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The generation and differentiation of B lymphocytes (B cells) is a flexible process with many
critical regulatory factors. Previous studies indicated that non-coding RNAs play multiple
roles in the development of lymphocytes. However, little has been known about the
circular RNA (circRNA) profiles and their competing endogenous RNA (ceRNA) networks
in B-cell development and differentiation. Here, four B-cell subsets were purified from
single-cell suspensions of mouse bone marrow. Then RNA sequencing (RNA-Seq) was
used to display expression profiles of circRNAs, miRNAs and mRNAs during B-cell
differentiation. 175, 203, 219 and 207 circRNAs were specifically expressed in pro-B cells,
pre-B cells, immature B cells and mature B cells, respectively. The circRNA-associated
ceRNA networks constructed in two sequential stages of B-cell differentiation revealed the
potential mechanism of circRNAs in these processes. This study is the first to explore
circRNA profiles and circRNA-miRNA-mRNA networks in different B-cell developmental
stages of mouse bone marrow, which contribute to further research on their mechanism in
B-cell development and differentiation.

Keywords: circRNA, ceRNA network, B-lymphocyte development, B-lymphocyte differentiation, RNA-seq
INTRODUCTION

B lymphocytes (B cells) were defined as a group of lymphocytes that express clonally diverse cell-
surface immunoglobulin receptors (1), which were discovered in the 1960s (2, 3). Mouse and human
lymphocytes are generated from pluripotent hematopoietic stem cells (HSCs) in the fetal liver and
adult bone marrow (BM) (4). Nevertheless, B cells develop in the bone marrow, while T
lymphocytes (T cells) are formed in the thymus. The B cell receptor (BCR) is a membrane
immunoglobulin (mIg), which is essential for B cell development and survival (5). Under the
recombinase activity of Rag1/Rag2 (recombination activating gene, RAG) endonuclease, the BCR
was formed through the rearrangements of both V, D, J gene segments (in the H chain locus) and V,
J gene segments (in the L chain locus) in the Ig gene (6, 7). As shown in Figure 1A, according to the
rearrangement of Ig genes and expression of cell surface markers, the development of B cells in
mouse bone marrow can be defined into four stages: pro-B cells, pre-B cells, immature B cells and
org March 2022 | Volume 13 | Article 8129241
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mature B cells (8). The pro-B cells come from the hematopoietic-
cell lineages. After the m-heavy chain was formed through the
rearrangement of V-D-J gene, pre-B-cell receptor (pre-BCR)
expressing pre-B cells were derived from pro-B cells. After the
light chain was formed through the rearrangement of V-J gene,
pre-B cells switched to immature B cells, which expressed
membrane-bound IgM (mIgM) of the B cell receptor complex.
The immature B cells migrate from the bone marrow to the
spleen and then differentiate into mature follicular (FO) B cells or
marginal zone (MZ) B cells (8–10).

Non-coding RNAs (ncRNAs) include long non-coding RNAs
(lncRNAs), microRNAs (miRNAs) and circular RNAs
(circRNAs). The biological functions of these ncRNAs have
been recognized in the past decades. MiRNAs are a type of
about 22-nucleotide-long and single-stranded RNA molecules,
which control various biological processes. MiRNAs could
inhibit the translation of the messenger RNAs (mRNAs)
through interacting with their 3’-untranslated regions (UTR)
Frontiers in Immunology | www.frontiersin.org 2
(11). Unlike linear non-coding RNAs, circRNAs form covalently
closed continuous loop structures without 3’-poly (A) and 5’-cap.
CircRNAs were abundant, highly stable and conserved in
animals and humans (12). The spatiotemporally specific
expression patterns of circRNAs suggest their potential
functions in physiological processes and pathobiology (13, 14).
An increasing number of studies have revealed that circRNAs
play significant roles in carcinogenesis (15), immune disorders
(16), cardiovascular diseases (17) and neurological disorders
(18). Endogenous circRNAs are involved in gene regulation by
affecting the splicing of their linear mRNA counterparts,
regulating transcription of their parental genes, interacting
with proteins and being translated into polypeptides (13).
Besides the above functions, they also act as miRNA sponges
and regulate miRNA-targeted gene expression (19). For example,
Cdr1as (as known as ciRS-7) contains over 70 binding sites for
miR-7 (19), which may regulate the expression of miR-7-targeted
genes in tumors (20, 21) and neuropsychiatric disorders (22).
B

