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Abstract

Squamous cell carcinoma (SCC) of the lung kills over 350,000 people annually worldwide, and is the main lung cancer
histotype with no targeted treatments. High-coverage whole-genome sequencing of the other main subtypes, small-cell
and adenocarcinoma, gave insights into carcinogenic mechanisms and disease etiology. The genomic complexity within the
lung SCC subtype, as revealed by The Cancer Genome Atlas, means this subtype is likely to benefit from a more integrated
approach in which the transcriptional consequences of somatic mutations are simultaneously inspected. Here we present
such an approach: the integrated analysis of deep sequencing data from both the whole genome and whole transcriptome
(coding and non-coding) of LUDLU-1, a SCC lung cell line. Our results show that LUDLU-1 lacks the mutational signature that
has been previously associated with tobacco exposure in other lung cancer subtypes, and suggests that DNA-repair
efficiency is adversely affected; LUDLU-1 contains somatic mutations in TP53 and BRCA2, allelic imbalance in the expression
of two cancer-associated BRCA1 germline polymorphisms and reduced transcription of a potentially endogenous PARP2
inhibitor. Functional assays were performed and compared with a control lung cancer cell line. LUDLU-1 did not exhibit
radiosensitisation or an increase in sensitivity to PARP inhibitors. However, LUDLU-1 did exhibit small but significant
differences with respect to cisplatin sensitivity. Our research shows how integrated analyses of high-throughput data can
generate hypotheses to be tested in the lab.

Citation: Stead LF, Egan P, Devery A, Conway C, Daly C, et al. (2013) An Integrated Inspection of the Somatic Mutations in a Lung Squamous Cell Carcinoma
Using Next-Generation Sequencing. PLoS ONE 8(11): e78823. doi:10.1371/journal.pone.0078823

Editor: Sumitra Deb, Virginia Commonwealth University, United States of America

Received July 17, 2013; Accepted September 16, 2013; Published November 11, 2013

Copyright: � 2013 Stead et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Yorkshire Cancer Research, grant number L341PG to P.R. (http://yorkshirecancerresearch.org.uk), the Leeds Teaching
Hospitals Charitable Foundation, and the Betty Woolsey Bequest for Thoracic Research. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: p.rabbitts@leeds.ac.uk

Introduction

Lung cancer kills more people than colorectal, prostate and

breast cancer combined [1]. Squamous cell carcinoma (SCC)

constitutes 26% of all lung cancer [2], making it one of the main

histological subtypes besides small-cell and adenocarcinoma.

Karyotypes of lung SCCs have revealed some commonality in

the genomic landscape of these tumours, including distal

amplification of 3q [3] and a more focal amplification at 8p12

[4], but as yet these findings have not translated into the clinic.

SCC remains the most common lung cancer histotype for which

no genomically targeted therapy currently exists [5]. The lack of

such therapy prompted inclusion of the lung SCC subtype in The

Cancer Genome Atlas (TCGA) project, an international collab-

oration aimed at cataloguing cancer-driving genetic variation

within tumours using multiple high-throughput approaches. One

such approach was Next-Generation Sequencing (NGS), which

has been used to gain insights into disease development and

progression in several types of cancer, including both lung

adenocarcinoma and small-cell lung cancer (SCLC) [6,7]. The

results of TCGA study of SCC revealed marked genomic

complexity within lung SCC patient samples. However, path-

way-specific alterations, hoped to yield therapeutic targets, did

cluster by expression subtype, indicating the importance of

integrating transcriptomic information in order to understand

the phenotypic consequences of the plethora of genomic changes

[8]. To understand how a more detailed, integrated analysis may

aid inspection of lung SCC genomes, we deeply sequenced both

the genome and transcriptome of LUDLU-1: a lung SCC cell line

derived from a male patient whose smoking status is unknown. We

also sequenced appropriate controls: the genome of an EBV-

transformed lymphocyte cell from the same patient (cell line

AGLCL) and the transcriptome of a normal bronchial epithelial

cell line (LIMM-NBE1). To maximize our findings, we adopted an

RNA sequencing method that captured both coding and non-

coding RNA in a manner that retained information regarding the

strand of origin. We have previously catalogued the transcriptional

consequences of somatic structural variants in this cell line but

here we focus on point mutations, aiming to see whether the

mutational signature would give insight into disease etiology or

carcinogenic mechanism, as it has for other cancer subtypes

[6,9,10]. This type of in-depth characterisation of a given tumour
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can result in new hypotheses that can be tested using functional

assays.

