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Abstract

Motivation: Identifying altered transcripts between very small human cohorts is particularly challenging and is com-
pounded by the low accrual rate of human subjects in rare diseases or sub-stratified common disorders. Yet, single-
subject studies (S3) can compare paired transcriptome samples drawn from the same patient under two conditions
(e.g. treated versus pre-treatment) and suggest patient-specific responsive biomechanisms based on the overrepre-
sentation of functionally defined gene sets. These improve statistical power by: (i) reducing the total features tested
and (ii) relaxing the requirement of within-cohort uniformity at the transcript level. We propose Inter-N-of-1, a novel
method, to identify meaningful differences between very small cohorts by using the effect size of ‘single-subject-
study’-derived responsive biological mechanisms.

Results: In each subject, Inter-N-of-1 requires applying previously published S3-type N-of-1-pathways MixEnrich to
two paired samples (e.g. diseased versus unaffected tissues) for determining patient-specific enriched genes sets:
Odds Ratios (S3-OR) and S3-variance using Gene Ontology Biological Processes. To evaluate small cohorts, we cal-
culated the precision and recall of Inter-N-of-1 and that of a control method (GLMþEGS) when comparing two
cohorts of decreasing sizes (from 20 versus 20 to 2 versus 2) in a comprehensive six-parameter simulation and in a
proof-of-concept clinical dataset. In simulations, the Inter-N-of-1 median precision and recall are > 90% and >75% in
cohorts of 3 versus 3 distinct subjects (regardless of the parameter values), whereas conventional methods outper-
form Inter-N-of-1 at sample sizes 9 versus 9 and larger. Similar results were obtained in the clinical proof-of-concept
dataset.

Availability and implementation: R software is available at Lussierlab.net/BSSD.

Contact: lussier.y@gmail.com or piegorsch@math.arizona.edu

1 Introduction

Empirical evidence unveils a methodological gap when comparing
transcriptomic differences in biological mechanisms within very
small human cohorts due to variations in heterogenicity, uncon-
trolled biology (age, gender, etc.) and diversity of environmental fac-
tors (nutrition, sleep, etc.) (Griggs et al., 2009; Liu et al., 2014;
Schurch et al., 2016; Soneson and Delorenzi, 2013). Even in isogenic
conditions, studies recommend at least six biological replicates for
applying GLMs (Liu et al., 2014; Schurch et al., 2016). These

sample size requirements are unfeasible for clinical care of a patient.
Paradoxically, rare diseases are common: 8% prevalence in the
population (Elliott and Zurynski, 2015) and 26% of children who
attend disability clinic (Guillem et al., 2008). As timely and sizeable
patient accrual of rare or micro-stratified diseases are prohibitive,
there lies an opportunity for empowering clinical researchers with
feasible statistical designs that enable smaller cohorts.

On the other hand, well-controlled isogenic studies (e.g. cellular
models) can yield differentially expressed genes (DEGs) between
two small samples. We and others have applied the power of the
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isogenic framework through the comparison of two sample tran-
scriptomes from one subject in single-subject studies (S3). While
transcript-level differences between two-sample remain inaccurate
(Vitali et al., 2019; Zaim et al., 2019), gene set-level (pathway/bio-
system) S3 have been shown to accurately discover altered biome-
chanisms from paired transcriptome samples drawn from the same
patient under two conditions (e.g. tumor-normal, treated-untreated)
(Ozturk et al., 2018; Vitali et al., 2019). The results of the S3 gene
set analyses have been validated in various contexts such as cellular/
tissular models (Balli et al., 2019; Gardeux et al., 2014, 2015),
retrospectively in predicting cancer survival(Li et al., 2017a,b;
Schissler et al., 2015; Schissler et al., 2018) circulating tumor cells
(Schissler et al., 2016), biomarker discovery simulations (Zaim
et al., 2018) and therapeutic response (Li et al., 2017a,b). Despite
the success of these models to derive effect sizes and statistical sig-
nificance in S3 of transcriptomes, these samples are isogenic or
quasi-isogenic, and thus do not necessarily generalize to a group of
subjects (cohort-level signal). To address the latter, we reported that
determining single cohort-level significance by combining gene set
signal (e.g. pathways) from S3 analyses can be more accurate than
conventional DEG analyses (e.g. GLMs) followed by gene set en-
richment analysis (GSEA) (Subramanian et al., 2005) in small cohort
simulations (Zaim et al., 2018) and in previously published datasets
(Li et al., 2017a,b). However, these methods could only summarize
information within a single cohort and were not designed to com-
pare two distinct cohorts to evaluate subgroup interactions.

To address the methodological gap, we therefore hypothesized
that single-subject transcriptomic studies of gene sets increase the
transcriptomic signal-to-noise ratio within subject and lead to an
improved signal between small patient cohorts, as small as 3vs3 sub-
jects per group. While technically different from the analysis of the
standard two factor interactions in conventional cohort statistics, the
proposed framework is conceptually related to a statistical interaction
in that a within-single-subject analysis (subject-specific transcriptome
dynamics) is followed by within-group agreement for characterizing
Factor 1 (e.g. cancer versus paired normal tissue) and between group
comparisons (Factor 2; e.g. responsive versus unresponsive to ther-
apy). The strategy improves the statistical power by: (i) reducing the
total features tested (gene set-level rather than transcript-level), (ii)
relaxing the requirement of within-cohort uniformity at the transcript
level as the coordination is conducted at the gene set-level and (iii)
reducing confounding factors through the paired sample design of S3-
analyses within subject. The novel bioinformatic method identifies
meaningful biomechanism differences between very small cohorts by
using single-subject-study-derived effect sizes for gene sets.
Additionally, we show through both extensive simulations and a real
data case example using TCGA human breast cancer cohort data that
-within cohorts of varying sizes (3 to 7 subjects)- the Inter-N-of-1
method outperforms traditional methods, which are based on gener-
alized linear modeling (GLM) followed by common gene set enrich-
ment or overlap analysis. We then apply this novel method to the
effect sizes of two different single-subject analyses to illustrate the
flexibility and utility of the proposed method for a variety of inputs.