A

FIGURE 1 | B-cell development stages and cell sorting strategies. (A) The broad outline of B-cell development stages in mice and humans. Solid arrows indicate
the progression of B-cell development. Dashed line indicates recirculation of follicular B cells back to the bone marrow. (B) The FACS sorting strategies of B cells in
mouse bone marrow. These cell populations were defined as pro-B cells (Pro, B220+IgM-CD43+), pre-B cells (Pre, B220+IgM-CD43-), immature B cells (Immature,
B220+IgM+CD43-) and mature B cells (Mature, B220hiIgM+CD43-).
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These circRNAs were considered as competitive endogenous
RNAs (ceRNAs) for these mRNAs. Based on the ceRNA
hypothesis, the circRNA-miRNA-mRNA networks may play
crucial roles in biological pathways (23).

In the past few years, the significant roles of lncRNAs and
miRNAs in B-lymphocyte development have been elucidated
(24, 25). BCALM, a B cell-specific lncRNA, regulated B-cell
differentiation through modulating BCR-mediated calcium
signaling (26). Meanwhile, microRNAs have been identified to
be crucial for regulating BCR signaling (27). The miR-29 family
had been proven to regulate B-cell terminal differentiation and
survival (28), and miR-29c could regulate Rag1 expression and
modulate V(D)J recombination during B cell development (29).
Besides, miR-191 has been identified to modulate B-cell
development via targeting transcription factors E2A, Foxp1,
and Egr1 (30). However, the roles of circRNAs in B-
lymphocyte development have remained unclear.

To gain further insight into the molecular events associated
with B-cell development and differentiation, high-throughput
sequencing and integrated analysis of whole-transcriptome were
used to investigate the characteristic expression of circRNAs,
miRNAs and mRNAs during B-cell maturation. Furthermore,
circRNA-miRNA-mRNA networks were established to explore
their regulatory roles in B-cell development. This study is the
first exploration of circRNA profiles and circRNA-miRNA-
mRNA networks of B-cell development in mouse bone
marrow, which is valuable for future studies of the mechanism
of ncRNAs in B-cell development and differentiation.
MATERIAL AND METHOD

Mice
All animal experiments were performed with female C57BL/6
mice aged 8-10 weeks, which were purchased from Beijing HFK
Bioscience CO.LTD. The mice were kept in a specific-pathogen-
free (SPF) environment and provided free access to a standard
diet until they met age requirements. Each pool of samples was a
mixture of cells from three mice. All procedures were approved
by the Animal Use and Care Committee of Shenzhen Peking
University - The Hong Kong University of Science and
Technology Medical Center (SPHMC) (protocol number 2011-
004). Efforts were made to minimize suffering and the number of
animals used.

FACS Sorting of B Cell
Single-cell suspensions of mouse bone marrow were prepared in
PBS with 2% FBS. The following reagents were used for cell staining:
B220-FTIC (Biolegend, 103206), IgM-APC (Biolegend, 406509),
CD43-PE-Cy7 (Biolegend, 143209) and 7-AAD (Biolegend,
420404). B-cell stages in bone marrow were defined with the
following gating strategies: pro-B cells (B220+IgM-CD43+), pre-B
cells (B220+IgM-CD43-), immature B cells (B220+IgM+CD43-)
and mature B cells (B220hiIgM+CD43-). In all cases, cells were
gated on live cells (negative for dead cell stain, 7-AAD) and were
sorted on FACSAriaIII (BD). Data were analyzed with the BD FCS
Diva v8.0.1 software shown in Figure 1B.
Frontiers in Immunology | www.frontiersin.org 3
RNA Sequencing
RNA extraction and qualification, library preparation,
sequencing, quality control, read mapping to reference genome
and expression analysis was shown in Supplementary Methods.
Quantitative RT-PCR Validation of
Selected Genes
Flow-cytometry-sorted B-cells were used for RNA extraction.
cDNA was synthesized from total RNA by random primer/miR-
specific RT primers using a Reverse Transcription System
(Promega). Quantitative RT-PCR was performed in triplicate
in 96-well plates using a qPCR machine (LC480, Roche) and
SYBR Green I Master mixture (4887352001, Roche) for detection
of amplification products. The following thermocycling protocol
was used: initial denaturation at 95°C for 10 min, followed by 40
amplification cycles of 95°C for 15 s and 60°C for 1 min, and a
final cycle at 25°C for 15 s. Relative quantification of RNA
expression was performed using the comparative cycle method
to obtain the following ratio: gene of interest/Gapdh or U6.
Relative quantification of gene expression levels was performed
using the 2-DDCt method.
Analysis and Construction of
ceRNA Networks
The circRNAs, miRNAs and mRNAs with differential expression
during distinct B-cell developmental stages were further analyzed
for ceRNA networks. CircRNAs were blasted against circBase for
annotation. Some of them cannot be annotated, which were
defined as novel circRNAs. The relationship between miRNAs
and circRNAs annotated in circBase can be predicted by Starbase
(version 2.0). Three software including TargetScan (version 7.0),
miRanda (version 2.0) and miReap were used to predict targets
of novel circRNAs for animal samples. Then, miRTarBase
(version 6.1) was used to predict mRNAs targeted by miRNAs
sponge. Eventually, based on the ceRNA hypothesis and data
described above, circRNA-miRNA-mRNA networks were
constructed and visually displayed with Cytoscape-software
(version 3.5.0).
KEGG Pathway and GO Annotations
Analysis
The ceRNA-associated target mRNAs and the parental genes of
stage-specific circRNAs were analyzed to further investigate their
biological functions and pathways through Gene Ontology (GO)
functional annotation and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis with the clusterProfiler R
package. GO terms and KEGG pathways with corrected p values <
0.05 were considered significantly enriched.
Graphs and Statistical Analyses
All statistical analyses were performed using GraphPad Prism
8.00 software (GraphPad Software, La Jolla, CA, USA). Two
normally distributed groups were compared using t-tests; p <
0.05 was considered statistically significant.
March 2022 | Volume 13 | Article 812924
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RESULTS