Materials and Methods

Cell Lines
LUDLU-1 and AGLCL were cultured as we have indicated

previously [10]. LUDLU-1 was shown to be p63 positive and

TTF-1 negative (data not shown) confirming a squamous

carcinoma subtype. A549 was obtained from American Type

Culture Collection (ATCC; Manassas, USA) and cultured in

Advanced DMEM-F12 medium (Life Technologies, 1263-4010)

supplemented with 5% foetal bovine serum (Sigma, F7524), 2 mM

GlutaMAXTM (Life Technologies, 3505-0087) and 50 U/ml

penicillin and 50 mg/ml streptomycin (Life Technologies, 15070)

at 37uC with 7.5% CO2.

DNA/RNA Extraction, Sequencing and Alignment
This was performed as previously described in Stead et al. [10].

Briefly, Complete Genomics used their proprietary method to

sequence DNA that we extracted from the LUDLU-1 and

AGLCL cell lines. RNA, extracted from LUDLU-1 and LIMM-

NBE1, was sequenced by LGC Genomics on an Illumina HiSeq

2000 using 50 bp single end reads. Sequenced reads were aligned

to the human reference genome, build 37, except in the case of

miRNAs which were aligned to known miRNAs from build 36

using miRanalyzer [11]. All sequencing data have been submitted

to the NCBI sequencing read archive (SRA: http://www.ncbi.

nlm.nih.gov/sra) under accession numbers ERP001465 (LUDLU-

1 and LIMM-NBE1 RNA sequencing) and ERP001771 (LUDLU-

1 and AGLCL DNA sequencing).

Mutation Detection
Complete Genomics call and score genomic variants during

their local de novo assembly approach and output results into

variant files, two of which (i.e. the tumour sample and matched

normal) are compared, to identify somatic variants, using a tool

called calldiff that is included in their proprietary cgatools 1.5.0,

build 31, software suite. Somatic variants are each annotated with

a somatic score [12]. Structural variants were extracted from the

Junctions files, provided as part of the Complete Genomics

sequencing report. Somatic mutations have been submitted to

dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) under the handle

LIMM_YCR_PGG.

Mutation Validation
50 coding and 50 non-coding single somatic variants were

selected at random, and checked to ensure a normal distribution of

somatic scores had been captured. Primer design failed for four

but 96 underwent PCR and capillary sequencing, with seven

giving ambiguous results. A receiver operating characteristic

(ROC) curve was created using the validation results from the

remaining 89 variants (data not shown), enabling us to set the

somatic score threshold for single substitutions at 0.084, resulting

in an estimated 100% specificity and 84% sensitivity. Indel

validation was unsuccessful owing to ambiguous PCR/capilliary

sequencing read-outs so all variants of this type were included if

they had a somatic score .0. Somatic structural variants were

validated as described in Stead et al. [10].

Expression Analysis
Performed as described in Stead et al. [10]. Briefly, the number

of reads aligning to exons, annotated as per Ensembl 60 [13], were

counted and normalised by gene length and total number of

mapped reads, resulting in a per gene expression metric: Reads

Per Kilobase per million Mapped (RPKM). Reads that had

between two and five valid alignments were assigned a single

location using SEQEM [14].

Single Somatic Mutation Analysis
A subset of 5% (108,362) of the germline polymorphisms in

LUDLU-1 were selected, at random, for comparison with the

somatic variants. All single nucleotide substitutions were annotated

using a bespoke script that accessed Ensembl 60 via its Perl

application programming interface. Additional information on the

location of CpG islands was downloaded from the UCSC genome

browser and incorporated into our in-house code. Pathogenicity

scores were attained from MutPred [15]. Variable distributions or

count data were tested between samples, or variant type, using an

appropriate significance test (Wilcoxon and Chi-squared or

Fisher’s Exact respectively) at the 5% level but corrected for

multiple testing using the Bonferonni correction.