2 Materials and methods

Figure 1provides an overview of the proposed new method (Inter-N-
of-1). To motivate the development of transcriptome analytics be-
tween very small human samples, by nature heterogenicity, we first
demonstrate the limitation of a Generalized Linear Model to DEGs
between 23 TP53 and 19 PIK3CA breast cancer samples. Next, we
describe two new methods Inter-N-of-1 (MixEnrich) and Inter-N-
of-1 (NOISeq) that work by combining single subject study results
using contingency tables to obtain cohort-level estimates for enrich-
ment of GO terms which are then contrasted to discern differences
in enrichment between the two cohorts. We then compare these two
methods to a Generalized Linear Model (implemented in LIMMA)
(i) in simulation studies with parameters estimated from empirical
analyses of real datasets and (ii) in a proof-of-concept study of
TCGA breast cancer cohorts. Also, the evaluation of the proposed
new methods is conservative as it is conducted against a reference

standard built with a distinct Generalized Linear Model (edgeR)
using all samples.

2.1 Datasets

We obtained 5179 gene sets from Gene Ontology (Ashburner et al.,

2000) Biological Processes (GO-BP) (downloaded on 02/07/2019).

The Human breast cancer cohort consists of RNA-seq expression

profiles samples of 224 paired breast cancer (BC) tumor and un-

affected breast tissue normal (Factor 1) from the same subjects (n

¼ 112) from The Cancer Genome Atlas (TCGA) Breast Invasive

Carcinoma data collection (Cancer Genome Atlas, 2012; Ciriello

et al., 2015) (Obtained 10/22/2015). The proof-of-concept applica-

tion of the proposed methods (Figs 3 and 4) pertains to the subset

of subjects with either TP53 (n ¼ 23) or PIK3CA (n ¼ 19) muta-

tions (Factor 2), but not both. These BC oncogenes have been

reported (i) in expression patterns (Cancer Genome Atlas, 2012),

(ii) cancer subtypes (Van Keymeulen et al., 2015), (iii) clinical out-

comes (Kim et al., 2017) and (iv) responsiveness to specific thera-

pies (Andre et al., 2019). These data were downloaded using the R

package TCGA2STAT(n¼42 cases; 84 files) (Wan et al., 2016).

Data access and preparation: (A) within each sample pair of a sin-

gle-subject study, (i) we removed all transcripts with mean expres-

sion �5 counts, (ii) found the union of all genes remaining amongst

all pairs, (iii) excluded all genes not included in the union of these

two steps (17,923 genes remaining) and (iv) added ‘1’ to expression

counts to eliminate ‘zeros’. (B) For GLM analyses, we eliminated

all the transcripts with 0 counts for each subject and calculated

each transcript’s coefficient of variation (CV). We retained the top

70% of transcripts ranked by CV (13,932 genes remaining).

Simulated datasets production is described in Section 2.4.

MCF7 breast cancer cells, for estimating simulation parameters,

consist of 7 estrogen-stimulated and 7 unstimulated cells sample

replicates (Edgar et al., 2002; Liu et al., 2014) (obtained on 10/14/
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Fig. 1. Overview of the gene set analyses (Inter-N-of-1) that leverage effect sizes and

variances from S3 to conduct subsequent group comparisons. S3 details are provided

in Figure 2
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2020; GEO GSE51403). 30M reads sequences of MCF7 cells were

aligned using the hg19 (Dreszer et al., 2012) reference genome and

normalized RNA-seq counts into Fragments Per Kilobase of tran-

script per Million mapped reads.

2.2 Proposed S3-anchored responsive pathway Inter-N-

of-1 methods for comparing very small human cohorts
The following paragraphs will develop the methodology by which
we conduct S3 prior to cross-cohort comparison to discover the

effect size of responsive pathways in each subject and increase the
features signal-to-noise ratio. Table 1 summarizes the variables.

Identification of overrepresented gene sets for each subject: As
illustrated in Figure 2A, we applied to each of the tumor-normal
pairs the N-of-1-pathways MixEnrich method that we had previous-
ly developed and validated (Li et al., 2017a,b; Zaim et al., 2018)
and extended to account for direction of differential expression
(Berghout et al., 2018) and contrasted to other methods (Li et al.,
2019). Briefly, this method models the absolute value of the log2

transformed fold change (FC) for each gene across the two paired
transcriptomes being studied and uses a probabilistic Gaussian mix-
ture to assign a posterior probability that the gene is differentially
expressed between tumor and normal conditions. Within the simula-
tion, prioritized transcripts were defined as those with a posterior
probability of being differentially expressed higher than 0.99.
Within the TCGA breast cancer cohort, said definition included hav-
ing both a posterior probability of being differentially expressed
higher than 0.99 and an absolute-valued log2FC higher than
log2(1.2), which was determined as optimal for downstream GO
terms enrichment in this dataset. Genes were assigned to gene sets
using the Gene Ontology (Ashburner et al., 2000) Biological Process
(GO-BP) hierarchy, filtered to those terms with gene set size between
15 and 500 genes, with subsumption to maximize interpretability.
These DEGs were used to determine the overrepresented, or
enriched, gene sets of interest using a two-sided Fisher’s Exact Test
(FET) (Fisher, 1935) with a False Discovery Rate (FDR) of 5%. The
output of this analysis generated lists of gene sets, with each list rep-
resenting a single subject’s tumor-normal pair and comprising GO-
BP terms accompanied by contingency table counts which were used
to calculate an odds ratio (S3-OR) as the effect size.