Global Expression Profiles of circRNAs,
miRNAs and mRNAs in Distinct
Developmental Stages of B Cells
To characterize the temporal expression patterns of circRNAs,
miRNA and mRNA and their ceRNA networks during the
development of B lineages, fluorescence-activated cell sorting
(FACS) was used to purify four B-cell lineage populations from
the bone marrow of C57BL/6 mice (Figures 1A, B). These
populations included pro-B cells, pre-B cells, immature B cells
and mature B cells (Figures 1A, B). Finally, we identified all 1005
circRNAs, 1600 miRNAs, and 9758 mRNAs expressed in at least
one of four B-cell subsets. The heatmaps were constructed to
show the cluster analysis results of the circRNAs, miRNAs and
mRNAs (Figures 2A–C). 297, 349, 365, and 324 circRNAs were
expressed in the pro-B cells, pre-B cells, immature B cells and
mature B cells respectively.

To evaluate the differential expression profiles in different
stages, pairwise comparison of circRNAs, miRNAs and mRNAs
in any two B-cell development stages was performed with
Pearson’s correlation coefficient (Figures 2D–F). Contrary to
miRNAs and mRNAs, circRNAs were expressed in a stage-
specific and lineage-specific manner during B-cell differentiation.
We further identified 58%-64% of expressed circRNAs were stage-
specific, while only 5%-10% of miRNAs and 2%-14% of mRNAs
were stage-specific (Figures 2G–I). 175, 203, 219 and 207
circRNAs were specifically expressed in pro-B cells, pre-B cells,
immature B-cell, and mature B-cell stages, respectively (details in
Table S1). In summary, the highly stage-specific expression of the
circRNAs indicated their particular functions during B-cell
development and differentiation.

Parental Genes of Stage-Specific
circRNAs Were Enriched in the BCR
Signaling Pathway
To further investigate the roles of stage-specific circRNAs in B-
cell development (details in Table S1), the functional enrichment
analyses of their parental genes were performed. KEGG pathway
analysis revealed biology pathways significantly enriched in
different B-cell subpopulations. Phosphatidylinositol signaling
system and PD-L1 expression/checkpoint pathway were
enriched in pro-B cells. A total of 77 function pathways were
enriched in pre-B cells. The top terms included B-cell receptor
(BCR) signaling pathway, growth hormone synthesis, secretion
and action, chemokine signaling pathway, etc. In the immature B
cells, the BCR signaling pathway was the only pathway
significantly enriched. As for mature B cells, the T cell receptor
signaling pathway, BCR signaling pathway, and MAPK signaling
pathway were three top terms in 77 pathways. The top 5
pathways of each B-cell population are listed in Table 1, while
other pathways can be seen in Table S2. The BCR signaling
pathway was significantly enriched in multiple B-cell
subpopulations, which indicated that circRNAs might be
indirectly involved in the BCR pathway by regulating their
parental genes.
Frontiers in Immunology | www.frontiersin.org 4
Dynamic Transcriptional Profiles at
Distinct B-Cell Developmental Stages
Several circRNAs expression patterns were identified during B-cell
differentiation with the Short Time-series Expression Miner
(STEM). Six typical patterns were shown in Figure 3, while others
were shown in Supplementary Figure 1 (details in Table S3).
9 circRNAs exhibited continuously increased (Figure 3A), while 7
circRNAs continuously decreased (Figure 3B). On the other hand,
other circRNAs showed irregular expression patterns. For example,
23 circRNAs firstly decreased in the pre-B-cell stage, then increased
in the immature B-cell stage, and finally decreased in the mature B-
cell stage (marked as ‘down-up-down’ pattern) (Figure 3C), while
33 circRNAs exhibited ‘up-down-up’ patterns (Figure 3D). In
addition, the expression of 3 circRNAs slightly decreased in the
second stage, then increased andmaintained a high level in the latter
immature and mature B-cell stages (Figure 3E). The expression of
31 circRNAs firstly reached a relatively high level in the second
stage, but then continuously decreased in the latter immature and
mature B-cell stages (Figure 3F). Overall, these data suggested that
the expression pattern of circRNAs showed highly dynamic changes
during B-cell development.