Allele counts for heterozygous variants were attained for both

the genome and the transcriptome using SNVmix2 [16] (once

Complete Genomics data had been converted using the cg2bam

tools provided in the cgatools package). Allelic imbalance was

tested only in those genes deemed as expressed in the tumour or

normal and we required that a 10% change in absolute allele

frequency been seen for either the DNA or RNA data, as per Tuch

et al., 2010 [17]. Ratios were tested using Fisher’s exact test at a

false discovery threshold of 5%.

To assess transcription-coupled repair, we used Cufflinks [18] to

delineate transcripts within our LUDLU-1 RNAseq data, guided

by Ensembl 60 gene annotations. The output included the strand

each gene was located on. We recorded the number of mutations

in each annotated, expressed gene, and whether each was on the

transcribed or non-transcribed strand. We then calculated the rate

of mutations per at risk base in the gene footprint. Significance

(5% level with Bonferroni correction) and curve-fitting was

performed using a zero-inflated, negative binomial regression

model in R.

Drugs
Cisplatin was purchased from Sigma (P4394), dissolved in

dimethyl sulfoxide (DMSO) at 3.3 mM and stored at 220uC.

Proliferation Assays
A flask of subconfluent cells was trypsinised; recovered cells

were washed once with PBS and then seeded in culture medium at

a density of 1,000 to 4,000 cells per mL in 96 well plates. The

plates were incubated at 37uC with 7.5% CO2 overnight to allow

cells to adhere. Treated culture medium was prepared at a 2X

concentration and 100 ml was added to each well. The cells were

then treated with one of six concentrations of cisplatin (0. 3125,

0.625, 1.25, 2.5, 5, 10 mM) or the control (DMSO). The plates

were incubated for a further 5 days. At this point the cells were

stained with crystal violet, allowed to dry and 100 mL of 33%

glacial acetic acid was added. The absorbance was read at 590 nm

using the POLARstar OMEGA plate reader. IC50 values were

calculated using Calcusyn V2 software (Biosoft, Cambridge, UK).

Cell line sensitivity to cisplatin was compared by ANOVA using

SPSS Statistics v19 (IBM). Cisplatin was purchased from Sigma

(P4394), prepared at 3.3 mM in DMSO and stored at 220uC.

Clonogenic Survival Assay
The method was as described by Grenman et al [19]. In brief, a

flask of subconfluent cells were trypsinised, washed once with PBS

Sequencing of a Lung Squamous Cell Carcinoma
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and seeded in culture media at a starting density of 1,200 cells per

well in 96 well plates. A 1 in 10 serial dilution was made for A549

cells and for LUDLU-1, a 1 in 5 serial dilution was carried out.

The plates were incubated at 37uC with 7.5% CO2 for 2 hours

and then cells were exposed to 2, 4, 6 and 6 Grays of 137Cs

(10 Gy, 1.958 Gy/min) in a GSR-D gamma irradiator. Plates

were incubated for a further 7 to 14 days until colonies reached a

size of 32 cells or more. Plating efficiency (PE) was calculated as

described by Thilly et al [20] using Poisson statistics according to

the formula PE = -In (neg wells/total wells)/number of cells plated

per well. The fraction survival was expressed relative to the PE of

the un-irradiated control. Radiation survival curves were com-

pared by linear regression using SPSS Statistics v19 (IBM) as

previously described [21].

Results

We sequenced the LUDLU-1 genome to an average coverage of

61x (i.e. each base was sequenced, an average, 61 times), and the

matched lymphocyte to an average 55x. Copy number analysis

shows that the SCC cell line is largely tetraploid and shares several

features previously seen in lung SCC [10].

We identified 31,141 somatic single base substitutions (Supp.