We also applied NOISeq-sim to each of the tumor-normal pairs
(Tarazona et al., 2015) as shown in Figure 2B. NOISeq-sim simu-
lates counts for each transcript under both conditions and then esti-
mates the joint noise distribution for the jlog2FCj and the j D(gene
expression) j between conditions. The estimated noise distribution
provides the probability of a DEG. For these applications of
NOISeq with no replicates, the ‘pnr’ and ‘v’ parameters were set to
0.0002 and 0.00002 to prevent the method from producing any
errors related to setting the size of the inherent multinomial distribu-
tions to an integer too large for R to handle. The criteria for identify-
ing genes as differentially expressed for NOISeq were the same as
those used for N-of-1-MixEnrich. As shown in Figure 2C, we subse-
quently used this information to construct contingency tables and
calculate the natural log odds ratio for Inter-N-of-1. This process
generated two different applications of Inter-N-of-1, N-of-1-
MixEnrich and NOISeq, to conduct the single-subject analyses pre-
ceding the cohort comparison.

Comparing enriched Gene Sets across distinct cohorts: We first
combined the data within two distinct cohorts into single statistics
whose null reference distributions were at least approximately nor-
mal. These within-cohort statistics were contrasted via scaled

Table 1. Variable definitions

Variable Definition

ggs;kj
The number of DEGs within gene set gs for subject kj in cohort K

g0gs;kj
The number of genes NOT differentially expressed in gene set gs for subject kj in cohort K

hgs;kj
The number of DEGs NOT in gene set gs for subject kj in cohort K

h0gs;kj
Number of genes neither differentially expressed nor in gene set gs for subject kj in cohort K

N Number of gene sets

P �ð Þ Probability of Event (�) occurring

�pgs;D P-value for gene set gs produced by the Inter-N-of-1

Qgs;kj
Continuity-corrected log S3-OR corresponding to gene set gs for subject kjin cohort K

�Qgs;K The mean continuity-corrected log S3-OR in gene set gs in cohort K

SK The number of subjects in a cohort K (e.g. those with a PIK3CA or with TP53 somatic mutation)

hK Expected value of the continuity corrected log S3-OR for the molecular-defined cohort K

var Qgs;kj

� �
Variance of continuity-corrected log S3-OR corresponding to gene set gs for subject kj in cohort K

Wgs;D The test statistic for the Inter-N-of-1 for gene set gs

Z A standard normal random variable

A

C

B

Fig. 2. Overview of two S3 methods conducted from one sample per condition with-

out replicate generating effect sizes and variance for each gene set. We apply S3 to

each subject to identify either prioritized transcripts (A) or DEGs (B) between paired

tumor-normal samples. We identify patient specific enriched gene sets and associ-

ated effect sizes in the form of natural log odds ratios through a FET (C). Each effect

size is approximately normally distributed with known variance and mean, simplify-

ing subsequent analyses between cohorts. The gene set-level variance enables the ex-

traction of more information from each individual subject than typical variance

estimators that work across subjects and thereby leads to increased statistical power.

The N-of-1-MixEnrich method was previously described and validated (Berghout

et al., 2018; Li et al., 2017a,b; Zaim et al., 2018). NOISeq is also considered as an

alternative meriting evaluation because of its performance in prior S3 evaluations

(Zaim et al., 2019)
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subtraction in a manner reminiscent of the two-sample t-test to es-
tablish the difference in gene set enrichment between the two
cohorts. Let gs 2 f1; . . . ;Ng index the specific gene set being studied
where N is the total number of gene sets, kj indexes a specific subject
in cohort K composed of SK individuals with subjects numbered
j 2 f1; . . . ; SKg, and K 2 fA;Bg indexes a specific cohort. Let D sig-
nify quantities relating to the difference between the two cohorts.

The Inter-N-of-1 analytics for combining information within a
cohort considers the abstract contingency table shown as Table 2
where the cell counts are representative for the gene set indexed by
gs and the subject indexed by kj.

We obtain DEGs from the application of a chosen single-subject
analysis method (either N-of-1-MixEnrich or N-of-1-NOISeq) for a
specific gene set gs in individual kjof cohort K to fill out the contin-
gency table with counts in the format shown in Table 2. We apply a
continuity correction by adding 0.5 to each of the cells in the contin-
gency table to provide a small-sample adjustment in the odds ratio
(Agresti and Kateri, 2011). The natural log S3 OR, denoted as Qgs;kj

,
Equation 1, is approximately normally distributed with variance
var Qgs;kj

� �
given in Equation 2 (Woolf, 1955).

Qgs;kj
¼ ln

ggs;kj
þ 1

2

� �
� h0gs;kj

þ 1
2

� �
hgs;kj

þ 1
2

� �
� g0gs;kj

þ 1
2

� �
0
B@

1
CA (1)

var Qgs;kj

� � ¼ 1

ggs;kj
þ 1

2

� �þ 1

g0gs;kj
þ 1

2

� �þ 1

hgs;kj
þ 1

2

� �þ 1

h0gs;kj
þ 1

2

� �
(2)

We average the Qgs;kj
values within their respective cohorts to

obtain the average ln ORs

�Qgs;K ¼
1

SK

XSK

j¼1
Qgs;kj

� N hK;
XSK

j¼1

var Qgs;kj

� �
S2

K

 !
(3)

When the null hypothesis H0 : hA ¼ E½ln ORAð Þ� ¼ E½ln ORBð Þ� ¼
hB is true then

Wgs;D ¼
�Qgs;A ��Qgs;Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var �Qgs;A

� �þ var �Qgs;B

� �q � N 0; 1ð Þ (4)

at least approximately. The corresponding two-sided P-value for
gene set gs is

�pgs;D ¼ 2 � P Z > Wgs;D
� �

(5)

where Z represents a standard normal random variable. An FDR ad-
justment via the Benjamini–Hochberg method (Benjamini and

Hochberg, 1995) is then applied to the �pgs;D across all the GO
terms tested in the particular application. To ensure that the method
positively identifies gene sets that are enriched in at least one of the
cohorts, we set all FDR adjusted P-values to 1.0 if both cohort
means of the log odds ratios are negative. This step ensures inter-
pretable results since impoverished GO terms with significantly
fewer-than-expected DEGs are not well understood from a biologic-
al context.