Genes with a p-value of <0.05 and log2FC (fold change) ≥ 1 were
considered differentially expressed genes between two adjacent
developmental stages. Based on reads per million (RPM) values,
there were 35 upregulated circRNAs and 64 downregulated
circRNAs during the pro-B to pre-B cell transitional stage (marked
as Pre vs. Pro group, Figure 4A), 71 upregulated circRNAs and 75
downregulated circRNAs during the pre-B to immature B cell
transitional stage (marked as Immature vs. Pre group, Figure 4B),
as well as 63 upregulated circRNAs and 70 downregulated circRNAs
during the immature B tomature B cell transitional stage (marked as
Mature vs. Immature group Figure 4C).

Then, we used the TPMvalues and the FPKMs value to evaluate
the expression levels of miRNAs and mRNAs, respectively. A total
of 181 DEmiRNAs (39 upregulated and 142 downregulated) and
3822 DEmRNAs (589 upregulated and 3233 downregulated) were
identified during the pro-B to pre-B cell transitional stage
(Figures 4D, G). 109 DEmiRNAs (39 upregulated and 70
downregulated) and 2214 DEmRNAs (1051 upregulated and
1163 downregulated) were identified during the pre-B to
immature B cell transitional stage (Figures 4E, H). Moreover, 254
DEmiRNAs (128 upregulated and 126 downregulated) and 3271
DEmRNAs (2571 upregulated and 700 downregulated) were
identified during the immature B to mature B cell transitional
stage (Figures 4F, I).All detailed information is listed inTables S4–
S6. Consequently, it revealed a highly regulated and dynamic
transcriptome during B-cell differentiation.

Validation of RNA-Seq Profiles by
Using qPCR
We validated our RNA-seq data through qPCR performed using
a new cohort of animals. For each expression pattern (Pre vs.
Pro, Immature vs. Pre and Mature vs. Immature), we selected 10
circRNAs, 10 miRNAs, and 10 mRNAs genes (5 upregulated
genes, 5 downregulated genes). The expression analyses
performed on the selected genes yielded results that were
March 2022 | Volume 13 | Article 812924
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superimposable with the results obtained using RNA-seq
(Figures 5–7).

Construction of circRNA-Associated
ceRNA Networks at Distinct B-Cell
Developmental Stages
The competing endogenous RNAs (ceRNAs) hypothesis indicates
that ceRNA can regulate the expression of downstream genes by
competingwithmiRNA for the commonmiRNA response elements
Frontiers in Immunology | www.frontiersin.org 5
(MREs).RNA-Seqdatawereused to construct ceRNAnetworksofB-
cell lineage in mouse bone marrow. Here the differentially expressed
transcripts (circRNAs, miRNAs, and mRNAs) were divided into
three groups: (1) Pre/Pro (+) other (-): differential expression in Pre
vs. Pro group but not in other groups (Figure 8A); (2) Immature/Pre
(+)other (-): differential expression in Immaturevs.Pregroupbutnot
in other groups (Figure 8B); (3) Mature/Immature (+) other (-):
differential expression inMature vs. Immature groupbutnot in other
groups (Figure 8C).
CBA

