigen E beta NM_010382 22.06

H2-DMa histocompatibility 2, class II, locus DMa NM_010386 22.07

H2-DMb2 histocompatibility 2, class II, locus Mb2 NM_010388 22.16

H2-Aa histocompatibility 2, class II antigen A, alpha NM_010378 22.53

H2-Ab1 histocompatibility 2, class II antigen A, beta 1 NM_207105 22.76

T cell differentiation and activation Cd74 CD74 antigen (invariant polypeptide of major
histocompatibility complex, class II antigen-associated)

BC003476 21.95

H2-DMa histocompatibility 2, class II, locus DMa NM_010386 22.07

H2-Aa histocompatibility 2, class II antigen A, alpha NM_010378 22.53

Egr1 early growth response 1 NM_007913 23.33 22.32

Hsp90aa1 heat shock protein 90 kDa alpha (cytosolic), class A
member 1

NM_010480 22.11

Inflammatory response Reg3g regenerating islet-derived 3 gamma NM_011260 21.56

Cxcl13 chemokine (C-X-C motif) ligand 13 NM_018866 21.71

C3 complement component 3 NM_009778 21.78

Ccl5 chemokine (C-C motif) ligand 5 NM_013653 22.00

Pap pancreatitis-associated protein NM_011036 22.13

Antimicrobial Defcr20 defensin related cryptdin 20 NM_183268 1.72

Defcr5 defensin related cryptdin 5 NM_007851 21.41

Lyzs lysozyme NM_017372 21.88

Defcr-rs1 defensin related sequence cryptdin peptide (paneth cells) NM_007844 23.23

Lectin Reg2 regenerating islet-derived 2 NM_009043 2.14

Glg1 golgi apparatus protein 1 NM_009149 21.43

Reg3g regenerating islet-derived 3 gamma NM_011260 21.56

Pap pancreatitis-associated protein NM_011036 22.13

B cell mediated immunity C3 complement component 3 NM_009778 21.78

Cd74 CD74 antigen (invariant polypeptide of major
histocompatibility complex, class II antigen-associated)

BC003476 21.95
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Quantitative Reverse-Transcriptase PCR
For this analysis, duodenal and liver RNA samples from 5 mice

of each experimental group (Hfe2/2 and dietary iron overload)

and 4 mice from each control group (wild-type and normal diet)

were used. Exceptionally, for the analysis of mRNA expression in

the duodenum of Hfe2/2 mice, only 4 samples were used. RNA

samples (5 mg) were converted into first strand cDNA with a First

Strand cDNA Synthesis kit (Fermentas, Burlington, Canada)

using random hexamer primers. The relative expression levels of

target genes in the duodenum and liver were assessed by Q-RT-

PCR using the LightCycler detection system (Roche, Rotkreuz,

Switzerland). The reaction setup, cycling program, standard

curve method and primer pairs for Angptl4, Dnajb1 and Tfrc have

been described before [27]. Mouse Hamp1 and Hamp2 primers

have also been characterized previously [26]. The primer sets for

the other target genes (Dataset S5) were designed using Primer3

[45], based on the complete cDNA sequences deposited in

GenBank. The specificity of the primers was verified using NCBI

Basic Local Alignment and Search Tool (BLAST) [46]. To avoid

amplification of contaminating genomic DNA, both primers from

each set were specific to different exons, when possible. Each

cDNA sample was tested in triplicate. The mean and SD of the 3

crossing point (Cp) values were calculated for each sample and a

SD cutoff level of 0.2 was set. Accordingly, when the SD of the

triplicates of a sample was greater than 0.2, the most outlying

replicate was excluded and the analysis was continued with the

two remaining replicates. Using the standard curve method, the

Cp values were then transformed by the LightCycler software into

copy numbers. The expression value for each sample was the

mean of the copy numbers for the sample’s replicates. This value

was normalized by dividing it by the geometric mean of the 4

internal control genes, an accurate normalization method [47].

The normalization factor was always considered as a value of

100 and the final result was expressed as relative mRNA

expression level.

Statistical analyses
We performed statistical analyses of the microarray data using

the empirical Bayes t-test for the comparison of 2 groups, and the

p-values are shown in supplementary datasets S1-S4. For the Q-

RT-PCR results, we used the Mann-Whitney test to evaluate

differences in group values for Hfe2/2 mice vs. wild-type mice and

mice with dietary iron overload vs. untreated mice. Due to the

small sample sizes, the statistical significance is only considered as

orientative. Values are expressed as mean6SD.

Supporting Information

Dataset S1 List of genes differentially expressed in the liver of

Hfe knockout mice

Found at: doi:10.1371/journal.pone.0007212.s001 (0.04 MB

XLS)

Functional Category Gene Symbol Description GenBank Number FC Q-PCR

H2-DMa histocompatibility 2, class II, locus DMa NM_010386 22.07

Cholesterol metabolic process Ldlr low density lipoprotein receptor NM_010700 1.99

Cyp51 cytochrome P450, family 51 NM_020010 1.96

Hmgcs2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 NM_008256 1.88

Response to heat Hspa1a heat shock protein 1A NM_010479 21.91

Hsp90aa1 heat shock protein 90 kDa alpha (cytosolic), class A
member 1

NM_010480 22.11

Hsph1 heat shock 105 kDa/110 kDa protein 1 NM_013559 25.64 26.55

doi:10.1371/journal.pone.0007212.t006

Table 6. Cont.

Table 7. Genes regulated in the duodenum of mice by Hfe deficiency or iron-supplemented diet.

Gene Symbol Description GenBank FC Hfe2/2 FC diet

Increased in Hfe2/2 and by diet Reg2 regenerating islet-derived 2 NM_009043 10.34 2.14

Alpi alkaline phosphatase, intestinal NM_001081082 2.09 1.71

Akr1b8 aldo-keto reductase family 1, member B8 NM_008012 1.60 4.17

Mboat1 membrane bound O-acyltransferase domain containing 1 NM_153546 1.46 1.81

Increased in Hfe2/2 and decreased by diet Reg3b regenerating islet-derived 3 beta NM_011036 6.87 22.13

Klk1b27 kallikrein 1-related peptidase b27 NM_020268 2.22 21.87

Slc38a5 solute carrier family 38, member 5 NM_172479 2.14 22.31

Decreased in Hfe2/2 and increased by diet Defcr20 defensin related cryptdin 20 NM_183268 22.69 1.72

Decreased in Hfe2/2 and by diet Hspb1 heat shock protein 1 NM_013560 22.07 22.17

Defcr-rs1 defensin related sequence cryptdin peptide (Paneth cells) NM_007844 21.60 23.23

LOC620017 PREDICTED: similar to Ig kappa chain V-V region L7 precursor XM_357633 21.44 22.31

FC, fold-change; diet, iron-supplemented diet.
doi:10.1371/journal.pone.0007212.t007
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Dataset S2 List of genes differentially expressed in the liver of

mice fed an iron-supplemented diet

Found at: doi:10.1371/journal.pone.0007212.s002 (0.05 MB

XLS)

Dataset S3 Genes whose expression was altered in the

duodenum of Hfe knockout mice

Found at: doi:10.1371/journal.pone.0007212.s003 (0.05 MB

XLS)

Dataset S4 Genes whose expression was affected in the

duodenum of mice fed an iron-supplemented diet

Found at: doi:10.1371/journal.pone.0007212.s004 (0.04 MB

XLS)

Dataset S5 Sequences of the primers used in the Q-RT-PCR

experiments performed in this study

Found at: doi:10.1371/journal.pone.0007212.s005 (0.06 MB

DOC)
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