2.3 Description of the generalized linear models and

application of Inter-N-of-1 methods for small cohort

comparison and their evaluation in the TCGA human

breast cancer cohorts
Generalized Linear Model (GLM) Designs: For the cohort analyses,
we applied a generalized linear model as implemented in limma
(Smyth et al., 2005). Preceding application of the GLM, we per-
formed trimmed mean of M values (TMM) normalization
(Robinson and Oshlack, 2010) on the data pre-processed for cohort
analysis. We applied the voom normalization (Law et al., 2014) via
the limma function voomwithQualityWeights in R.

We used the three different designs described in Table 3 for these
GLM-based analyses, which were called the simple design, the inter-
action design and GLMþEGS respectively. We blocked by subject
for each of these GLM designs and all FDR adjustments of P-values
were done using the Benjamini–Hochberg False Discovery Rate
(FDR) method (Benjamini and Hochberg, 1995).

Reference standard construction within TCGA human breast
cancer cohort data using edgeR generalized linear model followed
by gene set enrichment: We chose to construct reference standards
using all samples of the human breast cancer cohort to estimate
accuracies of analyses of smaller sample size. After pre-processing
for cohort analyses, we applied generalized linear models as imple-
mented in the R software package edgeR (Robinson et al., 2010) at
FDR < 5% to the entire TCGA human breast cancer cohort data to
construct three reference standards corresponding to the three
designs discussed in Table 3. Each reference standard evaluated the
analyses of the TCGA breast cancer cohorts (TP53 versus PIK3CA)
and used the same filter thresholds for classifying transcripts as dif-
ferentially expressed, which were designed to maximize the number
of enriched GO terms in this dataset. In the GLM followed by en-
richment of gene set (GLMþEGS), the prioritized interacting tran-
scripts are followed by a FET at FDR<5%.

Subsampling of the TCGA Breast Cancer Cohort and applica-
tion of GLM and Inter-N-of-1 methods: For each of the val-
uesSA ¼ SB ¼ S 2 f2; 3; 4; 5;7; 8; 9g we ran 100 subsamples of the
total cohorts where we randomly selected without replacement S
subjects with TP53 and S subjects with PIK3CA, without requiring
non-redundancy of the random samplings. We applied the
GLMþEGS method and the N-of-1-MixEnrich and NOISeq ver-
sions of the Inter-N-of-1 method to each of the selected cohorts
(TP53 versus PIK3CA). For each of the three methods, FDR<5%
adjustment of the P-values was done with respect to all 5179 GO
terms tested.

For random subsamples of size SA ¼ SB ¼ S 2 f2; 3; 4; . . . 19g of
subjects, we applied the two transcript-level analyses using general-
ized linear models as implemented in limma. The performance of

Table 3. Three experimental designs used for the generalized linear models

Name Level What is compared Results

Simple Transcript TP53_Tumoral—PIK3CA_Tumoral Figure 3A

Interaction Transcript (TP53_Tumoral—TP53_Normal) –

(PIK3CA_Tumoral—PIK3CA_Normal)

Figure 3B

GLMþEGS Gene set 1. Find DEGs using Interaction Contrast

2. Enrichment via FET

Figures 4 and 5

Note: In the analysis of subsets of the TCGA human breast cancer cohorts, genes were declared differentially expressed if their abs(log2FC) > log2(1.2) and

their FDR-adjusted P-value < 0.05. Within the simulation, genes were declared differentially expressed if their FDR-adjusted P-values < 0.05.

Table 2. Notation for 2x2 contingency table cross-classifying DEG

status with gene set status

DEG Not DEG

Gene set gs ggs;kj
g0gs;kj

Not Gene set gs hgs;kj
h0gs;kj

i70 D.Aberasturi et al.



these transcript-level applications of limma was assessed and illus-
trated in Figure 3 to demonstrate the necessity and benefit of trans-
forming from transcript-level to gene set-level analyses.

Accuracy measures within TCGA human breast cancer cohorts:
For each method, we calculated the precision and recall using the
following functions. When a method produced no positive predic-
tions for the gene sets, we assigned values of zero to the precision
and recall of the given method. Otherwise, we calculated the preci-
sion and recall using Powers’ calculations with adjustments of add-
ing 0.5 to numerators and 1.0 to denominators to avoid divisions by
zero (Powers, 2011). In addition, we have previously published
extensions to conventional accuracy scores that we termed ‘similar-
ity Venn Diagrams’ and ‘Similarity Contingency Tables’ (Gardeux
et al., 2015). In these approaches true positive results between the
prediction set and the reference standard include both identical GO-
BP terms and those which are highly similar in terms of Information
Theoretic Similarity (ITS) and therefore represent highly related
biology (Tao et al., 2007). We calculated the precision and recall of
the gene set level analyses using this ITS approach because it unbias-
edly compares predicted biological concepts against those of the ref-
erence standard. For precision, we included in the intersection those
predicted GO-BP terms which had an ITS similarity of 0.70 or
higher with any of the GO terms in the reference standards, while
the denominator remained as all predicted GO-BP terms. Similarly,
for recall, we included in the intersection the reference standard
GO-BP terms which had an ITS similarity score of 0.70 or higher
with any of the predicted GO terms, while the denominator
remained as the total positive reference standard GO-BP terms. Of
note, we previously reported that this ITS>0.70 similarity criteria
is highly conservative since �0.0056 pairs of GO-BP terms are simi-
lar at ITS>0.7 (58,577 pairs among 10,458,756 non-identical com-
binations of GO-BP terms) (Gardeux et al., 2015).