FED

IHG

FIGURE 2 | Global gene expression and lineage-specific expression of circRNAs. (A–C) The cluster analysis on the expression of the circRNAs (A), miRNAs (B) and
mRNAs (C). Red and blue: upregulated expression and downregulated expression, respectively. (D–F) Heatmap analysis of differentially expressed circRNAs (D),
miRNAs (E) and mRNAs (F) in B-cell subsets. Correlation is evaluated by Pearson’s correlation coefficient of total transcripts expression levels. (G–I) Cell-specific
expression patterns of circRNAs (G), miRNAs (H) and mRNAs (I) among distinct B-cell development stages were presented as Venn diagrams; numbers around
perimeter indicated the frequency of genes.
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Finally, 5 circRNAs, 7 miRNAs and 12 mRNAs significantly
dysregulated in the Pre/Pro (+) other (-) group were selected to
construct ceRNA networks (Figures 8D, E and Table S7). In the
Immature/Pre (+) other (-) group, 2 DEcircRNAs and 6
DEmRNAs shared common MREs binding sites of 4
DEmiRNAs in this group (Figures 8G, H and Table S7). For
the Mature/Immature (+) other (-) group, a total of 46
DEcircRNAs, 69 DEmiRNAs and 231 DEmRNAs were selected
to construct the ceRNA networks (Figures 9A, B and Table S7).
Figures 8D, G, 9A show the downregulated circRNAs,
upregulated miRNAs and downregulated mRNAs, while
Figures 8E, H, 9B show upregulated circRNAs, downregulated
miRNAs and upregulated mRNAs in the ceRNA networks. It is
worth mentioning that both novel_circ_000317 and
novel_circ_000383 may bind mmu-miR-3058-5p and mmu-
miR-15a-3p, respectively, in the pro-B to pre-B cell transition
stage, which competes against their target Lair1 (Figure 8D). In
the immature B to mature B cell stages, novel_circ_000150 might
be miRNA sponge of mmu-miR-130b-5p, mmu-miR-148a-5p,
mmu-miR-18b-3p and mmu-miR-467e-5p, which competes
against their target complement receptor 2 (Cr2/CD21)
Frontiers in Immunology | www.frontiersin.org 6
(Figure 9B). Consequently, these RNA interactions might be
critical in B-cell development and differentiation.
Functional Enrichment Analyses of ceRNA
Networks Genes at Distinct B-Cell
Developmental Stages
GO and KEGG pathway enrichment analysis of the genes in the
above ceRNA networks were performed to investigate their
potential function at distinct B-cell developmental stages. The
genes in the ceRNA networks of the Pre/Pro (+) other (-) group
were associated with the biological process, including glucose
metabolism, G-protein-coupled receptor signaling pathway, B-
cell receptor signaling pathway, cAMP signaling pathway,
regulation of pluripotency in stem cells, cell growth, etc.
(Figure 8D, E). The GO terms were also found to be
significantly enriched in the Pre/Pro (+) other (-) group, which
contained biological process (BP), cellular component (CC), and
molecular function (MF) (Figure 8F). Biological regulation
(GO:0065007) and cell part (GO:0044464) were the top
two terms.
TABLE 1 | The top 5 KEGG pathways of stage-specific circRNAs enriched in four B-cell subpopulations.

Type Pathway ID Description GeneRatio P value geneID

pro-B cell mmu04070 Phosphatidylinositol signaling system 7/81 0.00511 Pik3r1/Dgkd/Pip5k1b/
Prkcb/Mtmr3/Inpp5d/
Cds1

mmu05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 6/81 0.01461 Pik3r1/Traf6/Tlr9/
Map3k3/Stat1/Jak1

pre-B cell mmu04662 B cell receptor signaling pathway 9/70 2.32E-06 Prkcb/Rac2/Sos2/Pik3r1/
Ppp3ca/Mapk1/Cd22/
Syk/Cd79a

mmu04935 Growth hormone synthesis, secretion and action 8/70 0.00032 Prkcb/Gnas/Crkl/
Sos2/Pik3r1/Mapk1/
Irs1/Jak2

mmu04062 Chemokine signaling pathway 9/70 0.00103 Prkcb/Rac2/Crkl/Sos2/
Pik3r1/Mapk1/Elmo1/
Pik3cg/Jak2

mmu04072 Phospholipase D signaling pathway 8/70 0.00103 Gnas/Dgkz/Sos2/
Pik3r1/Mapk1/Syk/
Pik3cg/Cyth1

mmu04650 Natural killer cell mediated cytotoxicity 7/70 0.00175 Prkcb/Rac2/Sos2/
Pik3r1/Ppp3ca/
Mapk1/Syk

immature B cell mmu04662 B cell receptor signaling pathway 6/95 0.04328 Blnk/Syk/Plcg2/
Cd22/Grb2/Prkcb