Table A in File S2), on average 10 per megabase (Mb). This

exceeds the average mutation rate of 8.1 per Mb, ascertained from

the sequencing of 178 lung SCC exomes as part of TCGA project

in clinical samples [8]. A total of 181 somatic substitutions were

located within coding regions of LUDLU-1 compared to an

average of 360 in the series included in TCGA (Table 1). This

included the only somatic mutation in the tumour cell line that is

present in the Catalogue Of Somatic Mutations In Cancer

(COSMIC) of clinical tumours [22]: a non-synonymous variant in

TP53 (ID:10656). This somatic mutation causes Arg248Trp; this is

highly likely to inactivate the tumour-supressor function of p53, a

protein involved in DNA repair, by removing the ability of Arg248

to directly contact the DNA response element via the minor

groove [23]. No wild-type allele is present, as confirmed by the

transcriptome sequencing. This specific p53 variant has been

shown to be a gain-of-function mutation that promotes tumori-

genesis [24].

We discovered 9431 somatic structural variants ranging from

.1 bp substitutions to chromosomal translocations (Table 2 and

Supp. Tables B and C in File S2). Included in the list of genes

affected by structural variants is BRCA2, a tumour suppressor gene

encoding a protein that repairs double-stranded (ds)DNA breaks

by homologous recombination [25]. Therein a heterozygous single

base deletion causes a frameshift anticipated to result in a

dysfunctional protein product.

LUDLU-1 Lacks the Mutational Signature Previously
Associated with Tobacco Exposure

The smoking status of the LUDLU-1 donor is unknown.

Previously, the smoking status of a small cell lung cancer cell line

donor was assigned via the presence of a mutational signature of

tobacco exposure [6]. This signature consists of an excess of G.T

mutations, where G.T denotes a GC base pair being mutated to a

TA base pair, and has been observed in both SCLC (34%

prevalence) and lung adenocarcinoma (46% prevalence) whole

genome sequencing data [6,7,26–29]. In contrast, the most

common variants in LUDLU-1 were A.G (26%), and G.A

transitions (24%). This implies that the LUDLU-1 somatic profile

is not consistent with a smoking-based etiology for this lung SCC.

However, to date, the smoking-associated somatic signature has

not been validated on a genome-wide basis for lung SCC. We,

therefore, downloaded data on 123,778 somatic mutations

identified as part of TCGA study into clinical lung SCCs [8].

These somatic mutations originated from 163 current or previous

smokers, and 7 lifelong never-smokers. Surprisingly, we found that

G.T transversions were the most prevalent mutation subtype in

Table 1. The consequence of LUDLU-1 somatic substitutions.

Consequence/Type Variants Transcripts affected Genes affected

STOP_LOST 1 2 1

STOP_GAINED 3 4 3

UPSTREAM (59+5 kb) 2100 3090 1749

DOWNSTREAM (39+5 kb) 2202 3140 1822

SYNONYMOUS_CODING 52 149 44

NON_SYNONYMOUS_CODING 106 267 89

SPLICE_SITE 1–3 bps into an exon or 3–8 bps into an intron 19 48 21

ESSENTIAL_SPLICE_SITE First or last 2 bps of an intron 6 29 6

39UTR 137 229 126

59UTR 47 70 43

INTRONIC 11021 15822 4109

INTERGENIC 17642 NA NA

doi:10.1371/journal.pone.0078823.t001

Table 2. Structural somatic variants identified in LUDLU-1.

Somatic Variant Total Within/affecting genes

Substitutions (.1 bp) 584 41

Insertions 4054 57

Deletions ,= 100 bp 2622 32

Deletions .100 bp 66 42

Inversions 47 18

Duplications 29 18

Translocations 29 15

doi:10.1371/journal.pone.0078823.t002
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both groups, with a significantly higher proportion in the never-

smokers compared to the smokers (35% versus 33%: x2,

p = 2.461025). We compared the distribution of G.T mutation

proportions across the two groups and found no significant

difference (Wilcoxon, p = 0.93). Tobacco carcinogens cause

CpG.T transversions more frequently at methylated CpG

dinucelotide [30] resulting in an expected increase in somatic

CpG.T mutations outside of CpG islands, where 65% of CpGs are

methylated compared to 15% within islands, in smokers. In

contrast to this, the same proportion of somatic CpG.Ts were

observed inside and outside of CpG islands in both the smoker and

never-smoker groups from TCGA lung SCC data (Wilcoxon,

p = 0.86). Hence, the mutational profile of tobacco exposure is a)

lacking in LUDLU-1, and b) not seen exclusively in lung SCC

tumours from smokers, according to TCGA data. We examine

these results further in our discussion section.