2.4 Simulation of small cohort comparisons to compare

GLMs to Inter-N-of-1 methods
Data generation for simulation: The overall scheme for the simula-
tion began by constructing two cohorts of paired tumor-normal
RNA-seq expression profiles. We calculated simulation parameters
to most realistically create these expression values as described
below (Table 4). To calculate statistical interactions between two

Fig. 3. At the transcript level, limited accuracies of Generalized Linear Models for

calculating conventional simple contrast or interactions in small heterogenic breast

cancer cohorts. While GLMs can deliver DEGs in small cohorts for isogenic cellular

and animal models, we recapitulate in the TCGA human breast cancer cohorts that

small human cohorts are underpowered. We calculated the precision and recall

scores associated with each of the 100 random sub-samplings of cohort sizes 2vs2,

3vs3, . . ., to 19vs19 for TP53 versus PIK3CA and report median accuracies. The

left panel used a simple linear contrast of the tumor levels on the molecular sub-

types. The right panel used a linear contrast corresponding to the interaction be-

tween the molecular subtypes (TP53 versus PIK3CA) and tumor status (Breast

cancer versus normal breast). Discoveries were performed with limma while the ref-

erence standards were constructed with edgeR

Table 4. Simulation Parameter Values

Parameters How Estimated Values

Control Samples Randomly sample without replacement from TCGA breast cancer normal samples NA

log2FC distribution of

non-differentially

expressed genes

1. Calculate log2FCs of randomly paired MCF7 unstimulated breast cancer samples

2. Split log2FCs into deciles by baseline expression

a. All deciles containing 0 are combined into one category

3. Sample with replacement from decile containing transcript name in first random pair

NA

Gamma parameters of

log2FCs of DEGs

1. Run N-of-1-MixEnrich (Fig. 2) on within-subject tumor-normal pairs in TP53 and

PIK3CA cohorts to identify DEGs

2. MLEs for gamma parameters fit to absolute log2FCs of DEGs

a. Used egamma function in EnvStats R package (Millard et al., 2013)

• Scale parameter ¼ 6.06
• Shape parameter ¼ 0.55

Proportion of DEGs in

enriched GO-BP

terms

1. Split enriched GO terms from edgeR reference standard into deciles based on size

2. Calculated DEGs median proportion for deciles containing GO-BP terms (size: 47, 200)

• (GO size 200):
• 0.05, 0.10
• (GO size 40):
• 0.10, 0.19

Proportion of Subjects

with coordinated

DEGs

1. Split log2FCs of DEGs within edgeR reference standard into categories

a. >1.3, b) < -1.3 or c) neither

2. Assign the max proportion of subjects per categories (a) or (b) for each transcript

3. Find the median proportion of subjects across all transcripts

0.25, 0.48, 0.75

Balanced Cohort Size NA 2, 3, 7, 10, 30

GO-BP terms 1. Enriched: GO:0002221 (200 genes)

2. Enriched: GO:0000096 (47 genes)

3. Control: GO:0006733 (196 genes)

4. Control: GO:0090184 (41 genes)

NA

Note: Only cohort size and the proportion of subjects with coordinated DEGs were varied. All other parameters were held constant. 30 datasets were gener-

ated for each parameter configuration leading to a total of 450 datasets.
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factors, we had to design two cohorts of subjects and each subject
with two sample conditions. We sought to recreate the TCGA breast
cancer conditions with these parameters, using the observed median
values in the TCGA dataset as the medians of the simulation param-
eters and varying the parameters around said medians. The TCGA
dataset did not comprise repeated samples in the same condition,
and thus we utilized the unstimulated MCF7 cell lines with seven
replicates to estimate the variation expected between two paired
normal tissues. In our previous pathway expression studies [(Yang
et al., 2012) and data not shown] where we compared two cohorts,
about two-thirds of the observed responsive gene set patterns—as
shown in Figure 2—consisted of a gene set responsive in one subject
cohort and unresponsive in the other cohort.

These paired tumor-normal samples represented within-subject
samples were constructed to have a proportion of the transcripts
with altered expression between the tumor and normal states.
Through the use of randomly sampling without replacement, we
generated the normal tissue samples for these pairs after filtering out
all genes in the 112 TCGA breast cancer normal tissues, which were
not present within the MCF7 breast cancer dataset (leaving 17,414
genes).

For each sampled normal breast tissue sample, we generated
transcript expression for a paired breast cancer sample of that sub-
ject rather than sampling the corresponding breast cancer sample
from the TCGA data. To produce a paired tumor expression value
for a non-differentially expressed gene, we first followed the steps
outlined in Table 4 to randomly generate empirical log2 Fold
Changes (log2FC) and then we set the gene’s expression as the prod-
uct of the gene’s paired normal expression and 2 raised to the expo-
nent of the log2FC value. To generate the expression value for an
altered transcript in a tumor sample, we randomly sampled a log2FC
from a gamma distribution with parameters described in Table 4
and set said gene’s expression to the product of the gene’s normal
expression and two raised to the exponent of the log2FC value. We
generated only positive log2FCs for the DEGs to improve the GLM’s
ability to detect them as differentially expressed cross subjects. We
specified a gamma distribution for these positive log2FCs since all
the absolute-valued log2FC distributions we examined possessed sig-
nificant right-skew.