mature B cell mmu04660 T cell receptor signaling pathway 10/87 8.61E-06 Nfkb1/Akt2/Tec/Gsk3b/
Ptprc/Nfatc1/Fyn/Nfatc3/
Map2k1/Kras

mmu04662 B cell receptor signaling pathway 9/87 8.61E-06 Nfkb1/Akt2/Gsk3b/
Inpp5d/Nfatc1/Prkcb/
Nfatc3/Map2k1/Kras

mmu04010 MAPK signaling pathway 13/87 0.00035 Nfkb1/Rap1b/Akt2/
Rras2/Nfatc1/Prkcb/Fgfr2
/Nfatc3/Mknk2/Map2k1/
Nr4a1/Dusp10/Kras

mmu04022 cGMP-PKG signaling pathway 10/87 0.00036 Atp2a3/Atp2a2/Akt2/
Irs2/Nfatc1/Prkce/Nfatc/
Slc25a5/Map2k1/Vasp

mmu01521 EGFR tyrosine kinase inhibitor resistance 7/87 0.00048 Akt2/Gsk3b/Prkcb/Fgfr2/
Map2k1/Kras/Il6ra
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Thegenes in the ceRNAnetworks of the Immature/Pre (+) other
(-) group were associated with biological pathways, which included
metabolic, cell adhesion, specific neuronal connections, etc.
(Figures 8G, H). The top GO terms were biological adhesion
(GO:0022610), cell part (GO:0044464), and cell part
(GO:0044464) (Figure 8I).

More genes in the ceRNA networks of theMature/Immature (+)
other (-) groupwerediscovered than those inother groups.As shown
in Figure 9C, the top GO terms were cellular process (GO:0009987),
cell (GO:0005623), and binding (GO:0005488). Several cognition-
Frontiers in Immunology | www.frontiersin.org 7
associated terms were also shown, which includedmetabolic process
(GO:0008152), response to stimulus (GO:0050896), catalytic activity
(GO:0003824), and organelle (GO:0043226). All enriched GO terms
in the Mature/Immature (+) other (-) group were listed in Table S8.
The top20 ceRNAgene-relatedKEGGpathwayswere represented in
thisgroup(Figure9D).The significantly enrichedpathways included
hematopoietic cell lineage, TNF signaling pathway, RIG-I-like
receptor signaling pathway, pathways in cancer, Lysosome,
osteoclast differentiation, Th17 cell differentiation and so on
(details in Table S9).
BA

DC

FE

FIGURE 3 | The dynamic expression patterns of CircRNAs during B-cell differentiation. The y-axis represents reads per million (RPM) values at distinct B-cell
developmental stages, which were normalized to pro-B cells, while the polylines indicate expression variance trends during stage progressions (A–F).
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B CA

E FD

H IG

FIGURE 4 | Differentially expressed RNAs during B-cell differentiation stages. (A–C) Volcano plot of DEcircRNAs during B-cell differentiation stages. (A) Pre vs.
Pro, (B) Immature vs. Pre, (C) Mature vs. Immature. Red and green points represent increased and decreased expression of circRNAs, respectively. X-axis: log2
ratio of circRNA expression levels, y-axis: false-discovery rate values of circRNAs (-log10 transformed). Analysis of DE miRNAs (D–F) and DEmRNA (G–I) are
shown similarly.
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DISCUSSION

The development of B lymphocytes has been investigated
extensively over the past ten years. Some regulatory factors
were critical in this complex but flexible process (31, 32),
which included the E2A-EBF-PAX5 circuit (33, 34), IRF4 (35),
FOXO1, interleukin-7 (36), Ying Yang 1 (37) and so on.
Recently, it was reported that ncRNAs take part in regulating
lymphocytes development (38). Moreover, the expression profile
of circRNAs was provided in B-cell malignancies (39). However,
little has been known about the profile of circRNAs and
circRNA-associated ceRNA networks during the development
of B-cell lineages. Hence, FACS was used to purify four B-cell
subsets from single-cell suspensions of mouse bone marrow,
then RNA-seq and miRNA-seq were performed. Meanwhile, we
validated our RNA-seq data through qPCR. The highly stage-
specific expression patterns of circRNAs suggested their strict
regulation during B-cell differentiation, consistent with previous
studies about the expression patterns of lncRNAs and miRNAs
in these processes (40, 41). The highly unique miRNA profile of
B-lymphocytes in the germinal center revealed upregulation of
hsa-miR-125b downregulated the expression of key transcription
Frontiers in Immunology | www.frontiersin.org 9
factors, such as IRF4 and PRDM1/BLIMP1, which regulated B
cell terminal differentiation into plasma cells or memory B cells
(40). The stage-specific expression of lncRNAs in B-cell
subpopulations has also been identified (25). BCALM
(AC099524.1), a human B lymphocyte-specific lncRNA, took
part in B-cell activation and differentiation by regulating BCR-
stimulated Ca2+ signaling transduction proteins PLD1 and
AKAP9 (26). These studies suggested that stage-specific
expression of ncRNAs might play significant roles in the
development and differentiation of B lymphocytes. In addition,
the highly stage-specific expressed circRNAs could serve as the
potential markers, which were related to the special
characteristics of distinct B-cell subpopulations.