Sequencing the Transcriptome of a Lung SCC
We sequenced total RNA, after ribosomal RNA depletion, using

a strand-specific method that enabled us to quantify both protein-

coding and non-coding (nc)RNAs. To investigate tumour-specific

expression patterns we first required a baseline of transcription in

the appropriate non-diseased tissue, so we also sequenced a

normal bronchial epithelial cell line that we established in-house

and named LIMM-NBE1. A total of 600.4 million LUDLU-1

RNA reads aligned to the human reference genome; of these

87.5% (525.4 million) aligned uniquely, and an additional 168,546

small RNA (,20 bp) reads aligned to known miRNAs. Results

were similar for LIMM-NBE1, where 700.8 million RNA reads

aligned, of which 88.2% (618 million) did so uniquely, likewise a

further 184,740 small RNA reads aligned to known miRNAs. To

verify that the transcriptional profile of LIMM-NBE1 was

characteristic of a bronchial epithelial cell, we inspected 27 genes

listed on the Tissue Specific Gene expression Database (TiSGeD)

as being highly bronchial epithelial cell-specific. There were

sequenced RNA reads supporting each of these 27 genes in

LIMM-NBE1; 24 (89%) exceeded the 10 RPKM threshold we

used to denote expression and all but one of those exhibited above

median expression in LIMM-NBE1 compared with all non-zero

RPKM protein-coding genes [31]. This indicates that LIMM-

NBE1 has a characteristic transcriptional profile for a bronchial

epithelial cell. We performed the same analysis in LUDLU-1 and

found that 23 of the 27 genes (85%) exceeded the RPKM

threshold for expression and all but two of those exhibited above

median expression in LUDLU-1 compared with all non-zero

RPKM protein-coding genes. This indicates that LUDLU-1 did,

indeed, originate in the lung.

Additional Evidence of DNA Repair Deficiency
We used our RNA data to quantify expression in Reads Per

Kilobase per million Mapped reads (RPKM), allowing us to

inspect the relative abundance of each functional transcript class

and to identify the transcripts, within each class, that exhibited the

largest fold change in expression between the normal and the

tumour (Supp. Table D in File S2). Interestingly the largest fold

change was not for a protein-coding gene but an antisense gene

called RPPH1.1 (Ensembl ID ENSG00000259001) that appears

not to be expressed in the tumour but exhibits an RPKM of

13,194 in the bronchial epithelium; this gene is antisense to

PARP2. Expression of PARP2 itself shows only modest differences

between our samples (62 RPKM in LUDLU-1 and 98 in the

normal) but antisense transcripts can regulate their mRNA

counterparts post-transcriptionally, most often, though not exclu-

sively, resulting in decreased protein levels [32,33]. Consequently,

reduced antisense transcription may lead to increased levels of

protein product of PARP2, a DNA repair gene, in LUDLU-1.

We proceeded to integrate our datasets to investigate the

incidence of allelic imbalance (AI), the unequal expression of two

alleles at a heterozygous locus. AI is commonly observed in cancer

as a result of genomic alterations such as copy number changes

and loss of heterozygosity. We wished to investigate the situation

when one allele is preferentially expressed owing to other

mechanisms such as epigenetic changes affecting, or mutations

within the regulatory regions of, one allele only. We were able to

do this by identifying those heterozygous variants within our

tumour cell line that had a significantly different allelic ratio in the

RNA compared to the DNA sequencing data, acknowledging that

this will indicate the presence, but not the cause, of the

phenomenon. Of the 180,985 expressed heterozygous variants in

LUDLU-1, 2.1% (3792) exhibit significant AI, affecting 1949

genes. Significantly more cancer genes [34,35] contained one or

more alleles that exhibit AI than would be expected by chance (x2,

p = 2.861025), implying a role for this type of regulation in

carcinogenesis. In total, 143 of the variants with AI are non-

synonymous, with one being somatic and three being germline but

located within cancer genes, as summarised in Table 3. We note

that two non-synonymous, germline BRCA1 variants in LUDLU-1

have imbalanced expression in favour of the mutant allele. In both

cases the mutant allele is a genetic modifier of breast cancer risk

[36–38], indicating that the resulting protein is altered in a manner

that, whilst not able to cause disease in isolation, creates a

predisposition. BRCA2, like BRCA1 is a gene that has been causally

linked to both breast and ovarian cancer. Both genes encode

proteins that are involved in the repair of dsDNA breaks.