We chose to evaluate the methods using the four GO terms
described in Table 4. In simulation cohort A, two of these GO-BP
terms would be seeded with altered transcripts, thus enriched, and
two would serve as controls. In cohort B, none of the four GO terms
were enriched, thereby setting up an interaction effect between the
within-subject and between-subject factors. Within the two enriched
GO terms in cohort A, we randomly selected the proportions of
genes specified in Table 4 to have altered expression. We used
Bernoulli random variables with probabilities of success outlined in
Table 4 to designate subjects within cohort A, which would share all
their randomly selected DEGs. The remaining subjects within cohort
A had all their DEGs randomly vary across subjects. It was hypothe-
sized that the percentage of subjects with shared altered transcripts
would strongly influence the performance of the GLMþEGS
method since limma assumes the presence of coordination of gene
expression across subjects. Thus, we varied the expected proportion
of subjects with shared DEGs within cohort A (0.25, 0.48, 0.75)
using quartiles estimated from real datasets along with the sizes of
the two cohorts (2, 3, 7, 10, 30) while holding all other parameters
constant. These two varying parameters make up the core of the
simulation since these determine how GLMþEGS performs relative
to Inter-N-of-1, while all other parameters provide a background
for operation. We generated 30 datasets for each parameter combin-
ation leading to a total of 450 datasets for our downstream
simulations.

Data preprocessing within simulation: (A) For the GLM analy-
ses, we preprocessed the simulated data by removing all genes with
mean expression values less than 30 across all the simulated tran-
scripts and subsequently added 1 to each of the expression counts.
(B) For the single-subject analyses, we applied a three-stage pre-
processing method in which we (i) removed all the transcripts with
mean expression less than 30 within each sample-pair and (ii) found

the union across all pairs of genes remaining and eliminated any
genes not contained within. (iii) The remaining genes for the single-
subject analyses then had 1 added to their expression counts to elim-
inate any remaining zeroes.

Application of methods to simulated data: The GLMþEGS
and the two versions of the Inter-N-of-1 method were applied to
each of the generated datasets as described previously. The
Benjamini–Hochberg False Discovery Rate (FDR) (Benjamini and
Hochberg, 1995) adjustments of the P-values generated for each
technique were performed with respect to only the 4 selected GO
terms that were tested for each combination of dataset and
method. GOBP terms were declared positive for a method if their
associated FDR adjusted P-values for said method were below
0.05.

Accuracy measures within the simulation: To estimate the over-
all performance of each method within the simulation, we calculated
the number of true positives, true negatives, false positives and false
negatives occurring within the 2 enriched and 2 control GO terms
across all 30 resampling of each combination of parameters. When
any of the methods made no positive predictions for the gene sets,
we artificially assigned values of 0 to the precision and recall of the
given method. Otherwise, we calculated the precision and recall
through the use of their traditional formulae (Powers, 2011). 30 ac-
curacy scores are thus available for each combination of parameters
for each GO term size (40 and 200).

3 Results

We showed that using a two-step process, where we first enrich the
signal-to-noise ratio by applying S3-analyses to paired data in single-
subjects before combining across subjects, can capture stable signal
and yield results comparable to those in the reference standard, even
as cohort size decreases. By contrast, traditional techniques for iden-
tification of gene set-level biological mechanisms that differentiate
between two cohorts rapidly lose power and yield unreliable results
as the sample size decreases below five subjects per cohort.

The transcriptomic analyses of TCGA human breast cancer
cohorts in Figure 3 recapitulates that small human cohorts are par-
ticularly difficult to analyze using GLMs due to their heterogenic
conditions and lack of controlled environment. Thus, small human
cohorts present a stark contrast to isogenic controlled experiment
cell lines or animal models where the high signal to noise ratio
makes transcriptomic analyses possible for very small sample sizes.
These unsurprising results provide the justification for the develop-
ment of the proposed GLMþEGS and Inter-N-of-1 methods con-
ducted at the gene set level. They also attest to the intrinsic lack of
signal within the TCGA human breast cancer cohorts for such tran-
scriptomic analyses.

The performance results for subsets of the TCGA human breast
cancer cohort data shown in Figure 4 establish that the two versions
of the proposed Inter-N-of-1 method degrade more gracefully in
performance with decreasing cohort size than traditional GLM-
based methods, thereby allowing them to outperform for smaller co-
hort sizes. Figure 4 shows that the niche where the Inter-N-of-1
methods outperform in terms of median precision and recall extends
to all cohort sizes below 7vs7, with the GLMþEGS method achiev-
ing higher median performance scores for 9vs9 and above. The sizes
of the crosses suggest a further boon for the developed methods be-
yond this better ‘on average’ performance. The Inter-N-of-1 meth-
ods tend to have very small tight crosses suggesting low variation in
performance and greater consistency. The GLMþEGS method on
the other hand possesses very large crosses until cohort size 9vs9,
suggesting wild swings in performance across the different subsets
evaluated. In addition, even the gene set-level GLMþEGS method
outperforms transcript-level GLM analyses (Fig. 3 versus Fig. 4).
Figure 4 also establishes that the N-of-1-MixEnrich version of the
Inter-N-of-1 method outperforms the NOISeq version in terms of
consistency and median precision and recall. Although these differ-
ences remain small for larger cohort sizes of 7vs7 and above, they in-
crease gradually with decreasing cohort sizes.
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The simulations indicates that the proposed Inter-N-of-1 meth-
ods outperform GLMþEGS for small sample sizes within parame-
ters derived from cancer datasets and extended to investigate other
conditions. Figure 5 shows that the two Inter-N-of-1 methods are
unaffected by changes in the expected proportion of subjects within
cohorts with shared DEGs since their performance scores typically
oscillate randomly around a fixed point given a fixed cohort size.
These fixed points come closer to the perfect score of 1.0 precision
and 1.0 recall with increasing cohort size, suggesting that mainly the
cohort size affects the Inter-N-of-1 method. The N-of-1-MixEnrich
version of the Inter-N-of-1 method generally performs the best out
of all three methods, with its precision always staying 90% or higher
and its recall typically reaching highest levels of any method. The
NOISeq version of the Inter-N-of-1 method suffers from a higher
rate of false negatives for the two smallest tested cohort sizes of 2
and 3 and so displays significantly less recall than the N-of-1-
MixEnrich version of the Inter-N-of-1 method, although it does dis-
play similar levels of precision. Thus, this simulation also unveils the
reason for which Inter-N-of-1 (NOISeq) did not perform as well.
Both cohort size and the expected proportion of subjects within
groups with coordinated DEGs affect the performance of the
GLMþEGS method. Increasing either of these parameters signifi-
cantly improves the performance of the GLMþEGS method, with
the single exception of the 2vs2 cohort size where GLMþEGS pro-
duces 0 precision and recall for all specifications of the proportion
of subjects within group with coordinated DEGs. At the anti-conser-
vative levels for these parameters, the GLMþEGS method matches
the performance of the two versions of the Inter-N-of-1 method.
However, decreasing either parameter quickly leads the GLMþEGS