CircRNAs derived from back-splicing with retained introns
could interact with UI small nuclear ribonucleoproteins
(U1snRNPs), which enhanced transcription activities by
recruiting Pol II at the promoters of their parental genes (42).
The KEGG pathway analysis on the parental genes of stage-
specific circRNAs showed that the BCR signaling pathway was
the most attractive. BCR complex is composed of membrane-
bound immunoglobulin (mIg), co-receptors of Ig a and Ig b, and
auxiliary signal transduction elements, which are necessary for
C
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A

FIGURE 5 | Validation of circRNA expression by using qPCR. The identified differentially expressed transcripts circRNAs were divided into three groups: Pre vs. Pro,
Immature vs. Pre and Mature vs. Immature. (A, B) Pre vs. Pro, (C, D) Immature vs. Pre, (E, F) Mature vs. Immature. circRNA expression was quantified relative to
the gapdh expression level by using the comparative cycle threshold method. Columns represent means ± SEM; ****p < 0.0001, ***p < 0.001, **p < 0.01.
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the whole process of B-cell development and maturation (8, 9).
In our study, the BCR signaling pathway was enriched in pre-B
cells, consistent with the first existence of pre-BCR in pre-B cells.
Although the enriched analysis showed that circRNAs might
indirectly participate in the BCR signaling pathway through
regulating their parental genes, the specific BCR signaling
pathway involved in distinct cell stages were not exactly the
same. This is also consistent with their stage-specific expression
characteristics. For example, CD79a (Ig a) was expressed along
with m heavy chain as part of the pre-BCR, one of the parental
genes in the BCR signaling pathway specifically enriched in pre-
B cells (43). Grb2, another parental gene in the BCR signaling
pathway enriched in immature B cells, could regulate the
magnitude of BCR signaling and the immunological synapse
(44). As a parental gene in the BCR signaling pathway enriched
in mature B cells, Akt was a key regulatory factor of Foxo1
transcriptional activity in B cells (45). On the other hand, the
formation of circRNAs is influenced by alternative splicing and
epigenetic modification (46). Previous studies have indicated that
dynamic DNA methylation and histone methylation may affect
the development of B cells (47, 48). Hence, the generation of
Frontiers in Immunology | www.frontiersin.org 10
stage-specific circRNAs might be affected by other epigenetic
regulations on their parental genes.

The expression patterns of several circRNAs showed highly
dynamic behavior throughout B-cell differentiation in the bone
marrow. It suggested that the expression of circRNAs is precisely
and tightly regulated. Moreover, these circRNAs may play
particular roles in several successive developmental stages. For
example, 9 circRNAs were consistently upregulated during
myeloid B-cell development, while 7 circRNAs were
consistently downregulated in this process. The expression
patterns of these circRNAs indicated their sustained and stable
regulatory roles throughout the developmental progression from
the pro-B cells to mature B cells. For another example, 31
circRNAs firstly reached a relatively high level in the pre-B
cells, but then continuously decreased in the latter two
developmental stages. Therefore, these circRNAs may be
critical factors for the fate of pre-B cells.