Our findings highlighted several alterations in DNA-repair

genes, leading us to further inspect the imprint of expression-

linked repair in our data.

Table 3. LUDLU-1 non-synonymous variants that are either somatic (first row) or germline but in cancer-associated genes (last 3
rows).

Variant Genomic
Coordinate Gene dbSNP ID

Base
variant

Amino acid
variant

DNA ref:var
allelic ratio

RNA ref:var
allelic ratio

Chr7:99056827 ATP5J2 N/A (somatic) T.C T61A 32:24 992:19

Chr17:41244000 BRCA1 rs799917 T.C K1183R 18:12 9:33

Chr17:41244936 BRCA1 rs16942 G.A P871Q 31:25 7:29

Chr3:158320703 MLF1 rs77911695 C.A P201T 36:10 2015:155

doi:10.1371/journal.pone.0078823.t003
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Genome-wide, Transcription-coupled DNA Repair
Transcription-coupled repair (TCR) in a SCLC was recently

investigated by ascertaining the expression levels of genes

harbouring somatic mutations using microarrays, and annotating

expressed variants as being on the transcribed or non-transcribed

strand, according to Ensembl gene annotations [6]. We wished to

expand this analysis by looking at genome-wide expression,

including that of novel transcripts assembled directly from our

RNAseq data. Fig. 1A shows that, in accordance with previous

findings, we observed more purine mutations on the non-

transcribed than the transcribed strand; we found, however, the

reverse to be true for G.A transitions. This indicates that TCR is

in effect but, in the latter case, acting on the pyrimidine i.e. repair

of C.T on the transcribed strand. We proceeded to investigate

how gene mutation rates i.e. the number of mutations per at-risk

base within a gene, alter with expression for each specific

mutation. Here, our results different greatly from previous findings

(Fig. 1B). We observed that mutation rates significantly change

with gene expression for all types of variant, but that for A.T and

A.C on the transcribed strand, and A.G regardless of strand.

This relationship is positively correlated: an increased mutation

rate is observed at higher expression levels. As the SCLC cell line

analysis used Affymetrix U133A arrays, containing probes for

14,500 well-characterised human genes, 98% of which are

protein-coding [6], we repeated our analysis using only protein-

coding genes (Supp. Figure A in File S1). The resulting trends

appear, overall, more similar to those that were previously seen

but we did still observe an increase in mutation rate with

increasing gene expression for C.T on the transcribed strand (i.e.

G.A on the non-transcribed strand). These results imply that

DNA repair mechanisms act differently between protein-coding

and non-coding genes and suggest a potential reduction in the

efficiency of TCR in LUDLU-1.

Functional Assays
To examine the DNA-repair functionality of LUDLU1 we

determined the cell-line’s sensitivity to cisplatin and radiation

relative to another non-small cell lung cancer (NSCLC) cell line,

A549, which is diploid for the BRCA1 locus and wild type for TP53

[39]. In a 5-day proliferation assay LUDLU-1 has a 1.5 fold lower

IC50 for cisplatin than A549 (1.660.4 and 2.560.8 mM,

respectively) (Fig. 2A.). Whilst this is only a small change, the

proliferation dose response was significantly different (p,0.01,

ANOVA) between the cell lines. Pairwise comparisons of cell lines

showed significant differences (p,0.001) between proliferation at

doses of 0.625, 1.25 and 2.5 mM.