method to underperform. For cohort sizes of 10vs10 and lower, the
GLMþEGS method fails to match the performance of the two ver-
sions of the Inter-N-of-1 method and so supports the superiority of
Inter-N-of-1 in such small sample sizes for breast cancer-like data.

4 Discussion

As stated in the introduction, empirical evidence suggests the exist-
ence of a methodological gap when comparing transcriptomic differ-
ences in biological mechanisms within very small human cohorts
due to variations of heterogenicity, uncontrolled biology (age, gen-
der, etc.) and diversity of environmental factors (nutrition, sleep,
etc.). Yet, even in isogenic conditions, two studies have recom-
mended at least six biological replicates for applying generalized lin-
ear models (Liu et al., 2014; Schurch et al., 2016; Soneson and
Delorenzi, 2013). Examining two-factor interactions in transcrip-
tomes (Cohorts � tumor status) further inflates the required sample
size by a factor of 4 (Brookes et al., 2004; Fleiss, 2004; Leon and
Heo, 2009). Traditional cohort-based methods impose sample size
requirements which simply cannot be met within the framework
imposed by rare diseases, prompting the need to develop new meth-
ods. On the other hand, we and others have shown it is possible to
obtain statistical significance of gene set-level effect size measures
from single samples without replicates taken in two conditions,
namely S3 (Li et al., 2017a,b; Schissler et al., 2015; Vitali et al.,
2019). We have shown evidence from studies of sampled human
breast cancer cohorts and simulations that the S3-anchored Inter-N-
of-1 addresses this methodological gap. Their slow decay in per-
formance when contrasted with the abrupt decay of GLMþEGS
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Fig. 5. Comparison of accuracy of GLM1EGS and Inter-N-of-1 methods within the

simulation. We generated subject tumor-normal pairs for a variety of cohort sizes

(2vs2, 3vs3, 7vs7, 10vs10, 30vs30) and expected proportion of subjects with shared

DEGs in cohort A (0.25, 0.48, 0.75). We simulated 30 datasets for each parameter

configuration and applied the proposed developed Inter-N-of-1 methods and

GLMþEGS method to each. We calculated the total number of true positives, false

positives, false negatives and true negatives across all iterations and used them to

calculate the precision and recall for each combination of method, parameter config-

uration and GO term size. Separate graphs are made for each parameter configur-

ation and plot the resulting precision and recall measures for each method for the

gene sets of size 40 with Proportion of DEGs in enriched GO-BP terms ¼ 0.10

(other proportions not shown). The results for gene sets of size 200 were very simi-

lar to the above results and so were excluded. The recall of the GLMþEGS rapidly

declines for smaller cohort sizes, although increasing the expected proportion of

subjects within cohorts with coordinated DEGs improves the recall of the method

and decreases the minimum sample size needed for it to perform near perfectly

Fig. 4. At the gene set–level, two Inter-N-of-1 methods outperform a GLM followed

by enrichment in small heterogenic human cohorts. While Inter-N-of-1 (NOISeq)

and Inter-N-of-1 (MixEnrich) outperform the GLM followed by enrichment in gene

sets for sample sizes �7vs7, the GLMþEGS shows better accuracy at sample sizes

9vs9 and above. Of note, GLMþEGS shows large variations in performance meas-

ures within the samples of size 8vs8 suggesting that despite its improved median ac-

curacy it remains unreliable at that level. In all cases, the discovery of differentially

responsive gene sets (Inter-N-of-1 methods) or enriched gene sets (GLMþEGS) sub-

stantially outperform the accuracies of transcript-level analyses shown in Figure 3.

While the Inter-N-of-1 and GLMþEGS methods identify related signals, the refer-

ence standard designed by a distinct GLMþEGS approach favors the accuracies of

the latter. In addition, Inter-N-of-1 methods can assess the effect size of responsive

gene sets in each subject, which can be illustrated as box plots of gene set response.

In contrast. GLMþEGS methods are limited to a single description of over-represen-

tation calculated on interacting transcripts of the entire study. We calculated the

precision and recall scores associated with each of the 100 random subsampling of

cohort sizes 2vs2, 3vs3, 4vs4, 5vs5, 7vs7, 8vs8, 9vs9 for TP53 and PIK3CA subjects

with the GLMþEGS and Inter-N-of-1 methods: (i) Inter-N-of-1 (NOISeq), and (ii)