Based on the ceRNA hypothesis, we constructed the ceRNA
networks to further explore the functions of DEcircRNAs in
different developmental stages of B cells. For instance,
novel_circ_000317 and novel_circ_000383 were identified as
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FIGURE 6 | Validation of miRNA expression by using qPCR. The identified differentially expressed transcripts miRNAs were divided into three groups: Pre vs. Pro,
Immature vs. Pre and Mature vs. Immature. (A, B) Pre vs. Pro, (C, D) Immature vs. Pre, (E, F) Mature vs. Immature. miRNA expression was quantified relative to the
U6 expression level using the comparative cycle threshold method. Columns represent means ± SEM; ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
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sponges of mmu-miR-15a-3p and mmu-miR-3059-5p, which
target Lair1 in the pro-B to pre-B cell transitional stage. Lair1
was an immunoglobulin superfamily inhibitory receptor
differentially expressed during human B-cell differentiation,
which inhibited early B cell receptor-mediated signaling and B-
cell maturation (49). The Lair1 on activated B cells decreased
immunoglobulin and cytokine production in BCR signaling,
which inhibited B-cell proliferation and maturation (50). It
suggested that circRNA might regulate the B-cel l
differentiation by affecting their immunoglobulin receptor. In
addition, novel_circ_000150 may function as miRNA sponge of
mmu-miR-130b-5p, mmu-miR-148a-5p, mmu-miR-18b-3p and
mmu-miR-467e-5p, all of which targeted complement receptor 2
(Cr2/CD21). After late-immature B cells had exited the mouse
bone marrow, the expression level of Cr2 was increased during
B-cell maturation, which was confirmed in our data (51).
Premature expression of human Cr2 during B-cel l
development cause defects in B-cell ontogeny and humoral
immune response in mice (52, 53). Besides, novel_circ_000701
and novel_circ_000616 were identified as sponges of mmu-miR-
542-3p, which targets IL-4Ralpha. A previous study had
indicated that IL-4Ralpha controlled the development of IL-4-
producing B cells (54). In summary, we found that several
circRNAs functioned as potential ceRNAs to regulate miRNA-
targeted mRNA during B-cell differentiation and development,
Frontiers in Immunology | www.frontiersin.org 11
bringing us some novel ideas to further explore the regulatory
networks in these processes.

We found that the BCR signaling pathway, metabolic
pathways, Toll-like receptors signaling, cell adhesion and other
pathways were significantly enriched during B-cel l
differentiation in mouse bone marrow through functional
enrichment analyses on the ceRNA networks. Many studies
have reported that the BCR signaling pathway played a crucial
role in B-cell development and lineage commitment (3, 9).
Moreover, it was reported that key metabolic pathways, such
as increased glucose uptake and induction of glycolysis,
contributed to B cells fate and behavior (55–57). Toll-like
receptors (TLRs) were one of the most important families of
pattern-recognition receptors. In combination with other B-cell
signaling pathways, TLR signaling plays a significant role in B-
cell lineage determination and negative selection (58).

In conclusion, we provided the emerging field of circRNA
biology with their first lineage-specific expression profiles during
B-cell development, unveiling novel features of these elusive
transcripts and inferred their important roles in B cells.
Because of the lineage-specific distribution of circRNAs in B
cells, these molecules will be considered potential developmental
checkpoints or cell-specific markers. On the other hand, the
circRNA-miRNA-mRNA interaction networks were constructed
during B-cell development, which provided novel ideas for
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FIGURE 7 | Validation of mRNA expression by using qPCR. The identified differentially expressed transcripts mRNAs were divided into three groups: Pre vs. Pro,
Immature vs. Pre and Mature vs. Immature. (A, B) Pre vs. Pro, (C, D) Immature vs. Pre, (E, F) Mature vs. Immature. mRNA expression was quantified relative to the
gapdh expression level using the comparative cycle threshold method. Columns represent means ± SEM; ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
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FIGURE 8 | CircRNA-associated ceRNA networks and function enrichment analyses at the transitions of pro-B into the pre-B cell stage and the pre-B to immature
B cell stage. ceRNA networks were constructed based on circRNA-miRNA and miRNA-mRNA interactions (A–C) Grouping. (D–I) The networks and function
enrichment analyses in the pro-B to pre-B cell transitional stage (Pre vs. Pro group) (D–F) and the pre-B to immature B cell transitional stage (Immature vs. Pre
group) (G–I). (D, G) The ceRNA interaction of decreased circRNAs-increased miRNAs-decreased mRNAs, (E, H) The ceRNA interaction of increased circRNAs-
decreased miRNAs-increased mRNAs. (F, I) GO enrichment analysis of the related genes in the ceRNA networks includes three aspects: Biological Process, Cellular
Component, and Molecular Function.
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further exploration of the unclearmechanism of B-cell development.
Meanwhile, our study may offer valuable resources for the ncRNA
biology in lymphocytes. Further studies should aim at functional
characterizationof these circRNAs, verificationof circRNA-miRNA-
mRNA interaction networks, as well as identification of potential
developmental biomarkers and checkpoints.
Frontiers in Immunology | www.frontiersin.org 13
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