Clonogenic survival assays (Fig. 2B) showed a statistically

significant difference in the radiation survival curves of the two cell

lines (p = 0.011), although the difference was modest (90% cell

killing at 4.8 Gy and 6.1 Gy for A549 and LUDLU-1, respec-

tively) and was only clearly apparent at doses above 4 Gy. We also

tested the effect of PARP inhibitors but found no alteration in

sensitivity (IC50.10 mM, data not shown).

Discussion

Tobacco smoke is the main risk factor associated with lung

cancer, accounting for 70–75% of worldwide incidence [1].

However, incidence of lung cancer diagnoses in never-smokers is

increasing in several countries [40,41]. If classified as a separate

sub-type, lung cancer in never-smokers would be ranked as the 7th

biggest cancer killer worldwide [42]. Research indicating that lung

cancer in never-smokers constitutes a biologically distinct form of

the disease has led to increased interest in this subpopulation as an

understanding of its etiology may provide therapeutic targets, as is

the case in adenocarcinoma [42–45]. We attempted to use a

previously identified mutational signature of tobacco exposure

[6,26] to assign the smoking status of the lung SCC cell line

originator patient. Whilst we found that LUDLU-1 lacked this

signature, to our surprise we found that the somatic mutational

profiles from never-smokers within TCGA data did not. This

raises three possibilities. Firstly, the seven never-smokers in TCGA

dataset have not been accurately annotated with regards their

smoking status. Alternatively, the signature (i.e. G.T transver-

sions as the predominating somatic mutation with altered

proportions inside and outside of CpG islands) is not a

consequence of exposure to tobacco carcinogens in lung cancers.

Or, finally, there are biological mechanisms unique to this SCC

line, and perhaps SCC clinically, that underlie the ‘‘signature’’

being associated with something other than tobacco exposure. The

Figure 1. Expressed LUDLU-1 somatic mutations according to
strand. a) The number of expressed mutations that appear on the
transcribed strand (TS) or non-transcribed strand (NTS); b) The
relationship between gene expression and mutation rate (mutations
per Mb of at-risk bases in the gene footprint) for each mutation
according to strand.
doi:10.1371/journal.pone.0078823.g001

Sequencing of a Lung Squamous Cell Carcinoma

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e78823



smoking status of patients from whom TCGA samples were

acquired was self-reported; there is evidence of misclassification

with such annotation [46,47]. However, in order to ascertain how

our findings affect the validity of a smoking-associated somatic

mutational signature will require larger cohorts in which somatic

mutations have been identified. We are, thus, unable to conclude

the smoking status of the originator of the LUDLU-1 cell line, but

cannot rule out an alternative etiology for this cancer. Whilst this

manuscript was under review, a paper was published that

describes signatures of mutational processes in cancer [48]. We

compared the LUDLU-1 profile to those within that publication

and found significant similarity with signature 5 (Supp. Figure B in

File S1). Signature 5 was found in 93% of .150 lung squamous

cell tumours tested, but often alongside signature 4, which

significantly correlates with tobacco exposure. The etiology of

signature 5 is unclear; there was some association with tobacco

exposure but it was also prevalent in 7 other non smoking-

associated cancers. The dominance of signature 5 in the LUDLU-

1 somatic mutation profile (Supp. Figure B in File S1) suggests that

it may be a good cell line model for testing the potential causes and

consequences of this mutational profile of unclear origin.