Inter-N-of-1 (MixEnrich). We also conducted a wide array of comparisons of un-

equal cohort sizes (not shown, e.g. 4vs8 mirrored results seen for 5vs5). The arms

extend from the lower quartile to the upper quartile of the respective performance

measure, and the two arms cross at the median for the precision and recall for that

technique at the indicated cohort size
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establishes the superiority of these methods for sample sizes of
SA ¼ SB 2 f2; 3; 4; 5;6gwhen applied to our TCGA human breast
cancer cohort data. Comparison of the median precision and recall
of the three considered techniques shows that on average our meth-
ods exhibit greater power and importantly less variable performance
than GLMþEGS at these low cohort sizes. Our simulation study
confirmed that both versions of the Inter-N-of-1 provide substantial-
ly improved recall over the GLMþEGS method at small cohort sizes
while still maintaining equivalent levels of precision. The simulation
results also establish that the expected proportion of subjects with
coordinated DEGs within cohorts plays a critical role in determining
the range of cohort sizes in which the developed methods outper-
form traditional GLM-based techniques. In datasets where the pro-
portion of subjects within cohorts sharing their DEGs is lower than
75%, the Inter-N-of-1 methods continue to outperform the
GLMþEGS method until cohort sizes >30. Furthermore, our appli-
cations of Inter-N-of-1 to infrequent oncogenic mutations (TP53
versus PIK3CA) of human breast cancer cohorts (Cancer Genome
Atlas, 2012) exemplifies how micro-stratified common disorders
present a computational ad biological sampling problem related to
those observed in infrequent diseases and a proxy for rare disorders.

Several limitations were observed. (i) This study focuses on
parameters related to cancers, where substantial differences exist be-
tween paired normal and cancer tissues. While S3 have been shown
to be effective in viral response (Gardeux et al., 2015, 2017) or re-
sponse to therapy (Li et al., 2017a,b), it remains to be demonstrated
that the downstream Inter-N-of-1 methods can outperform tran-
script-level methods in those biological conditions. (ii) The simula-
tion does present some inconsistencies with observations made
within the TCGA human breast cancer subsets. Methods within the
simulation attain performances which appear to be highly inflated
compared to observations made within the small human cohorts.
Part of this points to the need to alter simulation parameters to pro-
vide more realistic conditions. Part of these discrepancies can prob-
ably also be explained by the fact that the breast cancer analyses
used a reference standard that favored GLMþEGS over Inter-N-of-
1 methods by design. (iii) We explored only one type of difference
within gene set response between cohorts in the simulations: a co-
hort responsive versus unresponsive. We are thus undertaking the
complementary analysis to compare the more general paradigm of
gene sets more responsive in one cohort than in the other. (iv)
Although the developed methods allow for a more accurate testing
of interactions in datasets with small sample sizes, the importance of
balancing confounders between the two cohorts cannot be over-
stated. The small samples used within these analyses prevent ran-
domization from balancing key covariates and confounders between
cohorts. Future studies could model unbalanced covariates through
data or knowledge fusion with external datasets. (v) Transcript inde-
pendence assumptions in the calculation of the single-subject odds
ratio and its variance (Inter-N-of-1 methods) may be transgressed.
However, many such assumptions are routinely overlooked in
related analyses, such as BH-FDR (Benjamini and Hochberg, 1995)
with similar limitations later rectified as the BY-FDR (Benjamini
and Yekutieli, 2001). Other methods for controlling FDR may offer
increases in power, although these methods again may not properly
control FDR under general dependence structures observed in gene
expression data (Storey, 2002; Storey et al., 2004). When viewed
under that perspective, computational biology may progress by first
proving new models and then addressing their biases in subsequent
studies. (vi) Other unbiased approaches to generating gene sets
could have been utilized (e.g. co-expression network from independ-
ent datasets, protein interaction networks, etc.). (vii) Of note, few
datasets are available with two measures in different conditions per
subject and more than one clinical cohort of subjects. Similar to
physics where experimentalist and theory influence one another, our
work presents improvements on solving an experimental design that
is infrequently used and merits more consideration for increasing the
signal-to-noise ratio in the study of rare and infrequent diseases.
(viii) Prospective biologic validation of results is also required in fu-
ture studies as we have done with S3 in the past (Gardeux et al.,
2014). (ix) The results presented for these methods are only for gene

sets of size 15–500 and 40 and 200 (Simulation) and therefore valid-
ation of the performance of Inter-N-of-1 in gene sets of larger size
requires future work.

Another consideration concerns the fact that GLMþEGS and
Inter-N-of-1 evaluate different phenomena. The GLMþEGS method
discovers GO terms enriched for transcripts and requires the coord-
ination of signals at the transcript-level across subjects belonging to
similar classes before the enrichment. The Inter-N-of-1, on the other
hand, assesses whether the proportion of responsive transcripts
within a given GO term measured in each subject significantly dif-
fers across cohorts. In other words, in the Inter-N-of-1, the tran-
scripts contribution to the gene set signal may be different between
subjects, while in the GLMþEGS methods a transcript-level coord-
ination is required. The Inter-N-of-1 favors clinical applications
where gene set mechanisms are causal to the disease. Cancer is one
such condition where numerous genetic and transcriptomic root
causes may differ between subjects and yet converge to comparable
cellular and clinical phenotypes.

In conclusion, the proposed S3-anchored Inter-N-of-1-methods
demonstrate the utility of within-subject paired sample designs for
better controlling the heterogenicity between subjects in a manner
reminiscent of experimental isogenic models (e.g. cell lines or mice
models). These results motivate further studies of new experimental
designs, where paired within-subject samples allow analyses of data-
sets previously considered too small. The new design not only
presents opportunities in terms of performance within small cohorts,
but also in terms of utility. By examining the single-subject results
one can directly see the degree of concordance and discordance
amongst subjects and answer questions pertaining to whether specif-
ic subjects possess the overall observed signal. Thus, the Inter-N-of-
1 presented here represents not just a new method that performs bet-
ter within small sample sizes, but also an example for how to simul-
taneously conduct analyses on patient variability within and across
cohorts. In addition, precision therapies designed for increasingly
sub-stratified common disorders can benefit from the proposed
methods. The strategies and methods presented here open a new
frontier that may greatly enrich our understanding of the genetic
foundations of rare diseases.
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