Our approach was to perform an integrated analysis of the

genome and transcriptome, as this can offer greater insight into

pathogenic mechanisms than independent analysis of either

dataset [49,50]. Several findings implied that the LUDLU-1

genome has developed DNA-repair deficiency via a variety of

mechanisms. A somatic substitution in LUDLU-1 is likely to lead

to p53 inactivation. Knocking out Trp53, the ortholog in mice,

does not directly cause cancer but increases the likelihood of

spontaneous tumour formation [51] owing to defective DNA

repair or apoptosis. A somatic deletion in LUDLU-1 is suspected

to deactivate one copy of BRCA2. Being heterozygous, this

deletion is unlikely to have caused the cancer in isolation, but

could contribute to the formation of a defective DNA repair

background. Similarly, allelic imbalance in favour of mutant

BRCA1 containing 2 germline variants associated with cancer risk

could contribute to a DNA-repair deficient phenotype. Finally, we

found reduced expression of a potential endogenous PARP2

inhibitor. Genomic abnormalities resulting in loss of DNA repair

function are associated with the development of several tumours,

i.e. loss of BRCA1 or BRCA2 genes in hereditary ovarian or breast

cancer [52–54], or defects in the DNA mismatch repair pathway

in hereditary non-polyposis colorectal cancer [55]. In these

tumours an alternative pathway(s), which may not be as effective,

compensates the defect in an individual repair gene/pathway. This

vulnerability makes these cancers more sensitive to therapies that

inhibit DNA repair. To test if this was the case in LUDLU-1, we

performed functional assays to assess cisplatin, PARP-inhibitor

and radiation sensitivity, compared to a control lung cancer cell

line. Whilst no changes were seen in the latter two, a modest but

significant increase in cisplatin sensitivity was observed. Platinum-

based chemotherapy regimes are a mainstay in the treatment of

non-small cell lung cancer. However, treatment failure is often

observed and is believed to be, in part, because of the upregulation

of DNA repair pathways, which remove adducts caused by the

platinum-based treatment [56,57]. Tumour cells with BRCA loss

have been reported to be ten to one hundred times more sensitive

to cisplatin, PARP inhibitors and radiation [58]. The lack of radio-

sensitivity and PARP insensitivity in LUDLU-1 cells suggest that

the remaining wild-type copies of BRCA genes in this cell line

provide sufficient functionality, or that alternative pathways can

fully compensate for the heterozygous loss of functional BRCA1

and increase in a single BRCA2 allele, in response to these specific

treatments. However, a deficiency in DNA-repair is apparent, and

incompletely compensated to increase cisplatin-induced cell

killing. This indicates that LUDLU-1 provides a good model for

further experimentation into DNA repair phenotypes in the lung

SCC subtype, the results of which can be evaluated in light of the

DNA and RNA sequencing data provided.

The value of whole genome sequencing has been questioned

when exon sequencing, possible with much larger sample

numbers, can deliver tumour markers and drug targets [59].

However, our in-depth cross-platform analysis of a single sample

has allowed us to speculate on underlying mechanisms of

tumourigenesis and predict that hyper-mutation was caused by

DNA-repair deficiencies.

Supporting Information

File S1 Supplemental Figure A. Expressed LUDLU-1
somatic mutations within protein-coding genes accord-
ing to strand. a) The number of expressed mutations that

appear on the transcribed strand (TS) or non-transcribed strand

(NTS); b) The relationship between protein- coding gene

expression and mutation rate (mutations per Mb of at-risk bases

in the gene footprint) for each mutation according to strand.

Supplemental Figure B. Mutational profiles for A)
LUDLU_1, and B) Somatic Mutation Signature 5 as
assigned in Alexandrov et al, Nature 2013 ‘‘Signatures of

Figure 2. Molecular functionality testing of LUDLU-1. a) The
effect of increasing dose of cisplatin on the cell proliferation of LUDLU-1
and A549; b) The survival fraction of LUDLU-1 and A549 when
irradiated. Proliferation data is representative of duplicate independent
experiments, with significance p values of less than 0.001. Radiation
sensitivity data is representative of triplicate independent experiments.
doi:10.1371/journal.pone.0078823.g002
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mutational processes in human cancer.’’. The 6 main

substitution types are shown in different colours, broken down by

sequence context i.e. one base either side of the mutated base. This

shows how consistent the LUDLU-1 mutational profile is with

signature 5. The lower image is reprinted by permission from

Macmillan Publishers Ltd: Nature, copyright 2013.

(PDF)

File S2 Supplemental Table A. Somatic point mutations in

LUDLU-1. Supplemental Table B. Somatic insertions (ins),

deletions (del) and substitutions (sub) in LUDLU-1 that range from

2–99 bp. Supplemental Table C. Somatic structural variations

in LUDLU-1including deletions .99 bp. Supplemental Table
D. Expression levels in RPKM (Reads Per Kilobase per Million

reads mapped) for the top 10 genes per functional transcript class

that showed the largest increase or decrease between normal and

tumour in terms of fold change.

(XLSX)
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